Skip to main content
Log in

Exploring the secrets of brain transcriptional regulation: developing methodologies, recent significant findings, and perspectives

  • Review
  • Published:
Brain Structure and Function Aims and scope Submit manuscript

Abstract

Exploring and revealing the secret of the function of the human brain has been the dream of mankind and science. Delineating brain transcriptional regulation has been extremely challenging, but recent technological advances have facilitated a deeper investigation of molecular processes in the brain. Tracing the molecular regulatory mechanisms of different gene expression profiles in the brain is divergent and has made it possible to connect spatial and temporal variations in gene expression to distributed properties of brain structure and function. Here, we review the molecular diversity of the brain among rodents, non-human primates and humans. We also discuss the molecular mechanism of non-coding DNA/RNA at the transcriptional/post-transcriptional level based on recent technical advances to highlight an improved understanding of the complex transcriptional network in the brain. Spatiotemporal and single-cell transcriptomics have attempted to gain novel insight into the development and evolution of the brain as well as the progression of human diseases. Although it is clear that the field is developing and challenges remain to be resolved, the impressive recent progress provides a solid foundation to better understand the brain and evidence-based recommendations for the diagnosis and treatment of brain diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Agarwal V, Bell GW, Nam JW, Bartel DP (2015) Predicting effective microRNA target sites in mammalian mRNAs. Elife 4:e05005

    PubMed Central  Google Scholar 

  • Amunts K, Zilles K (2015) Architectonic mapping of the human brain beyond Brodmann. Neuron 88:1086–1107

    CAS  PubMed  Google Scholar 

  • Amunts K, Mohlberg H, Bludau S, Zilles K (2020) Julich-Brain: a 3D probabilistic atlas of the human brain’s cytoarchitecture. Science 369:988–992

    CAS  PubMed  Google Scholar 

  • Arnold N, Girke T, Sureshchandra S, Messaoudi I (2016) Acute Simian varicella virus infection causes robust and sustained changes in gene expression in the sensory Ganglia. J Virol 90:10823–10843

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ataman B, Boulting GL, Harmin DA, Yang MG, Baker-Salisbury M et al (2016) Evolution of osteocrin as an activity-regulated factor in the primate brain. Nature 539:242–247

    PubMed  PubMed Central  Google Scholar 

  • Bakken TE, Miller JA, Ding SL, Sunkin SM, Smith KA et al (2016) A comprehensive transcriptional map of primate brain development. Nature 535:367–375

    CAS  PubMed  PubMed Central  Google Scholar 

  • Barouch DH, Ghneim K, Bosche WJ, Li Y, Berkemeier B et al (2016) Rapid inflammasome activation following mucosal SIV infection of rhesus monkeys. Cell 165:656–667

    CAS  PubMed  PubMed Central  Google Scholar 

  • Barter J, Kumar A, Stortz JA, Hollen M, Nacionales D et al (2019) Age and sex influence the hippocampal response and recovery following sepsis. Mol Neurobiol 56:8557–8572

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bludau S, Muhleisen TW, Eickhoff SB, Hawrylycz MJ, Cichon S et al (2018) Integration of transcriptomic and cytoarchitectonic data implicates a role for MAOA and TAC1 in the limbic-cortical network. Brain Struct Funct 223:2335–2342

    CAS  PubMed  PubMed Central  Google Scholar 

  • Boddy AM, Harrison PW, Montgomery SH, Caravas JA, Raghanti MA et al (2017) Evidence of a conserved molecular response to selection for increased brain size in primates. Genome Biol Evol 9:700–713

    CAS  PubMed  PubMed Central  Google Scholar 

  • Boldog E, Bakken TE, Hodge RD, Novotny M, Aevermann BD et al (2018) Transcriptomic and morphophysiological evidence for a specialized human cortical GABAergic cell type. Nat Neurosci 21:1185–1195

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bose DA, Berger SL (2017) eRNA binding produces tailored CBP activity profiles to regulate gene expression. RNA Biol 14:1655–1659

    PubMed  PubMed Central  Google Scholar 

  • Breschi A, Gingeras TR, Guigo R (2017) Comparative transcriptomics in human and mouse. Nat Rev Genet 18:425–440

