Skip to main content

Advertisement

Log in

High-resolution imaging of distinct human corpus callosum microstructure and topography of structural connectivity to cortices at high field

  • Methods Paper
  • Published:
Brain Structure and Function Aims and scope Submit manuscript

Abstract

Characterization of the microstructural properties and topography of the human corpus callosum (CC) is key to understanding interhemispheric neural communication and brain function. In this work, we tested the hypothesis that high-resolution T1 relaxometry at high field has adequate sensitivity and specificity for characterizing microstructural properties of the human CC, and elucidating the structural connectivity of the callosal fibers to the cortices of origin. The high-resolution parametric T1 images acquired from healthy subjects (N = 16) at 7 T clearly showed a consistent T1 distribution among individuals with substantial variation along the human CC axis, which is highly similar to the spatial patterns of myelin density and myelinated axon size based on the histology study. Compared to the anterior part of the CC, the posterior midbody and splenium had significantly higher T1 values. In conjunction with T1-based classification method, the splenial T1 values were decoded more reliably compared to a conventional partitioning method, showing a much higher T1 value in the inferior splenium than in the middle/superior splenium. Moreover, the T1 profile of the callosal subdivision represented the topology of the fiber connectivity to the projected cortical regions: the fibers in the posterior midbody and inferior splenium with a higher T1 (inferring a larger axon size) were mainly connected to motor–sensory and visual cortical areas, respectively; in contrast, the fibers in the anterior/posterior CC with a lower T1 (inferring a smaller axon size) were primarily connected to the frontal/parietal–temporal areas. These findings indicate that high-resolution T1 relaxometry imaging could provide a complementary and robust neuroimaging tool, useful for exploring the complex tissue properties and topographic organization of the human corpus callosum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

e, f Reprinted with the permission from the reference (Aboitiz et al. 1992a)

Fig. 5

d Reprinted with the permission from the reference (Aboitiz and Montiel 2003)

Fig. 6
Fig. 7

Similar content being viewed by others

References

Download references

Acknowledgements

This work was supported by NIH Grants RO1 NS070839 and MH111413; R24 MH106049, S10 RR026783, U01 EB026978, P41 EB015894, and P30NS076408 and the W.M. Keck Foundation.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Byeong-Yeul Lee or Wei Chen.

Ethics declarations

Ethical approval

All procedures performed in the studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Conflict of interest

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, BY., Zhu, XH., Li, X. et al. High-resolution imaging of distinct human corpus callosum microstructure and topography of structural connectivity to cortices at high field. Brain Struct Funct 224, 949–960 (2019). https://doi.org/10.1007/s00429-018-1804-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-018-1804-0

Keywords

Navigation