Skip to main content
Log in

Cytoarchitecture, myeloarchitecture, and parcellation of the chimpanzee inferior parietal lobe

  • Original Article
  • Published:
Brain Structure and Function Aims and scope Submit manuscript

Abstract

The parietal lobe is a region of especially pronounced change in human brain evolution. Based on comparative neuroanatomical studies, the inferior parietal lobe (IPL) has been shown to be disproportionately larger in humans relative to chimpanzees and macaques. However, it remains unclear whether the underlying histological architecture of IPL cortical areas displays human-specific organization. Chimpanzees are among the closest living relatives of humans, making them an ideal comparative species to investigate potential evolutionary changes in the IPL. We parcellated the chimpanzee IPL using cytoarchitecture and myeloarchitecture, in combination with quantitative comparison of cellular features between the identified cortical areas. Four major areas on the lateral convexity of the chimpanzee IPL (PF, PFG, PG, OPT) and two opercular areas (PFOP, PGOP) were identified, similar to what has been observed in macaques. Analysis of the quantitative profiles of cytoarchitecture showed that cell profile density was significantly different in a combination of layers III, IV, and V between bordering cortical areas, and that the density profiles of these six areas supports their classification as distinct. The similarity to macaque IPL cytoarchitecture suggests that chimpanzees share homologous IPL areas. In comparison, human rostral IPL is reported to differ in its anatomical organization and to contain additional subdivisions, such as areas PFt and PFm. These changes in human brain evolution might have been important as tool making capacities became more complex.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

Data will be made available on reasonable request.

References

  • Bailey P, von Bonin G, McCulloch W (1950) The isocortex of the chimpanzee. Univ. of Illinois Press, Urbana

    Google Scholar 

  • Bessa J, Hockings K, Biro D (2021) First evidence of chimpanzee extractive tool use in cantanhez, guinea-bissau: cross-community variation in honey dipping. Front Ecol Evol 9:180

    Article  Google Scholar 

  • Boesch C, Boesch H (1990) Tool use and tool making in wild chimpanzees. Folia Primatol 54:86–99

    Article  CAS  Google Scholar 

  • Boesch C, Boesch-Achermann H (2000) The chimpanzees of the Taï Forest: behavioural ecology and evolution. Oxford University Press, Oxford

    Google Scholar 

  • Bonini L, Rozzi S, Serventi FU, Simone L, Ferrari PF, Fogassi L (2010) Ventral premotor and inferior parietal cortices make distinct contribution to action organization and intention understanding. Cereb Cortex 20:1372–1385

    Article  Google Scholar 

  • Brodmann K (1905) Beitraege zur histologischen lokalisation der grosshirnrinde. III. Mitteilung: die rindenfelder der niederen affen. J Psychol Neurol (Lzp) 4:177–226

    Google Scholar 

  • Brodmann K (1909) Vergleichende lokalisationslehre der großhirnrinde in ihren prinzipien dargestellt auf grund des zellenbaues (English translation available In: Garey LJ (2006) Brodmann’s: Localisation in the cerebral cortex, 3rd edn). Springer US, Leipzig, J.A. Barth

  • Carvalho S, Cunha E, Sousa C, Matsuzawa T (2008) Chaînes opératoires and resource-exploitation strategies in chimpanzee (Pan troglodytes) nut cracking. J Hum Evol 55:148–163

    Article  Google Scholar 

  • Caspers S, Geyer S, Schleicher A, Mohlberg H, Amunts K, Zilles K (2006) The human inferior parietal cortex: cytoarchitectonic parcellation and interindividual variability. Neuroimage 33:430–448

    Article  Google Scholar 

  • Caspers S, Zilles K, Laird AR, Eickhoff SB (2010) ALE meta-analysis of action observation and imitation in the human brain. Neuroimage 50:1148–1167

    Article  Google Scholar 

  • Caspers S, Eickhoff SB, Rick T, von Kapri A, Kuhlen T, Huang R, Shah NJ, Zilles K (2011) Probabilistic fibre tract analysis of cytoarchitectonically defined human inferior parietal lobule areas reveals similarities to macaques. Neuroimage 58:362–380

    Article  Google Scholar 

  • Caspers S, Schleicher A, Bacha-Trams M, Palomero-Gallagher N, Amunts K, Zilles K (2013) Organization of the human inferior parietal lobule based on receptor architectonics. Cereb Cortex 23:615–628

    Article  Google Scholar 

  • Cheng L, Zhang Y, Li G, Wang J, Sherwood C, Gong G, Fan L, Jiang T (2021) Connectional asymmetry of the inferior parietal lobule shapes hemispheric specialization in humans, chimpanzees, and rhesus macaques. Elife 10:67600

