Skip to main content
Log in

A domain-general brain network underlying emotional and cognitive interference processing: evidence from coordinate-based and functional connectivity meta-analyses

  • Original Article
  • Published:
Brain Structure and Function Aims and scope Submit manuscript

Abstract

The inability to control or inhibit emotional distractors characterizes a range of psychiatric disorders. Despite the use of a variety of task paradigms to determine the mechanisms underlying the control of emotional interference, a precise characterization of the brain regions and networks that support emotional interference processing remains elusive. Here, we performed coordinate-based and functional connectivity meta-analyses to determine the brain networks underlying emotional interference. Paradigms addressing interference processing in the cognitive or emotional domain were included in the meta-analyses, particularly the Stroop, Flanker, and Simon tasks. Our results revealed a consistent involvement of the bilateral dorsal anterior cingulate cortex, anterior insula, left inferior frontal gyrus, and superior parietal lobule during emotional interference. Follow-up conjunction analyses identified correspondence in these regions between emotional and cognitive interference processing. Finally, the patterns of functional connectivity of these regions were examined using resting-state functional connectivity and meta-analytic connectivity modeling. These regions were strongly connected as a distributed system, primarily mapping onto fronto-parietal control, ventral attention, and dorsal attention networks. Together, the present findings indicate that a domain-general neural system is engaged across multiple types of interference processing and that regulating emotional and cognitive interference depends on interactions between large-scale distributed brain networks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aron AR, Robbins TW, Poldrack RA (2004) Inhibition and the right inferior frontal cortex. Trends Cogn Sci 8(4):170–177

    PubMed  Google Scholar 

  • Ashburner J, Friston KJ (2005) Unified segmentation. Neuroimage 26(3):839–851

    PubMed  Google Scholar 

  • Aupperle RL, Melrose AJ, Francisco A, Paulus MP, Stein MB (2015) Neural substrates of approach-avoidance conflict decision-making. Hum Brain Mapp 36(2):449–462

    PubMed  Google Scholar 

  • Bang L, Rø Ø, Endestad T (2016) Amygdala alterations during an emotional conflict task in women recovered from anorexia nervosa. Psychiatry Res Neuroimaging 248:126–133

    PubMed  Google Scholar 

  • Barrett LF, Satpute AB (2013) Large-scale brain networks in affective and social neuroscience: towards an integrative functional architecture of the brain. Curr Opin Neurobiol 23(3):361–372

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bartra O, McGuire JT, Kable JW (2013) The valuation system: a coordinate-based meta-analysis of BOLD fMRI experiments examining neural correlates of subjective value. Neuroimage 76:412–427

    PubMed  Google Scholar 

  • Beall PM, Herbert AM (2008) The face wins: stronger automatic processing of affect in facial expressions than words in a modified Stroop task. Cogn Emot 22(8):1613–1642

    Google Scholar 

  • Behrmann M, Geng JJ, Shomstein S (2004) Parietal cortex and attention. Curr Opin Neurobiol 14(2):212–217

    CAS  PubMed  Google Scholar 

  • Bishop S, Duncan J, Lawrence AD (2004) Prefrontal cortical function and anxiety: controlling attention to threat-related stimuli. Nat Neurosci 7(2):184–188. https://doi.org/10.1038/Nn1173

    Article  CAS  PubMed  Google Scholar 

  • Botvinick MM (2007) Conflict monitoring and decision making: reconciling two perspectives on anterior cingulate function. Cogn Affect Behav Neurosci 7(4):356–366

    PubMed  Google Scholar 

  • Braem S, Abrahamse EL, Duthoo W, Notebaert W (2014) What determines the specificity of conflict adaptation? A review, critical analysis, and proposed synthesis. Front Psychol 5:1134

    PubMed  PubMed Central  Google Scholar 

  • Braem S, King JA, Korb FM, Krebs RM, Notebaert W, Egner T (2017) The role of anterior cingulate cortex in the affective evaluation of conflict. J Cogn Neurosci 29(1):137–149

    PubMed  Google Scholar 

  • Buhle JT, Silvers JA, Wager TD, Lopez R, Onyemekwu C, Kober H, Weber J, Ochsner KN (2014) Cognitive reappraisal of emotion: a meta-analysis of human neuroimaging studies. Cereb Cortex 24(11):2981–2990

