Skip to main content

Advertisement

Log in

The impact of Alzheimer's disease susceptibility loci on lateral ventricular surface morphology in older adults

  • Original Article
  • Published:
Brain Structure and Function Aims and scope Submit manuscript

Abstract

The enlargement of ventricular volume is a general trend in the elderly, especially in patients with Alzheimer’s disease (AD). Multiple susceptibility loci have been reported to have an increased risk for AD and the morphology of brain structures are affected by the variations in the risk loci. Therefore, we hypothesized that genes contributed significantly to the ventricular surface, and the changes of ventricular surface were associated with the impairment of cognitive functions. After the quality controls (QC) and genotyping, a lateral ventricular segmentation method was employed to obtain the surface features of lateral ventricle. We evaluated the influence of 18 selected AD susceptibility loci on both volume and surface morphology across 410 subjects from Alzheimer’s Disease Neuroimaging Initiative (ADNI). Correlations were conducted between radial distance (RD) and Montreal Cognitive Assessment (MoCA) subscales. Only the C allele at the rs744373 loci in BIN1 gene significantly accelerated the atrophy of lateral ventricle, including the anterior horn, body, and temporal horn of left lateral ventricle. No significant effect on lateral ventricle was found at other loci. Our results revealed that most regions of the bilateral ventricular surface were significantly negatively correlated with cognitive scores, particularly in delayed recall. Besides, small areas of surface were negatively correlated with language, orientation, and visuospatial scores. Together, our results indicated that the genetic variation affected the localized areas of lateral ventricular surface, and supported that lateral ventricle was an important brain structure associated with cognition in the elderly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Availability of data and material

All data used are from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu).

Code availability

The code we used can be obtained by contacting the corresponding authors.

References

  • Alimajstorovic Z, Pascual-Baixauli E, Hawkes CA, Sharrack B, Loughlin AJ, Romero IA, Preston JE (2020) Cerebrospinal fluid dynamics modulation by diet and cytokines in rats. Fluids Barriers CNS 17(1):10

    Article  CAS  Google Scholar 

  • An N, Fu Y, Shi J, Guo H-N, Yang Z-W, Li Y-C, Li S, Wang Y, Yao Z-J, Hu B (2021) Synergistic effects of APOE and CLU may increase the risk of alzheimer’s disease: acceleration of atrophy in the volumes and shapes of the hippocampus and amygdala. J Alzheimer Dis 80(3):1311–1327. https://doi.org/10.3233/JAD-201162

    Article  CAS  Google Scholar 

  • Apostolova LG, Green AE, Babakchanian S, Hwang KS, Chou Y-Y, Toga AW, Thompson PM (2012) Hippocampal atrophy and ventricular enlargement in normal aging, mild cognitive impairment and Alzheimer’s disease. Alzheimer Dis Assoc Disord 26(1):17. https://doi.org/10.1097/WAD.0b013e3182163b62

    Article  PubMed  PubMed Central  Google Scholar 

  • Arsigny V, Fillard P, Pennec X, Ayache N (2006) Log-Euclidean metrics for fast and simple calculus on diffusion tensors. Magn Reson Med 56(2):411–421. https://doi.org/10.1002/mrm.20965

    Article  PubMed  Google Scholar 

  • As A (2019) 2019 Alzheimer’s disease facts and figures. Alzheimers Dement 15(3):321–387

    Article  Google Scholar 

  • Ashburner J, Friston KJ (2011) Diffeomorphic registration using geodesic shooting and Gauss-Newton optimisation. Neuroimage 55(3):954–967. https://doi.org/10.1016/j.neuroimage.2010.12.049

    Article  PubMed  Google Scholar 

  • Bae I-S, Kim JM, Cheong JH, Ryu JI, Han M-H (2019) Association between bone mineral density and brain parenchymal atrophy and ventricular enlargement in healthy individuals. Aging (albany N Y) 11(19):8217. https://doi.org/10.18632/aging.102316

    Article  CAS  Google Scholar 

  • Barami K, Sloan AE, Rojiani A, Schell MJ, Staller A, Brem S (2009) Relationship of gliomas to the ventricular walls. J Clin Neurosci 16(2):195–201. https://doi.org/10.1016/j.jocn.2008.03.006