    Article  Google Scholar 

  • Fogassi L, Ferrari PF, Gesierich B, Rozzi S, Chersi F, Rizzolotti G (2005) Neuroscience: Parietal lobe: from action organization to intention understanding. Science 308(5722):662–667

    Article  CAS  Google Scholar 

  • Gallese V, Fadiga L, Fogassi L, Rizzolatti G (1996) Action recognition in the premotor cortex. Brain 119:593–609

    Article  Google Scholar 

  • Gardner EP, Babu KS, Reitzen SD, Ghosh S, Brown AS, Chen J, Hall AL, Herzlinger MD, Kohlenstein JB, Ro JY (2007) Neurophysiology of prehension. I. Posterior parietal cortex and object-oriented hand behaviors. J Neurophysiol 97:387–406

    Article  Google Scholar 

  • Gerhardt E (1938) Der isocortex parietalis beim schimpansen. J Psychol Neurol 48:329–386

    Google Scholar 

  • Geyer S, Weiss M, Reimann K, Lohmann G, Turner R (2011) Microstructural parcellation of the human cerebral cortex - from Brodmann’s post-mortem map to in vivo mapping with high-field magnetic resonance imaging. Front Hum Neurosci 5:19

    Article  Google Scholar 

  • Goodall J (1986) The chimpanzees of Gombe: patterns of behavior. Belknap Press of Harvard University Press, Cambridge Mass

    Google Scholar 

  • Gregoriou GG, Borra E, Matelli M, Luppino G (2006) Architectonic organization of the inferior parietal convexity of the macaque monkey. J Comp Neurol 496:422–451

    Article  Google Scholar 

  • Gunz P, Neubauer S, Falk D, Tafforeau P, Le Cabec A, Smith TM, Kimbel WH, Spoor F, Alemseged Z (2020) Australopithecus afarensis endocasts suggest ape-like brain organization and prolonged brain growth. Sci Adv 6(14):eeaz4729

    Article  Google Scholar 

  • Haslam M (2013) “Captivity bias” in animal tool use and its implications for the evolution of hominin technology. Philos Trans R Soc B Biol Sci 368:20120421

    Article  Google Scholar 

  • Hecht EE, Murphy LE, Gutman DA, Votaw JR, Schuster DM, Preuss TM, Orban GA, Stout D, Parr LA (2013) Differences in neural activation for object-directed grasping in chimpanzees and humans. J Neurosci 33:14117–14134

    Article  CAS  Google Scholar 

  • Hecht EE, Gutman DA, Khreisheh N, Taylor SV, Kilner J, Faisal AA, Bradley BA, Chaminade T, Stout D (2015) Acquisition of Paleolithic toolmaking abilities involves structural remodeling to inferior frontoparietal regions. Brain Struct Funct 220:2315–2331

    Article  CAS  Google Scholar 

  • Hill J, Inder T, Neil J, Dierker D, Harwell J, Van Essen D (2010) Similar patterns of cortical expansion during human development and evolution. Proc Natl Acad Sci USA 107:13135–13140

    Article  CAS  Google Scholar 

  • Holloway RL (1983) Cerebral brain endocast pattern of Australopithecus afarensis hominid. Nature 303:420–422

    Article  CAS  Google Scholar 

  • Holloway RL, Clarke RJ, Tobias PV (2004) Posterior lunate sulcus in Australopithecus africanus: was dart right? CR Palevol 3:287–293

    Article  Google Scholar 

  • Hopf A (1965) Objektive registrierungder myeloarchitectonik der hirnrinde. Naturwissenschaften 52:479

    Article  CAS  Google Scholar 

  • Hopf A (1968) Registration of the myeloarchitecture of the human frontal lobe with an extinction method. J Hirnforsch 10:259–269

    CAS  Google Scholar 

  • Hopkins WD, Phillips KA (2010) Cross-sectional analysis of the association between age and corpus callosum size in chimpanzees (Pan troglodytes). Dev Psychobiol 52:133

    Google Scholar 

  • Hopkins W, Russell J, Schaeffer J, Gardner M, Schapiro S (2009) Handedness for tool use in captive chimpanzees (Pan troglodytes): sex differences, performance, heritability and comparison to the wild. Behaviour 146:1463–1483

    Article  CAS  Google Scholar 

  • Hudspeth AJ, Ruark JE, Kelly JP (1976) Cytoarchitectonic mapping by microdensitometry. Proc Natl Acad Sci U S A 73:2928–2931

    Article  CAS  Google Scholar 

  • Iacoboni M, Woods R, Brass M, Bekkering H, Mazziotta JC, Rizzolatti G (1999) Cortical mechanisms of human imitation. Science 286(5449):2526–2528

    Article  CAS  Google Scholar 

  • Mackey S, Petrides M (2009) Architectonic mapping of the medial region of the human orbitofrontal cortex by density profiles. Neuroscience 159:1089–1107