    PubMed  Google Scholar 

  • Bunge SA, Hazeltine E, Scanlon MD, Rosen AC, Gabrieli JD (2002) Dissociable contributions of prefrontal and parietal cortices to response selection. Neuroimage 17(3):1562–1571

    PubMed  Google Scholar 

  • Chechko N, Wehrle R, Erhardt A, Holsboer F, Czisch M, Sämann PG (2009) Unstable prefrontal response to emotional conflict and activation of lower limbic structures and brainstem in remitted panic disorder. PLoS One 4(5):e5537

    PubMed  PubMed Central  Google Scholar 

  • Chechko N, Kellermann T, Zvyagintsev M, Augustin M, Schneider F, Habel U (2012) Brain circuitries involved in semantic interference by demands of emotional and non-emotional distractors. PLoS One 7(5):e38155. https://doi.org/10.1371/journal.pone.0038155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chechko N, Augustin M, Zvyagintsev M, Schneider F, Habel U, Kellermann T (2013) Brain circuitries involved in emotional interference task in major depression disorder. J Affect Disord 149(1):136–145

    PubMed  Google Scholar 

  • Chechko N, Kellermann T, Schneider F, Habel U (2014) Conflict adaptation in emotional task underlies the amplification of target. Emotion 14(2):321

    PubMed  Google Scholar 

  • Chen T, Kendrick KM, Feng C, Yang S, Wang X, Yang X, Lei D, Wu M, Huang X, Gong Q (2014) Opposite effect of conflict context modulation on neural mechanisms of cognitive and affective control. Psychophysiology 51(5):478–488

    PubMed  Google Scholar 

  • Chen T, Kendrick KM, Feng C, Sun S, Yang X, Wang X, Luo W, Yang S, Huang X, Valdés-Sosa PA (2016) Dissociable early attentional control mechanisms underlying cognitive and affective conflicts. Sci Rep 6:37633

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chiew KS, Braver TS (2011) Neural circuitry of emotional and cognitive conflict revealed through facial expressions. PLoS One 6(3):e17635

    CAS  PubMed  PubMed Central  Google Scholar 

  • Choi EY, Yeo BT, Buckner RL (2012) The organization of the human striatum estimated by intrinsic functional connectivity. J Neurophysiol 108(8):2242–2263

    PubMed  PubMed Central  Google Scholar 

  • Cieslik EC, Zilles K, Kurth F, Eickhoff SB (2010) Dissociating bottom-up and top-down processes in a manual stimulus-response compatibility task. J Neurophysiol 104(3):1472–1483

    PubMed  PubMed Central  Google Scholar 

  • Cieslik EC, Mueller VI, Eickhoff CR, Langner R, Eickhoff SB (2015) Three key regions for supervisory attentional control: evidence from neuroimaging meta-analyses. Neurosci Biobehav Rev 48:22–34. https://doi.org/10.1016/j.neubiorev.2014.11.003

    Article  PubMed  Google Scholar 

  • Cole MW, Schneider W (2007) The cognitive control network: integrated cortical regions with dissociable functions. Neuroimage 37(1):343–360

    PubMed  Google Scholar 

  • Cole MW, Repovš G, Anticevic A (2014) The frontoparietal control system: a central role in mental health. Neuroscientist 20(6):652–664

    PubMed  PubMed Central  Google Scholar 

  • Collignon O, Girard S, Gosselin F, Roy S, Saint-Amour D, Lassonde M, Lepore F (2008) Audio-visual integration of emotion expression. Brain Res 1242:126–135

    CAS  PubMed  Google Scholar 

  • Comte M, Schön D, Coull JT, Reynaud E, Khalfa S, Belzeaux R, Ibrahim EC, Guedj E, Blin O, Weinberger DR (2014) Dissociating bottom-up and top-down mechanisms in the cortico-limbic system during emotion processing. Cereb Cortex 26(1):144–155

    PubMed  Google Scholar 

  • Corbetta M, Kincade JM, Ollinger JM, McAvoy MP, Shulman GL (2000) Voluntary orienting is dissociated from target detection in human posterior parietal cortex. Nat Neurosci 3(3):292–297

    CAS  PubMed  Google Scholar 

  • Cromheeke S, Mueller SC (2014) Probing emotional influences on cognitive control: an ALE meta-analysis of cognition emotion interactions. Brain Struct Funct 219(3):995–1008