    Article  PubMed  Google Scholar 

  • Beecham GW, Martin ER, Li Y-J, Slifer MA, Gilbert JR, Haines JL, Pericak-Vance MA (2009) Genome-wide association study implicates a chromosome 12 risk locus for late-onset Alzheimer disease. Am J Hum Genet 84(1):35–43. https://doi.org/10.1016/j.ajhg.2008.12.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bertram L, Lange C, Mullin K, Parkinson M, Hsiao M, Hogan MF, Schjeide BM, Hooli B, DiVito J, Ionita I (2008) Genome-wide association analysis reveals putative Alzheimer’s disease susceptibility loci in addition to APOE. Am J Hum Genet 83(5):623–632. https://doi.org/10.1016/j.ajhg.2008.10.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buckner RL (2004) Memory and executive function in aging and AD: multiple factors that cause decline and reserve factors that compensate. Neuron 44(1):195–208. https://doi.org/10.1016/j.neuron.2004.09.006

    Article  CAS  PubMed  Google Scholar 

  • Chauhan G, Adams HH, Bis JC, Weinstein G, Yu L, Töglhofer AM, Smith AV, Van Der Lee SJ, Gottesman RF, Thomson R (2015) Association of Alzheimer’s disease GWAS loci with MRI markers of brain aging. Neurobiol Aging 36(4):1765.e7-1765.e16. https://doi.org/10.1016/j.neurobiolaging.2014.12.028

    Article  CAS  Google Scholar 

  • Cloutier S, Chertkow H, Kergoat M-J, Gauthier S, Belleville S (2015) Patterns of cognitive decline prior to dementia in persons with mild cognitive impairment. J Alzheimers Dis 47(4):901–913. https://doi.org/10.3233/JAD-142910

    Article  PubMed  PubMed Central  Google Scholar 

  • Cole JH, Poudel RP, Tsagkrasoulis D, Caan MW, Steves C, Spector TD, Montana G (2017) Predicting brain age with deep learning from raw imaging data results in a reliable and heritable biomarker. Neuroimage 163:115–124

    Article  Google Scholar 

  • Corder E, Saunders AM, Risch N, Strittmatter W, Schmechel D, Gaskell P, Rimmler J, Locke P, Conneally P, Schmader K (1994) Protective effect of apolipoprotein E type 2 allele for late onset Alzheimer disease. Nat Genet 7(2):180–184

    Article  CAS  Google Scholar 

  • Crivello F, Lemaître H, Dufouil C, Grassiot B, Delcroix N, Tzourio-Mazoyer N, Tzourio C, Mazoyer B (2010) Effects of ApoE-ɛ4 allele load and age on the rates of grey matter and hippocampal volumes loss in a longitudinal cohort of 1186 healthy elderly persons. Neuroimage 53(3):1064–1069. https://doi.org/10.1016/j.neuroimage.2009.12.116

    Article  CAS  PubMed  Google Scholar 

  • Dadar M, Fonov VS, Collins DL, AsDN I (2018) A comparison of publicly available linear MRI stereotaxic registration techniques. Neuroimage 174:191–200

    Article  Google Scholar 

  • de Leon MJ, George AE, Reisberg B, Ferris SH, Kluger A, Stylopoulos LA, Miller JD, La Regina ME, Chen C, Cohen J (1989) Alzheimer’s disease: longitudinal CT studies of ventricular change. Am J Roentgenol 152(6):1257–1262. https://doi.org/10.2214/ajr.152.6.1257

    Article  Google Scholar 

  • De Rossi P, Nomura T, Andrew RJ, Masse NY, Sampathkumar V, Musial TF, Sudwarts A, Recupero AJ, Le Metayer T, Hansen MT (2020) Neuronal BIN1 regulates presynaptic neurotransmitter release and memory consolidation. Cell Rep 30(10):3520-3535.e7

    Article  Google Scholar 

  • den Heijer T, van der Lijn F, Koudstaal PJ, Hofman A, van der Lugt A, Krestin GP, Niessen WJ, Breteler MM (2010) A 10-year follow-up of hippocampal volume on magnetic resonance imaging in early dementia and cognitive decline. Brain 133(4):1163–1172

    Article  Google Scholar 

  • Dong Q, Zhang W, Stonnington CM, Wu J, Gutman BA, Chen K, Su Y, Baxter LC, Thompson PM, Reiman EM (2020) Applying surface-based morphometry to study ventricular abnormalities of cognitively unimpaired subjects prior to clinically significant memory decline. NeuroImage-Clin. https://doi.org/10.1016/j.nicl.2020.102338