    CAS  PubMed  PubMed Central  Google Scholar 

  • Carter RA, Bihannic L, Rosencrance C, Hadley JL, Tong Y et al (2018) A single-cell transcriptional atlas of the developing murine cerebellum. Curr Biol 28:2910-2920.e2

    CAS  PubMed  Google Scholar 

  • Chen W, Qin C (2015) General hallmarks of microRNAs in brain evolution and development. RNA Biol 12:701–708

    PubMed  PubMed Central  Google Scholar 

  • Chen J, Suo S, Tam PP, Han JJ, Peng G et al (2017) Spatial transcriptomic analysis of cryosectioned tissue samples with Geo-seq. Nat Protoc 12:566–580

    CAS  PubMed  Google Scholar 

  • Chen F, Zhang L, Wang E, Zhang C, Li X (2018a) LncRNA GAS5 regulates ischemic stroke as a competing endogenous RNA for miR-137 to regulate the Notch1 signaling pathway. Biochem Biophys Res Commun 496:184–190

    CAS  PubMed  Google Scholar 

  • Chen H, Levo M, Barinov L, Fujioka M, Jaynes JB et al (2018b) Dynamic interplay between enhancer-promoter topology and gene activity. Nat Genet 50:1296–1303

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chiu YC, Wang LJ, Lu TP, Hsiao TH, Chuang EY et al (2017) Differential correlation analysis of glioblastoma reveals immune ceRNA interactions predictive of patient survival. BMC Bioinform 18:132

    Google Scholar 

  • Cui B, Li B, Liu Q, Cui Y (2017) lncRNA CCAT1 promotes glioma tumorigenesis by sponging miR-181b. J Cell Biochem 118:4548–4557

    CAS  PubMed  Google Scholar 

  • Djebali S, Davis CA, Merkel A, Dobin A, Lassmann T et al (2012) Landscape of transcription in human cells. Nature 489:101–108

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dweep H, Gretz N, Sticht C (2014) miRWalk database for miRNA-target interactions. Methods Mol Biol 1182:289–305

    PubMed  Google Scholar 

  • Grabert K, Michoel T, Karavolos MH, Clohisey S, Baillie JK et al (2016) Microglial brain region-dependent diversity and selective regional sensitivities to aging. Nat Neurosci 19:504–516

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hanan M, Soreq H, Kadener S (2017) CircRNAs in the brain. RNA Biol 14:1028–1034

    PubMed  Google Scholar 

  • Hawrylycz MJ, Lein ES, Guillozet-Bongaarts AL, Shen EH, Ng L et al (2012) An anatomically comprehensive atlas of the adult human brain transcriptome. Nature 489:391–399

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hawrylycz M, Miller JA, Menon V, Feng D, Dolbeare T et al (2015) Canonical genetic signatures of the adult human brain. Nat Neurosci 18:1832–1844

    CAS  PubMed  PubMed Central  Google Scholar 

  • He Z, Han D, Efimova O, Guijarro P, Yu Q et al (2017) Comprehensive transcriptome analysis of neocortical layers in humans, chimpanzees and macaques. Nat Neurosci 20:886–895

    CAS  PubMed  Google Scholar 

  • Hodge RD, Bakken TE, Miller JA, Smith KA, Barkan ER et al (2019) Conserved cell types with divergent features in human versus mouse cortex. Nature 573:61–68

    CAS  PubMed  PubMed Central  Google Scholar 

  • Huisman SMH, van Lew B, Mahfouz A, Pezzotti N, Hollt T et al (2017) BrainScope: interactive visual exploration of the spatial and temporal human brain transcriptome. Nucleic Acids Res 45:e83

    PubMed  PubMed Central  Google Scholar 

  • Jager J, Marwitz S, Tiefenau J, Rasch J, Shevchuk O et al (2014) Human lung tissue explants reveal novel interactions during Legionella pneumophila infections. Infect Immun 82:275–285

    PubMed  PubMed Central  Google Scholar 

  • Konopka G, Friedrich T, Davis-Turak J, Winden K, Oldham MC et al (2012) Human-specific transcriptional networks in the brain. Neuron 75:601–617

    CAS  PubMed  PubMed Central  Google Scholar 

  • Krienen FM, Yeo BT, Ge T, Buckner RL, Sherwood CC (2016) Transcriptional profiles of supragranular-enriched genes associate with corticocortical network architecture in the human brain. Proc Natl Acad Sci USA 113:E469-478