    PubMed  Google Scholar 

  • De Gelder B, Vroomen J (2000) The perception of emotions by ear and by eye. Cogn Emot 14(3):289–311

    Google Scholar 

  • Delaveau P, Jabourian M, Lemogne C, Guionnet S, Bergouignan L, Fossati P (2011) Brain effects of antidepressants in major depression: a meta-analysis of emotional processing studies. J Affect Disord 130(1):66–74

    CAS  PubMed  Google Scholar 

  • Derrfuss J, Brass M, Neumann J, von Cramon DY (2005) Involvement of the inferior frontal junction in cognitive control: meta-analyses of switching and Stroop studies. Hum Brain Mapp 25(1):22–34

    PubMed  PubMed Central  Google Scholar 

  • Dolan RJ, Morris JS, de Gelder B (2001) Crossmodal binding of fear in voice and face. Proc Natl Acad Sci 98(17):10006–10010

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dosenbach NU, Visscher KM, Palmer ED, Miezin FM, Wenger KK, Kang HC, Burgund ED, Grimes AL, Schlaggar BL, Petersen SE (2006) A core system for the implementation of task sets. Neuron 50(5):799–812

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dosenbach NU, Fair DA, Miezin FM, Cohen AL, Wenger KK, Dosenbach RA, Fox MD, Snyder AZ, Vincent JL, Raichle ME (2007) Distinct brain networks for adaptive and stable task control in humans. Proc Natl Acad Sci 104(26):11073–11078

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dosenbach NU, Fair DA, Cohen AL, Schlaggar BL, Petersen SE (2008) A dual-networks architecture of top-down control. Trends Cogn Sci 12(3):99–105

    PubMed  PubMed Central  Google Scholar 

  • Dreisbach G, Fischer R (2012) Conflicts as aversive signals. Brain Cogn 78(2):94–98

    PubMed  Google Scholar 

  • Dreisbach G, Fischer R (2015) Conflicts as aversive signals for control adaptation. Curr Dir Psychol Sci 24(4):255–260

    Google Scholar 

  • Duncan J (2010) The multiple-demand (MD) system of the primate brain: mental programs for intelligent behaviour. Trends Cogn Sci 14(4):172–179

    PubMed  Google Scholar 

  • Duncan J (2013) The structure of cognition: attentional episodes in mind and brain. Neuron 80(1):35–50

    CAS  PubMed  PubMed Central  Google Scholar 

  • Duncan J, Owen AM (2000) Common regions of the human frontal lobe recruited by diverse cognitive demands. Trends Neurosci 23(10):475–483

    CAS  PubMed  Google Scholar 

  • Egner T (2008) Multiple conflict-driven control mechanisms in the human brain. Trends Cogn Sci 12(10):374–380

    PubMed  Google Scholar 

  • Egner T (2014) Creatures of habit (and control): a multi-level learning perspective on the modulation of congruency effects. Front Psychol 5:1247

    PubMed  PubMed Central  Google Scholar 

  • Egner T, Hirsch J (2005) Cognitive control mechanisms resolve conflict through cortical amplification of task-relevant information. Nat Neurosci 8(12):1784–1790

    CAS  PubMed  Google Scholar 

  • Egner T, Etkin A, Gale S, Hirsch J (2008) Dissociable neural systems resolve conflict from emotional versus nonemotional distracters. Cereb Cortex 18(6):1475–1484. https://doi.org/10.1093/cercor/bhm179

    Article  PubMed  Google Scholar 

  • Eickhoff SB, Laird AR, Grefkes C, Wang LE, Zilles K, Fox PT (2009) Coordinate-based activation likelihood estimation meta-analysis of neuroimaging data: a random-effects approach based on empirical estimates of spatial uncertainty. Hum Brain Mapp 30(9):2907–2926

    PubMed  PubMed Central  Google Scholar 

  • Eickhoff SB, Bzdok D, Laird AR, Roski C, Caspers S, Zilles K, Fox PT (2011) Co-activation patterns distinguish cortical modules, their connectivity and functional differentiation. Neuroimage 57(3):938–949

    PubMed  Google Scholar 

  • Eickhoff SB, Bzdok D, Laird AR, Kurth F, Fox PT (2012) Activation likelihood estimation meta-analysis revisited. Neuroimage 59(3):2349–2361

