Skip to main content
Log in

Associative white matter connecting the dorsal and ventral posterior human cortex

  • Original Article
  • Published:
Brain Structure and Function Aims and scope Submit manuscript

Abstract

Historically, the primary focus of studies of human white matter tracts has been on large tracts that connect anterior-to-posterior cortical regions. These include the superior longitudinal fasciculus (SLF), the inferior longitudinal fasciculus (ILF), and the inferior fronto-occipital fasciculus (IFOF). Recently, more refined and well-understood tractography methods have facilitated the characterization of several tracts in the posterior of the human brain that connect dorsal-to-ventral cortical regions. These include the vertical occipital fasciculus (VOF), the posterior arcuate fasciculus (pArc), the temporo-parietal connection (TP-SPL), and the middle longitudinal fasciculus (MdLF). The addition of these dorso-ventral connective tracts to our standard picture of white matter architecture results in a more complicated pattern of white matter connectivity than previously considered. Dorso-ventral connective tracts may play a role in transferring information from superior horizontal tracts, such as the SLF, to inferior horizontal tracts, such as the IFOF and ILF. We present a full anatomical delineation of these major dorso-ventral connective white matter tracts (the VOF, pArc, TP-SPL, and MdLF). We show their spatial layout and cortical termination mappings in relation to the more established horizontal tracts (SLF, IFOF, ILF, and Arc) and consider standard values for quantitative features associated with the aforementioned tracts. We hope to facilitate further study on these tracts and their relations. To this end, we also share links to automated code that segments these tracts, thereby providing a standard approach to obtaining these tracts for subsequent analysis. We developed open source software to allow reproducible segmentation of the tracts: https://github.com/brainlife/Vertical_Tracts. Finally, we make the segmentation method available as an open cloud service on the data and analyses sharing platform brainlife.io. Investigators will be able to access these services and upload their data to segment these tracts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9: MdLF-SPL cortical termination pattern. a MdLF-SPL anatomy
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  • Ajina S, Pestilli F, Rokem A et al (2015) Human blindsight is mediated by an intact geniculo-extrastriate pathway. Elife. https://doi.org/10.7554/elife.08935

    Article  PubMed  PubMed Central  Google Scholar 

  • Allen B, Spiegel DP, Thompson B et al (2015) Altered white matter in early visual pathways of humans with amblyopia. Vis Res 114:48–55

    PubMed  Google Scholar 

  • Avesani P, McPherson B, Hayashi S et al (2019) The open diffusion data derivatives, brain data upcycling via integrated publishing of derivatives and reproducible open cloud services. Sci Data 6:69

    PubMed  PubMed Central  Google Scholar 

  • Axer M, Grässel D, Kleiner M et al (2011) High-Resolution Fiber Tract Reconstruction in the Human Brain by Means of Three-Dimensional Polarized Light Imaging. Front Neuroinform 5:34. https://doi.org/10.3389/fninf.2011.00034

    Article  PubMed  PubMed Central  Google Scholar 

  • Bajada CJ, Lambon Ralph MA, Cloutman LL (2015) Transport for language south of the Sylvian fissure: the routes and history of the main tracts and stations in the ventral language network. Cortex 69:141–151

    PubMed  Google Scholar 

  • Bartolomeo P, Thiebaut de Schotten M, Chica AB (2012) Brain networks of visuospatial attention and their disruption in visual neglect. Front Hum Neurosci 6:110

    PubMed  PubMed Central  Google Scholar 

  • Bartsch AJ, Geletneky K, Jbabdi S (2013) The temporoparietal fiber intersection area and wernicke perpendicular fasciculus. Neurosurgery 73:E381–E382

    PubMed  Google Scholar 

  • Basser PJ, Jones DK (2002) Diffusion-tensor MRI: theory, experimental design and data analysis—a technical review. NMR Biomed 15:456–467

    PubMed  Google Scholar 

  • Basser PJ, Pajevic S, Pierpaoli C et al (2000) In vivo fiber tractography using DT-MRI data. Magn Reson Med 44:625–632

    PubMed  CAS  Google Scholar 

  • Behrens TEJ, Woolrich MW, Jenkinson M et al (2003) Characterization and propagation of uncertainty in diffusion-weighted MR imaging. Magn Reson Med 50:1077–1088

    CAS  PubMed  Google Scholar 

  • Broca P (1865) Sur le siège de la faculté du langage articulé. Bull Mem Soc Anthropol Paris 6:377–393

    Google Scholar 

  • Budisavljevic S, Dell’Acqua F, Castiello U (2018) Cross-talk connections underlying dorsal and ventral stream integration during hand actions. Cortex. https://doi.org/10.1016/j.cortex.2018.02.016