    Article  PubMed  PubMed Central  Google Scholar 

  • Erten-Lyons D, Dodge HH, Woltjer R, Silbert LC, Howieson DB, Kramer P, Kaye JA (2013) Neuropathologic basis of age-associated brain atrophy. JAMA Neurol 70(5):616–622

    Article  Google Scholar 

  • Ewers M, Walsh C, Trojanowski JQ, Shaw LM, Petersen RC, Jack CR Jr, Feldman HH, Bokde AL, Alexander GE, Scheltens P (2012) Prediction of conversion from mild cognitive impairment to Alzheimer’s disease dementia based upon biomarkers and neuropsychological test performance. Neurobiol Aging 33(7):1203-1214.e2. https://doi.org/10.1016/j.neurobiolaging.2010.10.019

    Article  CAS  PubMed  Google Scholar 

  • Folstein MF, Folstein SE, McHugh PR (1975) “Mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res 12(3):189–198

    Article  CAS  Google Scholar 

  • Franzmeier N, Rubinski A, Neitzel J, Ewers M (2019) The BIN1 rs744373 SNP is associated with increased tau-PET levels and impaired memory. Nat Commun 10(1):1–12. https://doi.org/10.1038/s41467-019-09564-5

    Article  CAS  Google Scholar 

  • Freitas S, Simões MR, Alves L, Duro D, Santana I (2012) Montreal Cognitive Assessment (MoCA): validation study for frontotemporal dementia. J Geriatr Psychiatry Neurol 25(3):146–154

    Article  Google Scholar 

  • Frisoni GB, Pievani M, Testa C, Sabattoli F, Bresciani L, Bonetti M, Beltramello A, Hayashi KM, Toga AW, Thompson PM (2007) The topography of grey matter involvement in early and late onset Alzheimer’s disease. Brain 130(3):720–730. https://doi.org/10.1093/brain/awl377

    Article  PubMed  Google Scholar 

  • Grasby KL, Jahanshad N, Painter JN, Colodro-Conde L, Bralten J, Hibar DP, Lind PA, Pizzagalli F, Ching CR, McMahon MAB (2020) The genetic architecture of the human cerebral cortex. Science 367(6484):eaay6690

    Article  CAS  Google Scholar 

  • Guo M, Li Y, Zheng W, Huang K, Zhou L, Hu X, Yao Z, Hu B (2020) A novel conversion prediction method of MCI to AD based on longitudinal dynamic morphological features using ADNI structural MRIs. J Neurol. https://doi.org/10.1007/s00415-020-09890-5

    Article  PubMed  PubMed Central  Google Scholar 

  • Gutman BA, Hua X, Rajagopalan P, Chou Y-Y, Wang Y, Yanovsky I, Toga AW, Jack CR Jr, Weiner MW, Thompson PM (2013) Maximizing power to track Alzheimer’s disease and MCI progression by LDA-based weighting of longitudinal ventricular surface features. Neuroimage 70:386–401

    Article  Google Scholar 

  • Hall D, Huerta MF, McAuliffe MJ, Farber GK (2012) Sharing heterogeneous data: the national database for autism research. Neuroinformatics 10(4):331–339

    Article  Google Scholar 

  • Hofer E, Roshchupkin GV, Adams HH, Knol MJ, Lin H, Li S, Zare H, Ahmad S, Armstrong NJ, Satizabal CL (2020) Genetic correlations and genome-wide associations of cortical structure in general population samples of 22,824 adults. Nat Commun 11(1):1–16

    Article  Google Scholar 

  • Hotelling H (1992) The generalization of Student’s ratio. Breakthroughs in statistics. Springer, pp 54–65. https://doi.org/10.1007/978-1-4612-0919-5_4

    Chapter  Google Scholar 

  • Jack CR Jr, Bernstein MA, Fox NC, Thompson P, Alexander G, Harvey D, Borowski B, Britson PJ, Whitwell JL, Ward C (2008) The Alzheimer’s disease neuroimaging initiative (ADNI): MRI methods. J Magn Reson Imaging 27(4):685–691. https://doi.org/10.1002/jmri.21049