    PubMed  Google Scholar 

  • Eickhoff SB, Laird AR, Fox PM, Lancaster JL, Fox PT (2017) Implementation errors in the GingerALE Software: description and recommendations. Hum Brain Mapp 38(1):7–11

    PubMed  Google Scholar 

  • Eriksen B, Eriksen C (1974) Effects of noise letters upon the identification of a target letter in a nonsearch task. Atten Percept Psychophys 16(1):143–149. https://doi.org/10.3758/bf03203267

    Article  Google Scholar 

  • Etkin A, Schatzberg AF (2011) Common abnormalities and disorder-specific compensation during implicit regulation of emotional processing in generalized anxiety and major depressive disorders. Am J Psychiatry 168(9):968–978

    PubMed  Google Scholar 

  • Etkin A, Egner T, Peraza DM, Kandel ER, Hirsch J (2006) Resolving emotional conflict: a role for the rostral anterior cingulate cortex in modulating activity in the amygdala. Neuron 51(6):871–882

    CAS  PubMed  Google Scholar 

  • Etkin A, Prater KE, Hoeft F, Menon V, Schatzberg AF (2010) Failure of anterior cingulate activation and connectivity with the amygdala during implicit regulation of emotional processing in generalized anxiety disorder. Am J Psychiatry 167(5):545–554

    PubMed  PubMed Central  Google Scholar 

  • Etkin A, Egner T, Kalisch R (2011) Emotional processing in anterior cingulate and medial prefrontal cortex. Trends Cogn Sci 15(2):85–93

    PubMed  Google Scholar 

  • Etkin A, Büchel C, Gross JJ (2015) The neural bases of emotion regulation. Nat Rev Neurosci 16(11):693

    CAS  PubMed  Google Scholar 

  • Eugène F, Joormann J, Cooney RE, Atlas LY, Gotlib IH (2010) Neural correlates of inhibitory deficits in depression. Psychiatry Res Neuroimaging 181(1):30–35

    Google Scholar 

  • Fan Y, Duncan NW, de Greck M, Northoff G (2011) Is there a core neural network in empathy? An fMRI based quantitative meta-analysis. Neurosci Biobehav Rev 35(3):903–911

    PubMed  Google Scholar 

  • Feng C, Luo YJ, Krueger F (2015) Neural signatures of fairness-related normative decision making in the ultimatum game: a coordinate-based meta-analysis. Hum Brain Mapp 36(2):591–602

    CAS  PubMed  Google Scholar 

  • Feng C, Becker B, Huang W, Wu X, Eickhoff SB, Chen T (2018) Neural substrates of the emotion-word and emotional counting Stroop tasks in healthy and clinical populations: a meta-analysis of functional brain imaging studies. NeuroImage 173:258–274

    PubMed  Google Scholar 

  • Fleury V, Cousin E, Czernecki V, Schmitt E, Lhommée E, Poncet A, Fraix V, Troprès I, Pollak P, Krainik A (2014) Dopaminergic modulation of emotional conflict in Parkinson’s disease. Front Aging Neurosci 6:164

    PubMed  PubMed Central  Google Scholar 

  • Fonzo GA, Goodkind MS, Oathes DJ, Zaiko YV, Harvey M, Peng KK, Weiss ME, Thompson AL, Zack SE, Lindley SE (2017) PTSD psychotherapy outcome predicted by brain activation during emotional reactivity and regulation. Am J Psychiatry 174(12):1163–1174

    PubMed  PubMed Central  Google Scholar 

  • Fouragnan E, Retzler C, Philiastides MG (2018) Separate neural representations of prediction error valence and surprise: evidence from an fMRI meta-analysis. Hum Brain Mapp 39(7):2887–2906

    PubMed  PubMed Central  Google Scholar 

  • Froeliger B, Modlin LA, Kozink RV, Wang L, McClernon FJ (2012) Smoking abstinence and depressive symptoms modulate the executive control system during emotional information processing. Addict Biol 17(3):668–679

    PubMed  Google Scholar 

  • Frühholz S, Fehr T, Herrmann M (2009) Interference control during recognition of facial affect enhances the processing of expression specific properties—an event-related fMRI study. Brain Res 1269:143–157

    PubMed  Google Scholar 

  • Garrison J, Erdeniz B, Done J (2013) Prediction error in reinforcement learning: a meta-analysis of neuroimaging studies. Neurosci Biobehav Rev 37(7):1297–1310