    Article  PubMed  Google Scholar 

  • Bullmore E, Sporns O (2009) Complex brain networks: graph theoretical analysis of structural and functional systems. Nat Rev Neurosci 10:186–198

    PubMed  CAS  Google Scholar 

  • Caiafa CF, Pestilli F (2017) Multidimensional encoding of brain connectomes. Sci Rep 7:11491

    PubMed  PubMed Central  Google Scholar 

  • Catani M, de Schotten MT (2012) Atlas of human brain connections (all tracts). In: Atlas of human brain connections.  Oxford University Press, pp 75–238

  • Catani M, Ffytche DH (2005) The rises and falls of disconnection syndromes. Brain 128:2224–2239

    PubMed  Google Scholar 

  • Catani M, Mesulam M (2008) The arcuate fasciculus and the disconnection theme in language and aphasia: history and current state. Cortex 44:953–961

    PubMed  PubMed Central  Google Scholar 

  • Catani M, Thiebaut de Schotten M (2008) A diffusion tensor imaging tractography atlas for virtual in vivo dissections. Cortex 44:1105–1132

    PubMed  Google Scholar 

  • Catani M, Howard RJ, Pajevic S, Jones DK (2002) Virtual in vivo interactive dissection of white matter fasciculi in the human brain. Neuroimage 17:77–94

    PubMed  Google Scholar 

  • Catani M, Jones DK, Ffytche DH (2005) Perisylvian language networks of the human brain. Ann Neurol 57:8–16

    PubMed  Google Scholar 

  • Catani M, Bodi I, Dell’Acqua F (2012) Comment on “The geometric structure of the brain fiber pathways”. Science 337:1605

    PubMed  CAS  Google Scholar 

  • Catani M, Mesulam MM, Jakobsen E et al (2013) A novel frontal pathway underlies verbal fluency in primary progressive aphasia. Brain 136:2619–2628

    PubMed  PubMed Central  Google Scholar 

  • Charcot JM (2016) Lectures on the localisation of cerebral and spinal diseases. Palala Press, Newark (Tr. and Ed. by W.B. Hadden)

    Google Scholar 

  • Curran EJ (1909) A new association fiber tract in the cerebrum with remarks on the fiber tract dissection method of studying the brain. J Comp Neurol Psychol 19:645–656

    Google Scholar 

  • Davis LE (1921) An anatomic study of the inferior longitudinal fasciculus. Arch Neurol Psychiatry 5:370

    Google Scholar 

  • De Benedictis A, Duffau H, Paradiso B et al (2014) Anatomo-functional study of the temporo-parieto-occipital region: dissection, tractographic and brain mapping evidence from a neurosurgical perspective. J Anat 225:132–151

    PubMed  PubMed Central  Google Scholar 

  • De Benedictis A, Petit L, Descoteaux M et al (2016) New insights in the homotopic and heterotopic connectivity of the frontal portion of the human corpus callosum revealed by microdissection and diffusion tractography. Hum Brain Mapp 37:4718–4735

    PubMed  PubMed Central  Google Scholar 

  • de Schotten MT, Dell’Acqua F, Forkel SJ et al (2011) A lateralized brain network for visuospatial attention. Nat Neurosci 14:1245–1246

    Google Scholar 

  • Decramer T, Swinnen S, van Loon J et al (2018) White matter tract anatomy in the rhesus monkey: a fiber dissection study. Brain Struct Funct 223:3681–3688

    PubMed  Google Scholar 

  • Dejerine J, Dejerine-Klumpke A (1895) Anatomie des centres nerveux. Rueff & Company, Paris

    Google Scholar 

  • Descoteaux M, Deriche R, Knösche TR, Anwander A (2009) Deterministic and probabilistic tractography based on complex fibre orientation distributions. IEEE Trans Med Imaging 28:269–286

    PubMed  Google Scholar 

  • Destrieux C, Fischl B, Dale A, Halgren E (2010) Automatic parcellation of human cortical gyri and sulci using standard anatomical nomenclature. Neuroimage 53:1–15

    PubMed  Google Scholar 

  • Dick AS, Tremblay P (2012) Beyond the arcuate fasciculus: consensus and controversy in the connectional anatomy of language. Brain 135:3529–3550

    PubMed  Google Scholar 

  • Dick AS, Bernal B, Tremblay P (2014) The language connectome: new pathways, new concepts. Neuroscientist 20:453–467

    PubMed  Google Scholar 

  • Dohmen M, Menzel M, Wiese H et al (2015) Understanding fiber mixture by simulation in 3D polarized light imaging. Neuroimage 111:464–475

    PubMed  Google Scholar 

  • Edinger L (1885) Über den Verlauf der centralen Hirnnervenbahnen mit Demonstrationen von Präparaten. Arch Psychiatr Nervenkr 16:858–859