    Article  PubMed  PubMed Central  Google Scholar 

  • Jovicich J, Marizzoni M, Sala-Llonch R, Bosch B, Bartrés-Faz D, Arnold J, Benninghoff J, Wiltfang J, Roccatagliata L, Nobili F (2013) Brain morphometry reproducibility in multi-center 3 T MRI studies: a comparison of cross-sectional and longitudinal segmentations. Neuroimage 83:472–484. https://doi.org/10.1016/j.neuroimage.2013.05.007

    Article  PubMed  Google Scholar 

  • Karakaş P, Koç Z, Koç F, Gülhal Bozkır M (2011) Morphometric MRI evaluation of corpus callosum and ventricles in normal adults. Neurol Res 33(10):1044–1049

    Article  Google Scholar 

  • Karch CM, Goate AM (2015) Alzheimer’s disease risk genes and mechanisms of disease pathogenesis. Biol Psychiatry 77(1):43–51. https://doi.org/10.1016/j.biopsych.2014.05.006

    Article  CAS  PubMed  Google Scholar 

  • Kempton MJ, Underwood TS, Brunton S, Stylios F, Schmechtig A, Ettinger U, Smith MS, Lovestone S, Crum WR, Frangou S (2011) A comprehensive testing protocol for MRI neuroanatomical segmentation techniques: evaluation of a novel lateral ventricle segmentation method. Neuroimage 58(4):1051–1059. https://doi.org/10.1016/j.neuroimage.2011.06.080

    Article  PubMed  Google Scholar 

  • Kunkle BW, Grenier-Boley B, Sims R, Bis JC, Damotte V, Naj AC, Boland A, Vronskaya M, Van Der Lee SJ, Amlie-Wolf A (2019) Genetic meta-analysis of diagnosed Alzheimer’s disease identifies new risk loci and implicates Aβ, tau, immunity and lipid processing. Nat Genet 51(3):414–430

    Article  CAS  Google Scholar 

  • Lambert J-C, Ibrahim-Verbaas CA, Harold D, Naj AC, Sims R, Bellenguez C, Jun G, DeStefano AL, Bis JC, Beecham GW (2013) Meta-analysis of 74,046 individuals identifies 11 new susceptibility loci for Alzheimer’s disease. Nat Genet 45(12):1452–1458. https://doi.org/10.1038/ng.2802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li B, Shi J, Gutman BA, Baxter LC, Thompson PM, Caselli RJ, Wang Y, AsDN I (2016) Influence of APOE genotype on hippocampal atrophy over time-an N= 1925 surface-based ADNI study. PLoS One 11(4):e0152901. https://doi.org/10.1371/journal.pone.0152901

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li J-Q, Wang H-F, Zhu X-C, Sun F-R, Tan M-S, Tan C-C, Jiang T, Tan L, Yu J-T, AsDN I (2017) GWAS-linked loci and neuroimaging measures in Alzheimer’s disease. Mol Neurobiol 54(1):146–153. https://doi.org/10.1007/s12035-015-9669-1

    Article  CAS  PubMed  Google Scholar 

  • Liu G, Sun J-Y, Xu M, Yang X-Y, Sun B-L (2017) SORL1 variants show different association with early-onset and late-onset Alzheimer’s disease risk. J Alzheimers Dis 58(4):1121–1128. https://doi.org/10.3233/JAD-170005

    Article  CAS  PubMed  Google Scholar 

  • Lyall DM, Ward J, Ritchie SJ, Davies G, Cullen B, Celis C, Bailey ME, Anderson J, Evans J, Mckay DF (2016) Alzheimer disease genetic risk factor APOE e4 and cognitive abilities in 111,739 UK Biobank participants. Age Ageing 45(4):511–517

    Article  Google Scholar 

  • Ma J, Cheng L, Wang G, Lin S (2014a) Surgical management of meningioma of the trigone area of the lateral ventricle. World Neurosurg 82(5):757–769. https://doi.org/10.1016/j.wneu.2014.05.026

    Article  PubMed  Google Scholar 

  • Ma X-Y, Yu J-T, Tan M-S, Sun F-R, Miao D, Tan L (2014b) Missense variants in CR1 are associated with increased risk of Alzheimer’disease in Han Chinese. Neurobiol Aging 35(2):443.e17-443.e21. https://doi.org/10.1016/j.neurobiolaging.2013.08.009