    PubMed  Google Scholar 

  • Godinez DA, McRae K, Andrews-Hanna JR, Smolker H, Banich MT (2016) Differences in frontal and limbic brain activation in a small sample of monozygotic twin pairs discordant for severe stressful life events. Neurobiol Stress 5:26–36

    PubMed  PubMed Central  Google Scholar 

  • Goodkind M, Eickhoff SB, Oathes DJ, Jiang Y, Chang A, Jones-Hagata LB, Ortega BN, Zaiko YV, Roach EL, Korgaonkar MS (2015) Identification of a common neurobiological substrate for mental illness. JAMA Psychiatry 72(4):305–315

    PubMed  PubMed Central  Google Scholar 

  • Griffanti L, Salimi-Khorshidi G, Beckmann CF, Auerbach EJ, Douaud G, Sexton CE, Zsoldos E, Ebmeier KP, Filippini N, Mackay CE (2014) ICA-based artefact removal and accelerated fMRI acquisition for improved resting state network imaging. Neuroimage 95:232–247

    PubMed  Google Scholar 

  • Haas BW, Omura K, Constable RT, Canli T (2006) Interference produced by emotional conflict associated with anterior cingulate activation. Cogn Affect Behav Neurosci 6(2):152–156

    PubMed  Google Scholar 

  • Haas BW, Omura K, Constable RT, Canli T (2007) Emotional conflict and neuroticism: personality-dependent activation in the amygdala and subgenual anterior cingulate. Behav Neurosci 121(2):249

    PubMed  Google Scholar 

  • Hart SJ, Green SR, Casp M, Belger A (2010) Emotional priming effects during Stroop task performance. Neuroimage 49(3):2662–2670

    PubMed  Google Scholar 

  • Haxby JV, Gobbini MI, Furey ML, Ishai A, Schouten JL, Pietrini P (2001) Distributed and overlapping representations of faces and objects in ventral temporal cortex. Science 293(5539):2425–2430

    CAS  PubMed  Google Scholar 

  • Houwer JD, Hermans D (1994) Differences in the affective processing of words and pictures. Cogn Emot 8(1):1–20

    Google Scholar 

  • Huang J, Wang Y, Jin Z, Di X, Yang T, Gur RC, Gur RE, Shum DH, Cheung EF, Chan RC (2013) Happy facial expression processing with different social interaction cues: an fMRI study of individuals with schizotypal personality traits. Prog Neuropsychopharmacol Biol Psychiatry 44:108–117

    PubMed  Google Scholar 

  • Jarcho JM, Fox NA, Pine DS, Etkin A, Leibenluft E, Shechner T, Ernst M (2013) The neural correlates of emotion-based cognitive control in adults with early childhood behavioral inhibition. Biol Psychol 92(2):306–314

    PubMed  Google Scholar 

  • Kalisch R (2009) The functional neuroanatomy of reappraisal: time matters. Neurosci Biobehav Rev 33(8):1215–1226

    PubMed  Google Scholar 

  • Kanske P, Kotz SA (2010) Emotion triggers executive attention: anterior cingulate cortex and amygdala responses to emotional words in a conflict task. Hum Brain Mapp 32(2):198–208. https://doi.org/10.1002/hbm.21012

    Article  PubMed  PubMed Central  Google Scholar 

  • Kim H (2014) Involvement of the dorsal and ventral attention networks in oddball stimulus processing: a meta-analysis. Hum Brain Mapp 35(5):2265–2284

    PubMed  Google Scholar 

  • Klasen M, Kenworthy CA, Mathiak KA, Kircher TT, Mathiak K (2011) Supramodal representation of emotions. J Neurosci 31(38):13635–13643

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kober H, Mende-Siedlecki P, Kross EF, Weber J, Mischel W, Hart CL, Ochsner KN (2010) Prefrontal–striatal pathway underlies cognitive regulation of craving. Proc Natl Acad Sci 107(33):14811–14816

    CAS  PubMed  PubMed Central  Google Scholar 

  • Koenigs M, Barbey AK, Postle BR, Grafman J (2009) Superior parietal cortex is critical for the manipulation of information in working memory. J Neurosci 29(47):14980–14986

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kohn N, Eickhoff SB, Scheller M, Laird AR, Fox PT, Habel U (2014) Neural network of cognitive emotion regulation—an ALE meta-analysis and MACM analysis. Neuroimage 87:345–355