    Article  CAS  Google Scholar 

  • Mackey S, Petrides M (2010) Quantitative demonstration of comparable architectonic areas within the ventromedial and lateral orbital frontal cortex in the human and the macaque monkey brains. Eur J Neurosci 32:1940–1950

    Article  Google Scholar 

  • Mackey S, Petrides M (2014) Architecture and morphology of the human ventromedial prefrontal cortex. Eur J Neurosci 40:2777–2796

    Article  Google Scholar 

  • Mars RB, Jbabdi S, Sallet J, O’Reilly JX, Croxson PL, Olivier E, Noonan MAP, Bergmann C, Mitchell AS, Baxter MG, Behrens TEJ, Johansen-Berg H, Tomassini V, Miller KL, Rushworth MFS (2011) Diffusion-weighted imaging tractography-based parcellation of the human parietal cortex and comparison with human and macaque resting-state functional connectivity. J Neurosci 31:4087–4100

    Article  CAS  Google Scholar 

  • Matsuzawa T (1996) Chimpanzee intelligence in nature and in captivity: isomorphism of symbol use and tool use. Great Ape Societies. Cambridge University Press, Cambridge, pp 196–210

    Chapter  Google Scholar 

  • McGrew WC (1992) Tool-use by free-ranging chimpanzees: the extent of diversity. J Zool 228:689–694

    Article  Google Scholar 

  • Morecraft RJ, Cipolloni PB, Stilwell-Morecraft KS, Gedney MT, Pandya DN (2004) Cytoarchitecture and cortical connections of the posterior cingulate and adjacent somatosensory fields in the rhesus monkey. J Comp Neurol 469(1):37–69

    Article  CAS  Google Scholar 

  • Motes-Rodrigo A, Tennie C (2021) Captive great apes tend to innovate simple tool behaviors quickly. Am J Primatol. https://doi.org/10.1002/ajp.23311

    Article  Google Scholar 

  • Nishida T (1990) A quarter century of research in the Mahale Mountains: an overview. In: Nishida T (ed) The chimpanzees of the Mahale Mountains. University of Tokyo Press, Tokyo, pp 3–35

    Google Scholar 

  • Niu M, Impieri D, Rapan L, Funck T, Palomero-Gallagher N, Zilles K (2020) Receptor-driven, multimodal mapping of cortical areas in the macaque monkey intraparietal sulcus. Elife. https://doi.org/10.7554/eLife.55979

    Article  Google Scholar 

  • Niu M, Rapan L, Funck T, Froudist-Walsh S, Zhao L, Zilles K, Palomero-Gallagher N (2021) Organization of the macaque monkey inferior parietal lobule based on multimodal receptor architectonics. Neuroimage 231:117843

    Article  Google Scholar 

  • Orban GA (2016) Functional definitions of parietal areas in human and non-human primates. Proc R Soc B Biol Sci 283:20160118

    Article  Google Scholar 

  • Orban GA, Caruana F (2014) The neural basis of human tool use. Front Psychol 5:310

    Article  Google Scholar 

  • Pandya DN, Seltzer B (1982) Intrinsic connections and architectonics of posterior parietal cortex in the rhesus monkey. J Comp Neurol 204:196–210

    Article  CAS  Google Scholar 

  • Peeters R, Simone L, Nelissen K, Fabbri-Destro M, Vanduffel W, Rizzolatti G, Orban GA (2009) The representation of tool use in humans and monkeys: common and uniquely human features. J Neurosci 29:11523–11539

    Article  CAS  Google Scholar 

  • Peeters RR, Rizzolatti G, Orban GA (2013) Functional properties of the left parietal tool use region. Neuroimage 78:83–93

    Article  Google Scholar 

  • Pruetz JD, Bertolani P, Ontl KB, Lindshield S, Shelley M, Wessling EG (2014) New evidence on the tool-assisted hunting exhibited by chimpanzees (Pan troglodytes verus) in a savannah habitat at Fongoli. Sénégal R Soc Open Sci 2(4):140507

    Article  Google Scholar 

  • Ramayya AG, Glasser MF, Rilling JK (2010) A DTI investigation of neural substrates supporting tool use. Cereb Cortex 20:507–516

    Article  Google Scholar 

  • Rizzolatti G, Craighero L (2004) The mirror-neuron system. Annu Rev Neurosci 27:169–192

    Article  CAS  Google Scholar 

  • Rorden C, Brett M (2000) Stereotaxic display of brain lesions. Behav Neurol 12:191–200

    Article  Google Scholar 

  • Rozzi S, Calzavara R, Belmalih A, Borra E, Gregoriou GG, Matelli M, Luppino G (2006) Cortical connections of the inferior parietal cortical convexity of the macaque monkey. Cereb Cortex 16:1389–1417