    Google Scholar 

  • Edinger L (1893) The significance of the cortex considered in connection with a report upon a dog from which the entire cerebrum had been removed by Prof. Goltz. J Comp Neurol 3:69–77

    Google Scholar 

  • Fang Y, Wang X, Zhong S et al (2018) Semantic representation in the white matter pathway. PLoS Biol 16:e2003993

    PubMed  PubMed Central  Google Scholar 

  • Fernández-Miranda JC, Rhoton AL Jr, Alvarez-Linera J et al (2008) Three-dimensional microsurgical and tractographic anatomy of the white matter of the human brain. Neurosurgery 62:989–1026 (discussion 1026–8)

    PubMed  Google Scholar 

  • Fields RD (2008a) White matter in learning, cognition and psychiatric disorders. Trends Neurosci 31:361–370

    PubMed  PubMed Central  CAS  Google Scholar 

  • Fields RD (2008b) White matter matters. Sci Am 298:54–61

    Google Scholar 

  • Fischl B (2012) FreeSurfer. Neuroimage 62:774–781

    PubMed  Google Scholar 

  • Flourens P (1846) Phrenology examined. Am J Med Sci 11:437

    Google Scholar 

  • Forkel SJ, Thiebaut de Schotten M, Kawadler JM et al (2014) The anatomy of fronto-occipital connections from early blunt dissections to contemporary tractography. Cortex 56:73–84

    PubMed  Google Scholar 

  • Friederici AD (2011) The brain basis of language processing: from structure to function. Physiol Rev 91:1357–1392

    PubMed  Google Scholar 

  • Gabrieli JDE (2009) Dyslexia: a new synergy between education and cognitive neuroscience. Science 325:280–283

    PubMed  CAS  Google Scholar 

  • Gall FJ (1810) Anatomie et physiologie du système nerveux en général, et du cerveau en particulier: avec des observations sur la possibilité de reconnaître plusieurs dispositions intellectuelles et morales de l’homme et des animaux, par la configuration de leurs têtes

  • Garyfallidis E, Brett M, Amirbekian B et al (2014) Dipy, a library for the analysis of diffusion MRI data. Front Neuroinform 8:8

    PubMed  PubMed Central  Google Scholar 

  • Geschwind N (1965) Disconnexion syndromes in animals and man. I. Brain 88:237–294

    PubMed  CAS  Google Scholar 

  • Geschwind N (1974) Disconnexion Syndromes in Animals and Man. In: Selected Papers on Language and the Brain. Boston Studies in the Philosophy of Science, vol 16. Springer, Dordrecht, pp 105–236

    Google Scholar 

  • Glasser MF, Sotiropoulos SN, Wilson JA et al (2013) The minimal preprocessing pipelines for the Human Connectome Project. Neuroimage 80:105–124

    PubMed  Google Scholar 

  • Goldstone RL, Pestilli F, Börner K (2015) Self-portraits of the brain: cognitive science, data visualization, and communicating brain structure and function. Trends Cogn Sci 19:462–474

    PubMed  Google Scholar 

  • Gomez J, Pestilli F, Witthoft N et al (2015) Functionally defined white matter reveals segregated pathways in human ventral temporal cortex associated with category-specific processing. Neuron 85:216–227

    PubMed  PubMed Central  CAS  Google Scholar 

  • Goodale MA, Milner AD (1992) Separate visual pathways for perception and action. Trends Neurosci 15:20–25

    PubMed  CAS  Google Scholar 

  • Goryainov SA, Kondrashov AV, Gol’dberg MF et al (2017) Long association tracts of the human white matter: an analysis of 18 hemisphere dissections and in vivo HARDI-CSD tractography. Zh Vopr Neirokhir Im N N Burdenko 81:13–25

    PubMed  CAS  Google Scholar 

  • Gray H (1918) Anatomy of the human body.  Lea & Febiger, Philadelphia

  • Grill-Spector K, Kushnir T, Edelman S et al (1998) Cue-invariant activation in object-related areas of the human occipital lobe. Neuron 21:191–202

    PubMed  CAS  Google Scholar 

  • Hagmann P, Jonasson L, Maeder P et al (2006) Understanding diffusion mr imaging techniques: from scalar diffusion-weighted imaging to diffusion tensor imaging and beyond. Radiographics 26:S205–S223

    PubMed  Google Scholar 

  • Hagmann P, Cammoun L, Gigandet X et al (2008) Mapping the structural core of human cerebral cortex. PLoS Biol 6:e159

    PubMed  PubMed Central  Google Scholar 

  • Hart J (2015) White matter and cognition. In: The Neurobiology of Cognition and Behavior.  Oxford University Press, pp 169–186

  • Hau J, Sarubbo S, Houde JC et al (2017) Revisiting the human uncinate fasciculus, its subcomponents and asymmetries with stem-based tractography and microdissection validation. Brain Struct Funct 222:1645–1662