    Article  CAS  Google Scholar 

  • Madsen SK, Ho AJ, Hua X, Saharan PS, Toga AW, Jack CR Jr, Weiner MW, Thompson PM, AsDN I (2010) 3D maps localize caudate nucleus atrophy in 400 Alzheimer’s disease, mild cognitive impairment, and healthy elderly subjects. Neurobiol Aging 31(8):1312–1325

    Article  CAS  Google Scholar 

  • Mayer KN, Latal B, Knirsch W, Scheer I, Von Rhein M, Reich B, Bauer J, Gummel K, Roberts N, Tuura ROG (2016) Comparison of automated brain volumetry methods with stereology in children aged 2 to 3 years. Neuroradiology 58(9):901–910

    Article  Google Scholar 

  • Nestor SM, Rupsingh R, Borrie M, Smith M, Accomazzi V, Wells JL, Fogarty J, Bartha R, AsDN I (2008) Ventricular enlargement as a possible measure of Alzheimer’s disease progression validated using the Alzheimer’s disease neuroimaging initiative database. Brain 131(9):2443–2454. https://doi.org/10.1093/brain/awn146

    Article  PubMed  PubMed Central  Google Scholar 

  • O‘Mara SM (2013) The anterior thalamus provides a subcortical circuit supporting memory and spatial navigation. Front Syst Neurosci 7:45. https://doi.org/10.3389/fnsys.2013.00045

    Article  PubMed  PubMed Central  Google Scholar 

  • O’Donoghue MC, Murphy SE, Zamboni G, Nobre AC, Mackay CE (2018) APOE genotype and cognition in healthy individuals at risk of Alzheimer’s disease: a review. Cortex 104:103–123

    Article  Google Scholar 

  • Ott BR, Cohen RA, Gongvatana A, Okonkwo OC, Johanson CE, Stopa EG, Donahue JE, Silverberg GD (2010) Brain ventricular volume and cerebrospinal fluid biomarkers of Alzheimer’s disease. J Alzheimers Dis 20(2):647–657. https://doi.org/10.3233/JAD-2010-1406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pardoe HR, Hiess RK, Kuzniecky R (2016) Motion and morphometry in clinical and nonclinical populations. Neuroimage 135:177–185

    Article  Google Scholar 

  • Pizer SM, Fritsch DS, Yushkevich PA, Johnson VE, Chaney EL (1999) Segmentation, registration, and measurement of shape variation via image object shape. IEEE Trans Med Imaging 18(10):851–865

    Article  CAS  Google Scholar 

  • Pol HEH, Schnack HG, Posthuma D, Mandl RC, Baaré WF, van Oel C, van Haren NE, Collins DL, Evans AC, Amunts K (2006) Genetic contributions to human brain morphology and intelligence. J Neurosci 26(40):10235–10242. https://doi.org/10.1523/JNEUROSCI.1312-06.2006

    Article  CAS  Google Scholar 

  • Poulin SP, Dautoff R, Morris JC, Barrett LF, Dickerson BC, AsDN I (2011) Amygdala atrophy is prominent in early Alzheimer’s disease and relates to symptom severity. Psychiatry Res 194(1):7–13. https://doi.org/10.1016/j.pscychresns.2011.06.014

    Article  PubMed  PubMed Central  Google Scholar 

  • Preston AR, Eichenbaum H (2013) Interplay of hippocampus and prefrontal cortex in memory. Curr Biol 23(17):R764–R773

    Article  CAS  Google Scholar 

  • Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D, Maller J, Sklar P, De Bakker PI, Daly MJ (2007) PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet 81(3):559–575

    Article  CAS  Google Scholar 

  • Qiu Y, Liu S, Hilal S, Loke YM, Ikram MK, Xu X, Tan BY, Venketasubramanian N, Chen CL-H, Zhou J (2016) Inter-hemispheric functional dysconnectivity mediates the association of corpus callosum degeneration with memory impairment in AD and amnestic MCI. Sci Rep 6:32573. https://doi.org/10.1038/srep32573

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rhoton AL Jr (2002) The lateral and third ventricles. Neurosurgery 51(suppl_4):S1-207-S201-271. https://doi.org/10.1097/00006123-200210001-00006