    Article  Google Scholar 

  • Rozzi S, Ferrari PF, Bonini L, Rizzolatti G, Fogassi L (2008) Functional organization of inferior parietal lobule convexity in the macaque monkey: electrophysiological characterization of motor, sensory and mirror responses and their correlation with cytoarchitectonic areas. Eur J Neurosci 28:1569–1588

    Article  Google Scholar 

  • Ruschel M, Knösche TR, Friederici AD, Turner R, Geyer S, Anwander A (2014) Connectivity architecture and subdivision of the human inferior parietal cortex revealed by diffusion MRI. Cereb Cortex 24:2436–2448

    Article  Google Scholar 

  • Ryzen M (1956) A microphotometric method of cell enumeration within the cerebral cortex of man. J Comp Neurol 104:233–245

    Article  CAS  Google Scholar 

  • Ryzen M, Campbell B (1955) Organization of the cerebral cortex. III. The cortex of sorex pacificus. J Comp Neurol 102:365–423

    Article  CAS  Google Scholar 

  • Schleicher A, Zilles K, Wree A (1986) A quantitative approach to cytoarchitectonics: software and hardware aspects of a system for the evaluation and analysis of structural inhomogeneities in nervous tissue. J Neurosci Methods 18:221–235

    Article  CAS  Google Scholar 

  • Shevchenko JG (1936) The variability of the structure of the cerebral cortex. II. The inferior parietal region of apes. Trudi Instituta Mozga (Moscow) 2

  • Stout D, Toth N, Schick K, Chaminade T (2008) Neural correlates of early stone age toolmaking: technology, language and cognition in human evolution. Philos Trans R Soc B Biol Sci 363:1939–1949

    Article  Google Scholar 

  • Stout D, Passingham R, Frith C, Apel J, Chaminade T (2011) Technology, expertise and social cognition in human evolution. Eur J Neurosci 33:1328–1338

    Article  Google Scholar 

  • Team R Development Core (2021) A language and environment for statistical computing. R Foundation for Statistical Computing. Vienna, Austria http://www.r-project.org.

  • Vogt C, Vogt O (1919) Allgemeinere Ergebnisse unserer Hirnforschung. J Psychol Neurol 25:279–468

    Google Scholar 

  • von Economo C, Koskinas G (1925) Die Cytoarchitektonik der Hirnrinde des erwachsenen Menschen. J. Springer, Berlin

    Google Scholar 

  • Wang J, Fan L, Zhang Y, Liu Y, Jiang D, Zhang Y, Yu C, Jiang T (2012) Tractography-based parcellation of the human left inferior parietal lobule. Neuroimage 63:641–652

    Article  Google Scholar 

  • Wei Y, de Lange SC, Scholtens LH, Watanabe K, Ardesch DJ, Jansen PR, Savage JE, Li L, Preuss TM, Rilling JK, Posthuma D, van den Heuvel MP (2019) Genetic mapping and evolutionary analysis of human-expanded cognitive networks. Nat Commun 10:4839

    Article  Google Scholar 

  • Whiten A, Goodall J, McGrew WC, Nishida T, Reynolds V, Sugiyama Y, Tutin CEG, Wrangham RW, Boesch C (1999) Cultures in chimpanzees. Nature 1999(399):682–685

    Article  Google Scholar 

  • Wree A, Schleicher A, Zilles K (1982) Estimation of volume fractions in nervous tissue with an image analyzer. J Neurosci Methods 6:29–43

    Article  CAS  Google Scholar 

  • Zilles K, Palomero-Gallagher N (2001) Cyto-, myelo-, and receptor architectonics of the human parietal cortex. Neuroimage 14:S8–S20

    Article  CAS  Google Scholar 

  • Zilles K, Schleicher A, Kretschmann HJ (1978a) A quantitative approach to cytoarchitectonics. I. The areal pattern of the cortex of Tupaia belangeri. Anat Embryol (Berl) 153:195–212

    Article  CAS  Google Scholar 

  • Zilles K, Schleicher A, Kretschmann HJ (1978b) A quantitative approach to cytoarchiterctonics. II. The allocortex of Tupaia belangeri. Anat Embryol (Berl) 154:335–352

    Article  CAS  Google Scholar 

Download references

Funding

The research was funded by NSF award BCS-1455629. National Chimpanzee Brain Resource was funded by NIH grant NS092988.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chet C. Sherwood.

Ethics declarations

Conflict of interest

The authors have not disclosed any competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reyes, L.D., Do Kim, Y., Issa, H. et al. Cytoarchitecture, myeloarchitecture, and parcellation of the chimpanzee inferior parietal lobe. Brain Struct Funct 228, 63–82 (2023). https://doi.org/10.1007/s00429-022-02514-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-022-02514-w

Keywords

Navigation