    PubMed  Google Scholar 

  • Haxby JV, Hoffman EA, Ida Gobbini M (2000) The distributed human neural system for face perception. Trends Cogn Sci 4:223–233

    PubMed  CAS  Google Scholar 

  • Homola GA, Jbabdi S, Beckmann CF, Bartsch AJ (2012) A brain network processing the age of faces. PLoS One 7:e49451

    PubMed  PubMed Central  CAS  Google Scholar 

  • Honey CJ, Sporns O (2008) Dynamical consequences of lesions in cortical networks. Hum Brain Mapp 29:802–809

    PubMed  PubMed Central  Google Scholar 

  • Hubel DH, Livingstone MS (1987) Segregation of form, color, and stereopsis in primate area 18. J Neurosci 7:3378–3415

    PubMed  CAS  PubMed Central  Google Scholar 

  • Jbabdi S, Johansen-Berg H (2011) Tractography: where do we go from here? Brain Connect 1:169–183

    PubMed  PubMed Central  Google Scholar 

  • Jbabdi S, Sotiropoulos SN, Haber SN et al (2015) Measuring macroscopic brain connections in vivo. Nat Neurosci 18:1546–1555

    PubMed  CAS  Google Scholar 

  • Kamali A, Flanders AE, Brody J et al (2014a) Tracing superior longitudinal fasciculus connectivity in the human brain using high resolution diffusion tensor tractography. Brain Struct Funct 219:269–281

    PubMed  Google Scholar 

  • Kamali A, Sair HI, Radmanesh A, Hasan KM (2014b) Decoding the superior parietal lobule connections of the superior longitudinal fasciculus/arcuate fasciculus in the human brain. Neuroscience 277:577–583

    PubMed  CAS  Google Scholar 

  • Kanwisher N (2010) Functional specificity in the human brain: a window into the functional architecture of the mind. Proc Natl Acad Sci 107:11163–11170

    PubMed  CAS  PubMed Central  Google Scholar 

  • Lawes INC, Barrick TR, Murugam V et al (2008) Atlas-based segmentation of white matter tracts of the human brain using diffusion tensor tractography and comparison with classical dissection. Neuroimage 39:62–79

    PubMed  Google Scholar 

  • Lazar M, Weinstein DM, Tsuruda JS et al (2003) White matter tractography using diffusion tensor deflection. Hum Brain Mapp 18:306–321

    PubMed  PubMed Central  Google Scholar 

  • Lee Masson H, Wallraven C, Petit L (2017) “Can touch this”: cross-modal shape categorization performance is associated with microstructural characteristics of white matter association pathways. Hum Brain Mapp 38:842–854

    PubMed  Google Scholar 

  • Leong JK, Pestilli F, Wu CC et al (2016) White-matter tract connecting anterior insula to nucleus accumbens correlates with reduced preference for positively skewed gambles. Neuron 89:63–69

    PubMed  PubMed Central  CAS  Google Scholar 

  • Libero LE, Burge WK, Deshpande HD et al (2016) White matter diffusion of major fiber tracts implicated in autism spectrum disorder. Brain Connect 6:691–699

    PubMed  PubMed Central  Google Scholar 

  • Lunven M, Thiebaut De Schotten M, Bourlon C et al (2015) White matter lesional predictors of chronic visual neglect: a longitudinal study. Brain 138:746–760

    PubMed  PubMed Central  Google Scholar 

  • Mai JK, Majtanik M, Paxinos G (2015) Atlas of the human brain. Academic Press, London

    Google Scholar 

  • Maier-Hein KH, Neher PF, Houde J-C et al (2017) The challenge of mapping the human connectome based on diffusion tractography. Nat Commun 8:1349

    PubMed  PubMed Central  Google Scholar 

  • Makris N, Kennedy DN, McInerney S et al (2004) Segmentation of subcomponents within the superior longitudinal fascicle in humans: a quantitative, in vivo, DT-MRI study. Cereb Cortex 15:854–869

    PubMed  Google Scholar 

  • Makris N, Papadimitriou GM, Kaiser JR et al (2009) Delineation of the middle longitudinal fascicle in humans: a quantitative, in vivo, DT-MRI study. Cereb Cortex 19:777–785

    PubMed  Google Scholar 

  • Makris N, Preti MG, Asami T et al (2013a) Human middle longitudinal fascicle: variations in patterns of anatomical connections. Brain Struct Funct 218:951–968

    PubMed  CAS  Google Scholar 

  • Makris N, Preti MG, Wassermann D et al (2013b) Human middle longitudinal fascicle: segregation and behavioral-clinical implications of two distinct fiber connections linking temporal pole and superior temporal gyrus with the angular gyrus or superior parietal lobule using multi-tensor tractography. Brain Imaging Behav 7:335–352