    Article  Google Scholar 

  • Roussotte FF, Gutman BA, Madsen SK, Colby JB, Narr KL, Thompson PM, AsDN I (2014a) The apolipoprotein E epsilon 4 allele is associated with ventricular expansion rate and surface morphology in dementia and normal aging. Neurobiol Aging 35(6):1309–1317. https://doi.org/10.1016/j.neurobiolaging.2013.11.030

    Article  CAS  PubMed  Google Scholar 

  • Roussotte FF, Gutman BA, Madsen SK, Colby JB, Thompson PM, AsDN I (2014b) Combined effects of Alzheimer risk variants in the CLU and ApoE genes on ventricular expansion patterns in the elderly. J Neurosci 34(19):6537–6545. https://doi.org/10.1523/JNEUROSCI.5236-13.2014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saykin AJ, Shen L, Foroud TM, Potkin SG, Swaminathan S, Kim S, Risacher SL, Nho K, Huentelman MJ, Craig DW (2010) Alzheimer’s Disease Neuroimaging Initiative biomarkers as quantitative phenotypes: genetics core aims, progress, and plans. Alzheimers Dement 6(3):265–273

    Article  CAS  Google Scholar 

  • Schreurs BG, Smith-Bell CA, Lemieux SK (2013) Dietary cholesterol increases ventricular volume and narrows cerebrovascular diameter in a rabbit model of Alzheimer’s disease. Neuroscience 254:61–69. https://doi.org/10.1016/j.neuroscience.2013.09.015

    Article  CAS  PubMed  Google Scholar 

  • Shah H, Albanese E, Duggan C, Rudan I, Langa KM, Carrillo MC, Chan KY, Joanette Y, Prince M, Rossor M (2016) Research priorities to reduce the global burden of dementia by 2025. Lancet Neurol 15(12):1285–1294. https://doi.org/10.1016/S1474-4422(16)30235-6

    Article  PubMed  Google Scholar 

  • Shi J, Stonnington CM, Thompson PM, Chen K, Gutman B, Reschke C, Baxter LC, Reiman EM, Caselli RJ, Wang Y (2015) Studying ventricular abnormalities in mild cognitive impairment with hyperbolic Ricci flow and tensor-based morphometry. Neuroimage 104:1–20. https://doi.org/10.1016/j.neuroimage.2014.09.062

    Article  PubMed  Google Scholar 

  • Shi J, Wang Y, Ceschin R, An X, Lao Y, Vanderbilt D, Nelson MD, Thompson PM, Panigrahy A, Leporé N (2013) A multivariate surface-based analysis of the putamen in premature newborns: regional differences within the ventral striatum. PLoS One 8(7):e66736

    Article  CAS  Google Scholar 

  • Smith SM, Jenkinson M, Woolrich MW, Beckmann CF, Behrens TE, Johansen-Berg H, Bannister PR, De Luca M, Drobnjak I, Flitney DE (2004) Advances in functional and structural MR image analysis and implementation as FSL. Neuroimage 23:S208–S219. https://doi.org/10.1016/j.neuroimage.2004.07.051

    Article  Google Scholar 

  • Stage E, Duran T, Risacher SL, Goukasian N, Do TM, West JD, Wilhalme H, Nho K, Phillips M, Elashoff D (2016) The effect of the top 20 Alzheimer disease risk genes on gray-matter density and FDG PET brain metabolism. Alzheimer’s Dement 5:53–66

    Article  Google Scholar 

  • Stoffers D, Altena E, van der Werf YD, Sanz-Arigita EJ, Voorn TA, Astill RG, Strijers RL, Waterman D, Van Someren EJ (2014) The caudate: a key node in the neuronal network imbalance of insomnia? Brain 137(2):610–620. https://doi.org/10.1093/brain/awt329

    Article  PubMed  Google Scholar 

  • Stoub T, Rogalski E, Leurgans S, Bennett D, deToledo-Morrell L (2010) Rate of entorhinal and hippocampal atrophy in incipient and mild AD: relation to memory function. Neurobiol Aging 31(7):1089–1098

    Article  CAS  Google Scholar 

  • Sudlow C, Gallacher J, Allen N, Beral V, Burton P, Danesh J, Downey P, Elliott P, Green J, Landray M (2015) UK biobank: an open access resource for identifying the causes of a wide range of complex diseases of middle and old age. PLoS Med 12(3):e1001779