    CAS  PubMed  PubMed Central  Google Scholar 

  • Labonte B, Engmann O, Purushothaman I, Menard C, Wang J et al (2017) Sex-specific transcriptional signatures in human depression. Nat Med 23:1102–1111

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lake BB, Ai R, Kaeser GE, Salathia NS, Yung YC et al (2016) Neuronal subtypes and diversity revealed by single-nucleus RNA sequencing of the human brain. Science 352:1586–1590

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lein ES, Hawrylycz MJ, Ao N, Ayres M, Bensinger A et al (2007) Genome-wide atlas of gene expression in the adult mouse brain. Nature 445:168–176

    CAS  PubMed  Google Scholar 

  • Lein E, Borm LE, Linnarsson S (2017) The promise of spatial transcriptomics for neuroscience in the era of molecular cell typing. Science 358:64–69

    CAS  PubMed  Google Scholar 

  • Li J, Tan S, Kooger R, Zhang C, Zhang Y (2014a) MicroRNAs as novel biological targets for detection and regulation. Chem Soc Rev 43:506–517

    CAS  PubMed  Google Scholar 

  • Li JH, Liu S, Zhou H, Qu LH, Yang JH (2014b) starBase v2.0: decoding miRNA-ceRNA, miRNA-ncRNA and protein-RNA interaction networks from large-scale CLIP-Seq data. Nucleic Acids Res 42:D92-97

    CAS  PubMed  Google Scholar 

  • Lin D, Liang Y, Jing X, Chen Y, Lei M et al (2018) Microarray analysis of an synthetic alpha-synuclein induced cellular model reveals the expression profile of long non-coding RNA in Parkinson’s disease. Brain Res 1678:384–396

    CAS  PubMed  Google Scholar 

  • Mahfouz A, Huisman SMH, Lelieveldt BPF, Reinders MJT (2017) Brain transcriptome atlases: a computational perspective. Brain Struct Funct 222:1557–1580

    PubMed  Google Scholar 

  • Mayer C, Hafemeister C, Bandler RC, Machold R, Batista Brito R et al (2018) Developmental diversification of cortical inhibitory interneurons. Nature 555:457–462

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mercer TR, Dinger ME, Sunkin SM, Mehler MF, Mattick JS (2008) Specific expression of long noncoding RNAs in the mouse brain. Proc Natl Acad Sci USA 105:716–721

    CAS  PubMed  PubMed Central  Google Scholar 

  • Miller JA, Ding SL, Sunkin SM, Smith KA, Ng L et al (2014) Transcriptional landscape of the prenatal human brain. Nature 508:199–206

    CAS  PubMed  PubMed Central  Google Scholar 

  • Molnar Z, Kaas JH, de Carlos JA, Hevner RF, Lein E et al (2014) Evolution and development of the mammalian cerebral cortex. Brain Behav Evol 83:126–139

    PubMed  Google Scholar 

  • Mure LS, Le HD, Benegiamo G, Chang MW, Rios L et al (2018) Diurnal transcriptome atlas of a primate across major neural and peripheral tissues. Science 359:eaao0318

    PubMed  PubMed Central  Google Scholar 

  • Paraskevopoulou MD, Vlachos IS, Karagkouni D, Georgakilas G, Kanellos I et al (2016) DIANA-LncBase v2: indexing microRNA targets on non-coding transcripts. Nucleic Acids Res 44:D231-238

    CAS  PubMed  Google Scholar 

  • Paul Y, Thomas S, Patil V, Kumar N, Mondal B et al (2018) Genetic landscape of long noncoding RNA (lncRNAs) in glioblastoma: identification of complex lncRNA regulatory networks and clinically relevant lncRNAs in glioblastoma. Oncotarget 9:29548–29564

    PubMed  PubMed Central  Google Scholar 

  • Pritchard CC, Cheng HH, Tewari M (2012) MicroRNA profiling: approaches and considerations. Nat Rev Genet 13:358–369

    CAS  PubMed  PubMed Central  Google Scholar 

  • Qin N, Tong GF, Sun LW, Xu XL (2017) Long noncoding RNA MEG3 suppresses glioma cell proliferation, migration, and invasion by acting as a competing endogenous RNA of miR-19a. Oncol Res 25:1471–1478