    PubMed  CAS  Google Scholar 

  • Makris N, Zhu A, Papadimitriou GM et al (2017) Mapping temporo-parietal and temporo-occipital cortico-cortical connections of the human middle longitudinal fascicle in subject-specific, probabilistic, and stereotaxic Talairach spaces. Brain Imaging Behav 11:1258–1277

    PubMed  PubMed Central  Google Scholar 

  • Maldonado IL, de Champfleur NM, Velut S et al (2013) Evidence of a middle longitudinal fasciculus in the human brain from fiber dissection. J Anat 223:38–45

    PubMed  PubMed Central  Google Scholar 

  • Martino J, De Lucas EM (2014) Subcortical anatomy of the lateral association fascicles of the brain: a review. Clin Anat 27:563–569

    PubMed  Google Scholar 

  • Martino J, García-Porrero JA (2013) Wernicke perpendicular fasciculus and vertical portion of the superior longitudinal fasciculus. Neurosurgery 73:E382–E383

    PubMed  Google Scholar 

  • Martino J, Brogna C, Robles SG et al (2010a) Anatomic dissection of the inferior fronto-occipital fasciculus revisited in the lights of brain stimulation data. Cortex 46:691–699

    PubMed  Google Scholar 

  • Martino J, Vergani F, Robles SG, Duffau H (2010b) New insights into the anatomic dissection of the temporal stem with special emphasis on the inferior fronto-occipital fasciculus: implications in surgical approach to left mesiotemporal and temporoinsular structures. Neurosurgery 66:4–12

    PubMed  Google Scholar 

  • Martino J, da Silva-Freitas R, Caballero H et al (2013a) Fiber dissection and diffusion tensor imaging tractography study of the temporoparietal fiber intersection area. Neurosurgery 72:87–97 (discussion 97–8)

    PubMed  Google Scholar 

  • Martino J, De Witt Hamer PC, Berger MS et al (2013b) Analysis of the subcomponents and cortical terminations of the perisylvian superior longitudinal fasciculus: a fiber dissection and DTI tractography study. Brain Struct Funct 218:105–121

    PubMed  Google Scholar 

  • Menjot de Champfleur N, Lima Maldonado I, Moritz-Gasser S et al (2013) Middle longitudinal fasciculus delineation within language pathways: a diffusion tensor imaging study in human. Eur J Radiol 82:151–157

    PubMed  Google Scholar 

  • Miller BL (2010) A commentary on “Disconnexion syndromes in animals and man”. Neuropsychol Rev 20:126–127

    PubMed  PubMed Central  Google Scholar 

  • Milner AD, Goodale MA (2008) Two visual systems re-viewed. Neuropsychologia 46:774–785

    PubMed  CAS  Google Scholar 

  • Mori S, Zhang J (2006) Principles of diffusion tensor imaging and its applications to basic neuroscience research. Neuron 51:527–539

    PubMed  CAS  Google Scholar 

  • Mori S, Crain BJ, Chacko VP, van Zijl PC (1999) Three-dimensional tracking of axonal projections in the brain by magnetic resonance imaging. Ann Neurol 45:265–269

    PubMed  CAS  Google Scholar 

  • Mori S, Kaufmann WE, Davatzikos C et al (2002) Imaging cortical association tracts in the human brain using diffusion-tensor-based axonal tracking. Magn Reson Med 47:215–223

    PubMed  Google Scholar 

  • Mori S, Wakana S, van Zijl PCM, Nagae-Poetscher LM (2005) MRI atlas of human white matter. Elsevier, Amsterdam

    Google Scholar 

  • Obersteiner H (1889) Anleitung beim Studium des Baues der nervosen Centralorgane im gesunden und kranken Zustande. Am J Psychol 2:304

    Google Scholar 

  • Obersteiner H (1890) The anatomy of the central nervous organs in health and disease. Charles Griffin & Company, London

    Google Scholar 

  • Ogawa S, Takemura H, Horiguchi H et al (2014) White matter consequences of retinal receptor and ganglion cell damage. Investig Ophthalmol Vis Sci 55:6976–6986

    Google Scholar 

  • Panesar SS, Belo JTA, Yeh F-C, Fernandez-Miranda JC (2019) Structure, asymmetry, and connectivity of the human temporo-parietal aslant and vertical occipital fasciculi. Brain Struct Funct 224:907–923

    PubMed  Google Scholar 

  • Pestilli F (2018) Human white matter and knowledge representation. PLoS Biol 16:e2005758

    PubMed  PubMed Central  Google Scholar 

  • Pestilli F, Bullock D (2019) Associative white matter connecting the dorsal and ventral posterior human cortex. brainlife.io. https://doi.org/10.25663/brainlife.pub.4