    CAS  PubMed  Google Scholar 

  • Krug M, Carter C (2010) Adding fear to conflict: a general purpose cognitive control network is modulated by trait anxiety. Cogn Affect Behav Neurosci 10(3):357–371. https://doi.org/10.3758/cabn.10.3.357

    Article  PubMed  Google Scholar 

  • Krug MK, Carter CS (2012) Proactive and reactive control during emotional interference and its relationship to trait anxiety. Brain Res 1481:13–36

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kühn S, Müller BC, van der Leij A, Dijksterhuis A, Brass M, van Baaren RB (2010) Neural correlates of emotional synchrony. Soc Cogn Affect Neurosci 6(3):368–374

    PubMed  PubMed Central  Google Scholar 

  • Laird AR, Fox PM, Price CJ, Glahn DC, Uecker AM, Lancaster JL, Turkeltaub PE, Kochunov P, Fox PT (2005a) ALE meta-analysis: controlling the false discovery rate and performing statistical contrasts. Hum Brain Mapp 25(1):155–164

    PubMed  PubMed Central  Google Scholar 

  • Laird AR, McMillan KM, Lancaster JL, Kochunov P, Turkeltaub PE, Pardo JV, Fox PT (2005b) A comparison of label-based review and ALE meta-analysis in the Stroop task. Hum Brain Mapp 25(1):6–21

    PubMed  PubMed Central  Google Scholar 

  • Laird AR, Eickhoff SB, Kurth F, Fox PM, Uecker AM, Turner JA, Robinson JL, Lancaster JL, Fox PT (2009a) ALE meta-analysis workflows via the brainmap database: progress towards a probabilistic functional brain atlas. Front Neuroinform 3:23

    PubMed  PubMed Central  Google Scholar 

  • Laird AR, Eickhoff SB, Li K, Robin DA, Glahn DC, Fox PT (2009b) Investigating the functional heterogeneity of the default mode network using coordinate-based meta-analytic modeling. J Neurosci 29(46):14496–14505

    CAS  PubMed  PubMed Central  Google Scholar 

  • Langner R, Rottschy C, Laird AR, Fox PT, Eickhoff SB (2014) Meta-analytic connectivity modeling revisited: controlling for activation base rates. NeuroImage 99:559–570

    PubMed  Google Scholar 

  • Langner R, Leiberg S, Hoffstaedter F, Eickhoff SB (2018) Towards a human self-regulation system: common and distinct neural signatures of emotional and behavioural control. Neurosci Biobehav Rev 90:400–410

    PubMed  PubMed Central  Google Scholar 

  • Lee T-W, Dolan RJ, Critchley HD (2007) Controlling emotional expression: behavioral and neural correlates of nonimitative emotional responses. Cereb Cortex 18(1):104–113

    PubMed  Google Scholar 

  • Lee H, Heller AS, Van Reekum CM, Nelson B, Davidson RJ (2012) Amygdala–prefrontal coupling underlies individual differences in emotion regulation. Neuroimage 62(3):1575–1581

    PubMed  Google Scholar 

  • Levy BJ, Wagner AD (2011) Cognitive control and right ventrolateral prefrontal cortex: reflexive reorienting, motor inhibition, and action updating. Ann N Y Acad Sci 1224(1):40–62

    PubMed  PubMed Central  Google Scholar 

  • Liu T, Slotnick SD, Serences JT, Yantis S (2003) Cortical mechanisms of feature-based attentional control. Cereb Cortex 13(12):1334–1343

    PubMed  Google Scholar 

  • Lückmann HC, Jacobs HI, Sack AT (2014) The cross-functional role of frontoparietal regions in cognition: internal attention as the overarching mechanism. Prog Neurobiol 116:66–86

    PubMed  Google Scholar 

  • Luo Y, Eickhoff SB, Hétu S, Feng C (2018) Social comparison in the brain: a coordinate-based meta-analysis of functional brain imaging studies on the downward and upward comparisons. Hum Brain Mapp 39(1):440–458

    PubMed  Google Scholar 

  • MacDonald AW, Cohen JD, Stenger VA, Carter CS (2000) Dissociating the role of the dorsolateral prefrontal and anterior cingulate cortex in cognitive control. Science 288(5472):1835–1838