    Article  Google Scholar 

  • Suri S, Heise V, Trachtenberg AJ, Mackay CE (2013) The forgotten APOE allele: a review of the evidence and suggested mechanisms for the protective effect of APOE ɛ2. Neurosci Biobehav Rev 37(10):2878–2886

    Article  CAS  Google Scholar 

  • Tan M-S, Yu J-T, Tan L (2013) Bridging integrator 1 (BIN1): form, function, and Alzheimer’s disease. Trends Mol Med 19(10):594–603. https://doi.org/10.1016/j.molmed.2013.06.004

    Article  CAS  PubMed  Google Scholar 

  • Tang X, Holland D, Dale AM, Younes L, Miller MI, AsDN I (2014) Shape abnormalities of subcortical and ventricular structures in mild cognitive impairment and Alzheimer’s disease: detecting, quantifying, and predicting. Hum Brain Mapp 35(8):3701–3725. https://doi.org/10.1002/hbm.22431

    Article  PubMed  PubMed Central  Google Scholar 

  • Thompson PM, Hayashi KM, De Zubicaray GI, Janke AL, Rose SE, Semple J, Hong MS, Herman DH, Gravano D, Doddrell DM (2004) Mapping hippocampal and ventricular change in Alzheimer disease. Neuroimage 22(4):1754–1766

    Article  Google Scholar 

  • Thompson PM, Stein JL, Medland SE, Hibar DP, Vasquez AA, Renteria ME, Toro R, Jahanshad N, Schumann G, Franke B (2014) The ENIGMA Consortium: large-scale collaborative analyses of neuroimaging and genetic data. Brain Imaging Behav 8(2):153–182

    Article  Google Scholar 

  • van der Meer D, Frei O, Kaufmann T, Chen C-H, Thompson WK, O’Connell KS, Monereo Sánchez J, Linden DE, Westlye LT, Dale AM (2020) Quantifying the polygenic architecture of the human cerebral cortex: extensive genetic overlap between cortical thickness and surface area. Cereb Cortex 30(10):5597–5603

    Article  Google Scholar 

  • Veitinger M, Varga B, Guterres SB, Zellner M (2014) Platelets, a reliable source for peripheral Alzheimer’s disease biomarkers? Acta Neuropathol Com 2(1):65. https://doi.org/10.1186/2051-5960-2-65

    Article  Google Scholar 

  • Walker KA, Hoogeveen RC, Folsom AR, Ballantyne CM, Knopman DS, Windham BG, Jack CR, Gottesman RF (2017) Midlife systemic inflammatory markers are associated with late-life brain volume: the ARIC study. Neurology 89(22):2262–2270. https://doi.org/10.1212/WNL.0000000000004688

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Chan TF, Toga AW, Thompson PM (2009) Multivariate tensor-based brain anatomical surface morphometry via holomorphic one-forms. International conference on medical image computing and computer-assisted intervention. Springer, pp 337–344

    Google Scholar 

  • Wang Y, Zhang J, Gutman B, Chan TF, Becker JT, Aizenstein HJ, Lopez OL, Tamburo RJ, Toga AW, Thompson PM (2010) Multivariate tensor-based morphometry on surfaces: application to mapping ventricular abnormalities in HIV/AIDS. Neuroimage 49(3):2141–2157

    Article  Google Scholar 

  • Wang Z-X, Wan Y, Tan L, Liu J, Wang H-F, Sun F-R, Tan M-S, Tan C-C, Jiang T, Tan L (2017) Genetic association of HLA gene variants with MRI brain structure in Alzheimer’s disease. Mol Neurobiol 54(5):3195–3204. https://doi.org/10.1007/s12035-016-9889-z

    Article  CAS  PubMed  Google Scholar 

  • Yao Z, Fu Y, Wu J, Zhang W, Yu Y, Zhang Z, Wu X, Wang Y, Hu B (2020) Morphological changes in subregions of hippocampus and amygdala in major depressive disorder patients. Brain Imaging Behav 14(3):653–667. https://doi.org/10.1007/s11682-018-0003-1

    Article  PubMed  PubMed Central  Google Scholar 

  • Zarei M, Patenaude B, Damoiseaux J, Morgese C, Smith S, Matthews PM, Barkhof F, Rombouts S, Sanz-Arigita E, Jenkinson M (2010) Combining shape and connectivity analysis: an MRI study of thalamic degeneration in Alzheimer’s disease. Neuroimage 49(1):1–8