    Article  Google Scholar 

  • Pestilli F, Yeatman JD, Rokem A et al (2014) Evaluation and statistical inference for human connectomes. Nat Methods 11:1058–1063

    PubMed  PubMed Central  CAS  Google Scholar 

  • Petrides M, Pandya DN (2009) Distinct parietal and temporal pathways to the homologues of Broca’s area in the monkey. PLoS Biol 7:e1000170

    PubMed  PubMed Central  Google Scholar 

  • Ptak R, Schnider A (2010) The dorsal attention network mediates orienting toward behaviorally relevant stimuli in spatial neglect. J Neurosci 30:12557–12565

    PubMed  PubMed Central  CAS  Google Scholar 

  • Reese TG, Heid O, Weisskoff RM, Wedeen VJ (2003) Reduction of eddy-current-induced distortion in diffusion MRI using a twice-refocused spin echo. Magn Reson Med 49:177–182

    PubMed  CAS  Google Scholar 

  • Reveley C, Seth AK, Pierpaoli C et al (2015) Superficial white matter fiber systems impede detection of long-range cortical connections in diffusion MR tractography. Proc Natl Acad Sci USA 112:E2820–E2828

    PubMed  CAS  PubMed Central  Google Scholar 

  • Rokem A, Yeatman JD, Pestilli F et al (2015) Evaluating the accuracy of diffusion MRI models in white matter. PLoS One 10:e0123272

    PubMed  PubMed Central  Google Scholar 

  • Rokem A, Takemura H, Bock AS et al (2017) The visual white matter: the application of diffusion MRI and fiber tractography to vision science. J Vis 17:4

    PubMed  PubMed Central  Google Scholar 

  • Rubner Y, Tomasi C, Guibas LJ (2000) The earth mover’s distance as a metric for image retrieval. Int J Comput Vis 40:99–121

    Google Scholar 

  • Saber GT, Pestilli F, Curtis CE (2015) Saccade planning evokes topographically specific activity in the dorsal and ventral streams. J Neurosci 35:245–252

    PubMed  PubMed Central  CAS  Google Scholar 

  • Sakata H, Taira M, Kusunoki M et al (1997) The TINS lecture. The parietal association cortex in depth perception and visual control of hand action. Trends Neurosci 20:350–357

    PubMed  CAS  Google Scholar 

  • Sani I, McPherson BC, Stemmann H et al (2019) Functionally defined white matter of the macaque monkey brain reveals a dorso-ventral attention network. Elife. https://doi.org/10.7554/elife.40520

    Article  PubMed  PubMed Central  Google Scholar 

  • Sarubbo S, De Benedictis A, Maldonado IL et al (2013) Frontal terminations for the inferior fronto-occipital fascicle: anatomical dissection, DTI study and functional considerations on a multi-component bundle. Brain Struct Funct 218:21–37

    PubMed  Google Scholar 

  • Sarubbo S, De Benedictis A, Merler S et al (2016) Structural and functional integration between dorsal and ventral language streams as revealed by blunt dissection and direct electrical stimulation. Hum Brain Mapp 37:3858–3872

    PubMed  PubMed Central  Google Scholar 

  • Schmahmann JD, Pandya DN (2006) Fiber pathways of the brain.  Oxford University Press

  • Schmahmann JD, Pandya DN (2007) Cerebral white matter—historical evolution of facts and notions concerning the organization of the fiber pathways of the brain. J Hist Neurosci 16:237–267

    PubMed  Google Scholar 

  • Schmahmann JD, Pandya DN, Wang R et al (2007) Association fibre pathways of the brain: parallel observations from diffusion spectrum imaging and autoradiography. Brain 130:630–653

    PubMed  Google Scholar 

  • Scholz J, Klein M, Behrens T, Johansen-Berg H (2009) White matter microstructure changes in response to training. NeuroImage 47:S77

    Google Scholar 

  • Sotiropoulos SN, Jbabdi S, Xu J et al (2013) Advances in diffusion MRI acquisition and processing in the Human Connectome Project. Neuroimage 80:125–143

    PubMed  Google Scholar 

  • Steinmetz NA, Moore T (2014) Eye movement preparation modulates neuronal responses in area V4 when dissociated from attentional demands. Neuron 83:496–506

    PubMed  PubMed Central  CAS  Google Scholar 

  • Stricker S (1871) Handbuch der Lehre von den Geweben des Menschen und der Thiere.  Wilhelm Engelmann, Leipzig

  • Takemura H, Caiafa CF, Wandell BA, Pestilli F (2016a) Ensemble tractography. PLoS Comput Biol 12:e1004692

    PubMed  PubMed Central  Google Scholar 

  • Takemura H, Rokem A, Winawer J et al (2016b) A major human white matter pathway between dorsal and ventral visual cortex. Cereb Cortex 26:2205–2214