    CAS  PubMed  Google Scholar 

  • MacLeod CM (1991) Half a century of research on the Stroop effect: an integrative review. Psychol Bull 109(2):163

    CAS  PubMed  Google Scholar 

  • Maier ME, Di Pellegrino G (2012) Impaired conflict adaptation in an emotional task context following rostral anterior cingulate cortex lesions in humans. J Cogn Neurosci 24(10):2070–2079

    PubMed  Google Scholar 

  • McTeague LM, Huemer J, Carreon DM, Jiang Y, Eickhoff SB, Etkin A (2017) Identification of common neural circuit disruptions in cognitive control across psychiatric disorders. Am J Psychiatry 174(7):676–685

    PubMed  PubMed Central  Google Scholar 

  • Menon V (2011) Large-scale brain networks and psychopathology: a unifying triple network model. Trends Cogn Sci 15(10):483–506

    PubMed  Google Scholar 

  • Menon V, Uddin LQ (2010) Saliency, switching, attention and control: a network model of insula function. Brain Struct Funct 214(5–6):655–667

    PubMed  PubMed Central  Google Scholar 

  • Mesulam M (1990) Large-scale neurocognitive networks and distributed processing for attention, language, and memory. Ann Neurol 28(5):597–613

    CAS  PubMed  Google Scholar 

  • Miller EK, Cohen JD (2001) An integrative theory of prefrontal cortex function. Annu Rev Neurosci 24(1):167–202

    CAS  PubMed  Google Scholar 

  • Mitchell RL (2006a) Does incongruence of lexicosemantic and prosodic information cause discernible cognitive conflict? Cogn Affect Behav Neurosci 6(4):298–305

    PubMed  Google Scholar 

  • Mitchell RL (2006b) How does the brain mediate interpretation of incongruent auditory emotions? The neural response to prosody in the presence of conflicting lexico-semantic cues. Eur J Neurosci 24(12):3611–3618

    PubMed  Google Scholar 

  • Mitchell RL (2013) Further characterisation of the functional neuroanatomy associated with prosodic emotion decoding. Cortex J Devot Study Nerv Syst Behav 49(6):1722–1732

    Google Scholar 

  • Mitchell RL, Elliott R, Barry M, Cruttenden A, Woodruff PW (2003) The neural response to emotional prosody, as revealed by functional magnetic resonance imaging. Neuropsychologia 41(10):1410–1421

    PubMed  Google Scholar 

  • Müller VI, Habel U, Derntl B, Schneider F, Zilles K, Turetsky BI, Eickhoff SB (2011) Incongruence effects in crossmodal emotional integration. Neuroimage 54(3):2257–2266

    PubMed  Google Scholar 

  • Nee DE, Wager TD, Jonides J (2007) Interference resolution: insights from a meta-analysis of neuroimaging tasks. Cogn Affect Behav Neurosci 7(1):1–17

    PubMed  Google Scholar 

  • Nooner KB, Colcombe SJ, Tobe RH, Mennes M, Benedict MM, Moreno AL, Panek LJ, Brown S, Zavitz ST, Li Q (2012) The NKI-Rockland sample: a model for accelerating the pace of discovery science in psychiatry. Front Neurosci 6:152

    PubMed  PubMed Central  Google Scholar 

  • Norman KA, Polyn SM, Detre GJ, Haxby JV (2006) Beyond mind-reading: multi-voxel pattern analysis of fMRI data. Trends Cogn Sci 10(9):424–430

    PubMed  Google Scholar 

  • Ochsner KN, Gross JJ (2005) The cognitive control of emotion. Trends Cogn Sci 9(5):242–249

    PubMed  Google Scholar 

  • Ochsner KN, Bunge SA, Gross JJ, Gabrieli JD (2002) Rethinking feelings: an FMRI study of the cognitive regulation of emotion. J Cogn Neurosci 14(8):1215–1229

    PubMed  Google Scholar 

  • Ochsner KN, Hughes B, Robertson ER, Cooper JC, Gabrieli JD (2009) Neural systems supporting the control of affective and cognitive conflicts. J Cogn Neurosci 21(9):1842–1855. https://doi.org/10.1162/jocn.2009.21129

    Article  PubMed  PubMed Central  Google Scholar 

  • Ochsner KN, Silvers JA, Buhle JT (2012) Functional imaging studies of emotion regulation: a synthetic review and evolving model of the cognitive control of emotion. Ann N Y Acad Sci 1251(1): E1–E24