    PubMed  PubMed Central  Google Scholar 

  • Qu S, Liu Z, Yang X, Zhou J, Yu H et al (2018) The emerging functions and roles of circular RNAs in cancer. Cancer Lett 414:301–309

    CAS  PubMed  Google Scholar 

  • Rao J, Cheng X, Zhu H, Wang L, Liu L (2018) Circular RNA-0007874 (circMTO1) reverses chemoresistance to temozolomide by acting as a sponge of microRNA-630 in glioblastoma. Cell Biol Int. https://doi.org/10.1002/cbin.11080

    Article  Google Scholar 

  • Regev A, Teichmann SA, Lander ES, Amit I, Benoist C et al (2017) The human cell atlas. Elife 6:e27041

    PubMed  PubMed Central  Google Scholar 

  • Rybak-Wolf A, Stottmeister C, Glazar P, Jens M, Pino N et al (2015) Circular RNAs in the mammalian brain are highly abundant, conserved, and dynamically expressed. Mol Cell 58:870–885

    CAS  PubMed  Google Scholar 

  • Sarkar SN, Russell AE, Engler-Chiurazzi EB, Porter KN, Simpkins JW (2019) MicroRNAs and the genetic nexus of brain aging, neuroinflammation, neurodegeneration, and brain trauma. Aging Dis 10:329–352

    PubMed  PubMed Central  Google Scholar 

  • Schaukowitch K, Kim TK (2014) Emerging epigenetic mechanisms of long non-coding RNAs. Neuroscience 264:25–38

    CAS  PubMed  Google Scholar 

  • Schwalb B, Michel M, Zacher B, Fruhauf K, Demel C et al (2016) TT-seq maps the human transient transcriptome. Science 352:1225–1228

    CAS  PubMed  Google Scholar 

  • Stahl PL, Salmen F, Vickovic S, Lundmark A, Navarro JF et al (2016) Visualization and analysis of gene expression in tissue sections by spatial transcriptomics. Science 353:78–82

    CAS  PubMed  Google Scholar 

  • Straniero L, Rimoldi V, Samarani M, Goldwurm S, Di Fonzo A et al (2017) The GBAP1 pseudogene acts as a ceRNA for the glucocerebrosidase gene GBA by sponging miR-22-3p. Sci Rep 7:12702

    PubMed  PubMed Central  Google Scholar 

  • Sunkin SM, Ng L, Lau C, Dolbeare T, Gilbert TL et al (2013) Allen Brain Atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic Acids Res 41:D996-d1008

    CAS  PubMed  Google Scholar 

  • Tasic B, Menon V, Nguyen TN, Kim TK, Jarsky T et al (2016) Adult mouse cortical cell taxonomy revealed by single cell transcriptomics. Nat Neurosci 19:335–346

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang JB, Liu FH, Chen JH, Ge HT, Mu LY et al (2017) Identifying survival-associated modules from the dysregulated triplet network in glioblastoma multiforme. J Cancer Res Clin Oncol 143:661–671

    CAS  PubMed  Google Scholar 

  • Wang O, Huang Y, Wu H, Zheng B, Lin J et al (2018) LncRNA LOC728196/miR-513c axis facilitates glioma carcinogenesis by targeting TCF7. Gene 679:119–125

    CAS  PubMed  Google Scholar 

  • Wei R, Zhang L, Hu W, Wu J, Zhang W (2019) Long non-coding RNA AK038897 aggravates cerebral ischemia/reperfusion injury via acting as a ceRNA for miR-26a-5p to target DAPK1. Exp Neurol 314:100–110

    CAS  PubMed  Google Scholar 

  • Wilson JA, Prow NA, Schroder WA, Ellis JJ, Cumming HE et al (2017) RNA-Seq analysis of chikungunya virus infection and identification of granzyme A as a major promoter of arthritic inflammation. PLoS Pathog 13:e1006155

    PubMed  PubMed Central  Google Scholar 

  • Wu W, Yu T, Wu Y, Tian W, Zhang J et al (2019) The miR155HG/miR-185/ANXA2 loop contributes to glioblastoma growth and progression. J Exp Clin Cancer Res 38:133

    PubMed  PubMed Central  Google Scholar 

  • Xiao S, Wang R, Wu X, Liu W, Ma S (2018) The long noncoding RNA TP73-AS1 interacted with miR-124 to modulate glioma growth by targeting inhibitor of apoptosis-stimulating protein of p53. DNA Cell Biol 37:117–125