    PubMed  Google Scholar 

  • Takemura H, Pestilli F, Weiner KS et al (2017) Occipital white matter tracts in human and macaque. Cereb Cortex. https://doi.org/10.1093/cercor/bhx070

    Article  PubMed  PubMed Central  Google Scholar 

  • Takemura H, Pestilli F, Weiner KS (2018) Comparative neuroanatomy: integrating classic and modern methods to understand association fibers connecting dorsal and ventral visual cortex. Neurosci Res. https://doi.org/10.1016/j.neures.2018.10.011

    Article  PubMed  PubMed Central  Google Scholar 

  • Thomas C, Ye FQ, Irfanoglu MO et al (2014) Anatomical accuracy of brain connections derived from diffusion MRI tractography is inherently limited. Proc Natl Acad Sci USA 111:16574–16579

    PubMed  CAS  PubMed Central  Google Scholar 

  • Thomason ME, Thompson PM (2011) Diffusion imaging, white matter, and psychopathology. Annu Rev Clin Psychol 7:63–85

    PubMed  Google Scholar 

  • Thompson PM, Stein JL, Medland SE et al (2014) The ENIGMA Consortium: large-scale collaborative analyses of neuroimaging and genetic data. Brain Imaging Behav 8:153–182

    PubMed  PubMed Central  Google Scholar 

  • Tournier J-D, Calamante F, Connelly A (2007) Robust determination of the fibre orientation distribution in diffusion MRI: non-negativity constrained super-resolved spherical deconvolution. Neuroimage 35:1459–1472

    PubMed  Google Scholar 

  • Tournier J-D, Calamante F, Connelly A (2012) MRtrix: diffusion tractography in crossing fiber regions. Int J Imaging Syst Technol 22:53–66

    Google Scholar 

  • Turken AU, Dronkers NF (2011) The neural architecture of the language comprehension network: converging evidence from lesion and connectivity analyses. Front Syst Neurosci 5:1

    PubMed  PubMed Central  Google Scholar 

  • Uesaki M, Takemura H, Ashida H (2018) Computational neuroanatomy of human stratum proprium of interparietal sulcus. Brain Struct Funct 223:489–507

    PubMed  Google Scholar 

  • Ungerleider L, Haxby J (1994) “What” and “where” in the human brain. Curr Opin Neurobiol 4:157–165

    PubMed  CAS  Google Scholar 

  • Van Essen DC, Ugurbil K, Auerbach E et al (2012) The human connectome project: a data acquisition perspective. Neuroimage 62:2222–2231

    PubMed  Google Scholar 

  • Ventura-Antunes L, Mota B, Herculano-Houzel S (2013) Different scaling of white matter volume, cortical connectivity, and gyrification across rodent and primate brains. Front Neuroanat 7:3

    PubMed  PubMed Central  Google Scholar 

  • Wakana S, Caprihan A, Panzenboeck MM et al (2007) Reproducibility of quantitative tractography methods applied to cerebral white matter. Neuroimage 36:630–644

    PubMed  Google Scholar 

  • Wandell BA (2016) Clarifying human white matter. Annu Rev Neurosci 39:103–128

    PubMed  CAS  Google Scholar 

  • Wang Y, Fernández-Miranda JC, Verstynen T et al (2013) Rethinking the role of the middle longitudinal fascicle in language and auditory pathways. Cereb Cortex 23:2347–2356

    PubMed  Google Scholar 

  • Wang X, Pathak S, Stefaneanu L et al (2016) Subcomponents and connectivity of the superior longitudinal fasciculus in the human brain. Brain Struct Funct 221:2075–2092

    PubMed  Google Scholar 

  • Wassermann D, Makris N, Rathi Y et al (2013) On describing human white matter anatomy: the white matter query language. Med Image Comput Comput Assist Interv 16:647–654

    PubMed  PubMed Central  Google Scholar 

  • Wassermann D, Makris N, Rathi Y et al (2016) The white matter query language: a novel approach for describing human white matter anatomy. Brain Struct Funct 221:4705–4721

    PubMed  PubMed Central  Google Scholar 

  • Wasserthal J, Neher P, Maier-Hein KH (2018) TractSeg—fast and accurate white matter tract segmentation. Neuroimage 183:239–253

    PubMed  Google Scholar 

  • Wedeen VJ, Rosene DL, Wang R et al (2012) The geometric structure of the brain fiber pathways. Science 335:1628–1634

    PubMed  PubMed Central  CAS  Google Scholar 

  • Weiner KS, Yeatman JD, Wandell BA (2016) The posterior arcuate fasciculus and the vertical occipital fasciculus. Cortex. https://doi.org/10.1016/j.cortex.2016.03.012