    Article  Google Scholar 

  • Zhang X, Yu J-T, Li J, Wang C, Tan L, Liu B, Jiang T (2015) Bridging integrator 1 (BIN1) genotype effects on working memory, hippocampal volume, and functional connectivity in young healthy individuals. Neuropsychopharmacology 40(7):1794–1803. https://doi.org/10.1038/npp.2015.30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang W, Shi J, Stonnington C, Bauer RJ, Gutman BA, Chen K, Thompson PM, Reiman EM, Caselli RJ, Wang Y (2016) Morphometric analysis of hippocampus and lateral ventricle reveals regional difference between cognitively stable and declining persons. In: 2016 IEEE 13th International Symposium on Biomedical Imaging (ISBI). IEEE, pp 14–18

Download references

Acknowledgements

This work was supported in part by the National Key Research and Development Program of China (Grant No. 2019YFA0706200), in part by the National Natural Science Foundation of China (Grant No.61632014, No.61627808), in part by the Fundamental Research Funds for the Central Universities(lzuxxxy-2019-tm09), in part by the Natural Science Foundation of Gansu Province of China (Grant No.20JR5RA292), and in part by the Department of Education of Gansu Province: "Innovation Star" Project for Excellent Postgraduates (2021CXZX-121).

Funding

Data collection and sharing for this project was funded by the Alzheimer's Disease Neuroimaging Initiative (ADNI) (National Institutes of Health Grant U01 AG024904) and DOD ADNI (Department of Defense award number W81XWH-12-2-0012). ADNI is funded by the National Institute on Aging, the National Institute of Biomedical Imaging and Bioengineering, and through generous contributions from the following: AbbVie, Alzheimer’s Association; Alzheimer’s Drug Discovery Foundation; Araclon Biotech; BioClinica, Inc.; Biogen; Bristol-Myers Squibb Company; CereSpir, Inc.; Cogstate; Eisai Inc.; Elan Pharmaceuticals, Inc.; Eli Lilly and Company; EuroImmun; F. Hoffmann-La Roche Ltd and its affiliated company Genentech, Inc.; Fujirebio; GE Healthcare; IXICO Ltd.; Janssen Alzheimer Immunotherapy Research & Development, LLC.; Johnson & Johnson Pharmaceutical Research & Development LLC.; Lumosity; Lundbeck; Merck & Co., Inc.; Meso Scale Diagnostics, LLC.; NeuroRx Research; Neurotrack Technologies; Novartis Pharmaceuticals Corporation; Pfizer Inc.; Piramal Imaging; Servier; Takeda Pharmaceutical Company; and Transition Therapeutics. The Canadian Institutes of Health Research is providing funds to support ADNI clinical sites in Canada. Private sector contributions are facilitated by the Foundation for the National Institutes of Health (www.fnih.org). The grantee organization is the Northern California Institute for Research and Education, and the study is coordinated by the Alzheimer’s Therapeutic Research Institute at the University of Southern California. ADNI data are disseminated by the Laboratory for Neuro Imaging at the University of Southern California.

Author information

Authors and Affiliations

Authors

Contributions

SL: conceptualization, formal analysis, and writing—original draft. NA: methodology and visualization. NC: formal analysis and visualization. YW: writing—original draft and investigation. LY: writing—original draft and investigation. YW: methodology. ZY: conceptualization and supervision. BH: conceptualization and supervision.

Corresponding authors

Correspondence to Zhijun Yao or Bin Hu.

Ethics declarations

Conflict of interest

There is no conflict of interest to disclose.

Ethics approval

Data involved in the study came from the publicly open Alzheimer’s disease neuroimaging initiative (ADNI) database. All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the Helsinki Declaration of 1975.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Data used in preparation of this article were obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). As such, the investigators within the ADNI contributed to the design and implementation of ADNI and/or provided data but did not participate in analysis or writing of this report. A complete listing of ADNI investigators can be found at: http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 19 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, S., An, N., Chen, N. et al. The impact of Alzheimer's disease susceptibility loci on lateral ventricular surface morphology in older adults. Brain Struct Funct 227, 913–924 (2022). https://doi.org/10.1007/s00429-021-02429-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-021-02429-y

Keywords

Navigation