    CAS  PubMed  Google Scholar 

  • Xu C, He T, Li Z, Liu H, Ding B (2017) Regulation of HOXA11-AS/miR-214-3p/EZH2 axis on the growth, migration and invasion of glioma cells. Biomed Pharmacother 95:1504–1513

    CAS  PubMed  Google Scholar 

  • Xu N, Liu B, Lian C, Doycheva DM, Fu Z et al (2018) Long noncoding RNA AC003092.1 promotes temozolomide chemosensitivity through miR-195/TFPI-2 signaling modulation in glioblastoma. Cell Death Dis 9:1139

    PubMed  PubMed Central  Google Scholar 

  • Xue JY, Huang C, Wang W, Li HB, Sun M et al (2018) HOXA11-AS: a novel regulator in human cancer proliferation and metastasis. Onco Targets Ther 11:4387–4393

    PubMed  PubMed Central  Google Scholar 

  • Yan H, Rao J, Yuan J, Gao L, Huang W et al (2017) Long non-coding RNA MEG3 functions as a competing endogenous RNA to regulate ischemic neuronal death by targeting miR-21/PDCD4 signaling pathway. Cell Death Dis 8:3211

    PubMed  PubMed Central  Google Scholar 

  • Yang BY, Meng Q, Sun Y, Gao L, Yang JX (2018) Long non-coding RNA SNHG16 contributes to glioma malignancy by competitively binding miR-20a-5p with E2F1. J Biol Regul Homeost Agents 32:251–261

    CAS  PubMed  Google Scholar 

  • Yao P, Lin P, Gokoolparsadh A, Assareh A, Thang MW et al (2015) Coexpression networks identify brain region-specific enhancer RNAs in the human brain. Nat Neurosci 18:1168–1174

    CAS  PubMed  Google Scholar 

  • Zapata JC, Salvato MS (2015) Genomic profiling of host responses to Lassa virus: therapeutic potential from primate to man. Future Virol 10:233–256

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang S, Zhu D, Li H, Li H, Feng C et al (2017) Characterization of circRNA-associated-ceRNA networks in a senescence-accelerated mouse prone 8 brain. Mol Ther 25:2053–2061

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang H, Li D, Zhang Y, Li J, Ma S et al (2018a) Knockdown of lncRNA BDNF-AS suppresses neuronal cell apoptosis via downregulating miR-130b-5p target gene PRDM5 in acute spinal cord injury. RNA Biol 15:1071–1080

    PubMed  PubMed Central  Google Scholar 

  • Zhang L, Luo X, Chen F, Yuan W, Xiao X et al (2018b) LncRNA SNHG1 regulates cerebrovascular pathologies as a competing endogenous RNA through HIF-1alpha/VEGF signaling in ischemic stroke. J Cell Biochem 119:5460–5472

    CAS  PubMed  Google Scholar 

  • Zhang R, Jin H, Lou F (2018c) The long non-coding RNA TP73-AS1 interacted with miR-142 to modulate brain glioma growth through HMGB1/RAGE pathway. J Cell Biochem 119:3007–3016

    CAS  PubMed  Google Scholar 

  • Zhang L, Xue Z, Yan J, Wang J, Liu Q et al (2019) LncRNA Riken-201 and Riken-203 modulates neural development by regulating the Sox6 through sequestering miRNAs. Cell Prolif 52:e12573

    PubMed  PubMed Central  Google Scholar 

  • Zhong S, Zhang S, Fan X, Wu Q, Yan L et al (2018) A single-cell RNA-seq survey of the developmental landscape of the human prefrontal cortex. Nature 555:524–528

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National Natural Science Foundation of China (No. 81860644, 81560596, and 31560051), and Joint Special Project of Yunnan Science and Technology Department and Kunming Medical University (2019FE001-002)

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Aihua Liu or Fukai Bao.

Ethics declarations

Competing interest

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, Z., Sun, L., Yang, C. et al. Exploring the secrets of brain transcriptional regulation: developing methodologies, recent significant findings, and perspectives. Brain Struct Funct 226, 313–322 (2021). https://doi.org/10.1007/s00429-021-02230-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-021-02230-x

Keywords

Navigation