    Article  PubMed  PubMed Central  Google Scholar 

  • Wernicke C (1874) Der aphasische Symptomencomplex: eine psychologische Studie auf anatomischer Basis. Max Cohn & Weigert, Breslau

    Google Scholar 

  • Wernicke C (1881) Lehrbuch der Gehirnkrankheiten für Aerzte und Studirende. Theodor Fischer, Kassel

    Google Scholar 

  • Wu Y, Sun D, Wang Y et al (2016) Tracing short connections of the temporo-parieto-occipital region in the human brain using diffusion spectrum imaging and fiber dissection. Brain Res 1646:152–159

    PubMed  CAS  Google Scholar 

  • Yeatman JD, Dougherty RF, Rykhlevskaia E et al (2011) Anatomical properties of the arcuate fasciculus predict phonological and reading skills in children. J Cogn Neurosci 23:3304–3317

    PubMed  PubMed Central  Google Scholar 

  • Yeatman JD, Dougherty RF, Myall NJ et al (2012) Tract profiles of white matter properties: automating fiber-tract quantification. PLoS One 7:e49790

    PubMed  PubMed Central  CAS  Google Scholar 

  • Yeatman JD, Rauschecker AM, Wandell BA (2013) Anatomy of the visual word form area: adjacent cortical circuits and long-range white matter connections. Brain Lang 125:146–155

    PubMed  Google Scholar 

  • Yeatman JD, Weiner KS, Pestilli F et al (2014) The vertical occipital fasciculus: a century of controversy resolved by in vivo measurements. Proc Natl Acad Sci USA 111:E5214–E5223

    PubMed  CAS  PubMed Central  Google Scholar 

  • Yeatman JD, Richie-Halford A, Smith JK et al (2018) A browser-based tool for visualization and analysis of diffusion MRI data. Nat Commun 9:940

    PubMed  PubMed Central  Google Scholar 

  • Yeh F-C, Panesar S, Fernandes D et al (2018) Population-averaged atlas of the macroscale human structural connectome and its network topology. NeuroImage 178:57–68

    PubMed  Google Scholar 

  • Zhang K, Sejnowski TJ (2000) A universal scaling law between gray matter and white matter of cerebral cortex. Proc Natl Acad Sci USA 97:5621–5626

    PubMed  CAS  PubMed Central  Google Scholar 

  • Zola-Morgan S (1995) Localization of brain function: the legacy of Franz Joseph Gall (1758–1828). Annu Rev Neurosci 18:359–383

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by NSF IIS-1636893, NSF BCS-1734853, NSF AOC 1916518, NIH NCATS UL1TR002529, a Microsoft Research Award, Google Cloud Platform, Japan Society for the Promotion of Science (JSPS) KAKENHI (JP17H04684, JP15J00412), and the Indiana University Areas of Emergent Research initiative “Learning: Brains, Machines, Children.” In part by NIH NCATS UL1TR002529 to F.P.. D.N.B. and B.M. were partially funded via NIH NIMH 5 T32 MH103213 to B. Hetrick and B. D’Onofrio. We thank Soichi Hayashi, Steven O’Riley, David Hunt, and Aman Arya for contributing to the development of brainlife.io, Craig Stewart, Winona Snapp-Childs, David Hancok, and Jeremy Fischer for support with jetstream-cloud.org (NSF ACI-1445604). Data were provided in part by the Human Connectome Project, WU-Minn Consortium (Principal Investigators: David Van Essen and Kamil Ugurbil; 1U54MH091657) funded by the 16 NIH Institutes and Centers that support the NIH Blueprint for Neuroscience Research; and by the McDonnell Center for Systems Neuroscience at Washington University. Data were provided in part by Brian Wandell (Stanford University; https://purl.stanford.edu/bb060nk0241). Thanks to Sophia Vinci-Booher for comments on early versions of the manuscript. Thanks also to Josh Faskowitz for help with software.

Author information

Authors and Affiliations

Authors

Contributions

DNB and FP conceptualized and performed analyses. HT and CC provided data curation and software. DNB, HT, CC, and FP wrote the manuscript. LK, BM, and BC provided validation and software.

Corresponding author

Correspondence to Franco Pestilli.

Ethics declarations

Conflicts of interest

Authors declare no conflicts of interest.

Research involving human participants and/or animals

Data collection was approved by the respective Institutional Review Boards (IRBs) of the University of Washington, Saint Louis (HCP data set) and Stanford University (STN data set).

Informed consent

All participants provided written informed consent to participate in the project.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 6395 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bullock, D., Takemura, H., Caiafa, C.F. et al. Associative white matter connecting the dorsal and ventral posterior human cortex. Brain Struct Funct 224, 2631–2660 (2019). https://doi.org/10.1007/s00429-019-01907-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-019-01907-8

Keywords

Navigation