    PubMed  PubMed Central  Google Scholar 

  • Offringa R, Brohawn KH, Staples LK, Dubois SJ, Hughes KC, Pfaff DL, VanElzakker MB, Davis FC, Shin LM (2013) Diminished rostral anterior cingulate cortex activation during trauma-unrelated emotional interference in PTSD. Biol Mood Anxiety Disord 3(1):10

    PubMed  PubMed Central  Google Scholar 

  • Ovaysikia S, Chan JL, Tahir K, DeSouza JF (2011) Word wins over face: emotional Stroop effect activates the frontal cortical network. Front Hum Neurosci 4:234

    PubMed  PubMed Central  Google Scholar 

  • Pan F, Shi L, Lu Q, Wu X, Xue S, Li Q (2016) The negative priming effect in cognitive conflict processing. Neurosci Lett 628:35–39

    CAS  PubMed  Google Scholar 

  • Park IH, Park H-J, Chun J-W, Kim EY, Kim J-J (2008) Dysfunctional modulation of emotional interference in the medial prefrontal cortex in patients with schizophrenia. Neurosci Lett 440(2):119–124

    CAS  PubMed  Google Scholar 

  • Peelen MV, Downing PE (2007) Using multi-voxel pattern analysis of fMRI data to interpret overlapping functional activations. Trends Cogn Sci 11(1):4–5

    PubMed  Google Scholar 

  • Pessoa L (2008) On the relationship between emotion and cognition. Nat Rev Neurosci 9(2):148–158

    CAS  PubMed  Google Scholar 

  • Rey G, Desseilles M, Favre S, Dayer A, Piguet C, Aubry J-M, Vuilleumier P (2014) Modulation of brain response to emotional conflict as a function of current mood in bipolar disorder: preliminary findings from a follow-up state-based fMRI study. Psychiatry Res Neuroimaging 223(2):84–93

    Google Scholar 

  • Ridderinkhof KR, Van Den Wildenberg WP, Segalowitz SJ, Carter CS (2004) Neurocognitive mechanisms of cognitive control: the role of prefrontal cortex in action selection, response inhibition, performance monitoring, and reward-based learning. Brain Cogn 56(2):129–140

    PubMed  Google Scholar 

  • Rota G, Veit R, Nardo D, Weiskopf N, Birbaumer N, Dogil G (2008) Processing of inconsistent emotional information: an fMRI study. Exp Brain Res 186(3):401–407

    PubMed  Google Scholar 

  • Salimi-Khorshidi G, Douaud G, Beckmann CF, Glasser MF, Griffanti L, Smith SM (2014) Automatic denoising of functional MRI data: combining independent component analysis and hierarchical fusion of classifiers. Neuroimage 90:449–468

    PubMed  Google Scholar 

  • Samanez-Larkin GR, Robertson ER, Mikels JA, Carstensen LL, Gotlib IH (2009) Selective attention to emotion in the aging brain. Psychol Aging 24(3):519

    PubMed  PubMed Central  Google Scholar 

  • Satterthwaite TD, Elliott MA, Gerraty RT, Ruparel K, Loughead J, Calkins ME, Eickhoff SB, Hakonarson H, Gur RC, Gur RE (2013) An improved framework for confound regression and filtering for control of motion artifact in the preprocessing of resting-state functional connectivity data. Neuroimage 64:240–256

    PubMed  Google Scholar 

  • Schirmer A, Zysset S, Kotz SA, von Cramon DY (2004) Gender differences in the activation of inferior frontal cortex during emotional speech perception. NeuroImage 21(3):1114–1123

    PubMed  Google Scholar 

  • Schouppe N, Braem S, De Houwer J, Silvetti M, Verguts T, Ridderinkhof KR, Notebaert W (2015) No pain, no gain: the affective valence of congruency conditions changes following a successful response. Cogn Affect Behav Neurosci 15(1):251–261

    PubMed  Google Scholar 

  • Seeley WW, Menon V, Schatzberg AF, Keller J, Glover GH, Kenna H, Reiss AL, Greicius MD (2007) Dissociable intrinsic connectivity networks for salience processing and executive control. J Neurosci 27(9):2349–2356

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sha Z, Xia M, Lin Q, Cao M, Tang Y, Xu K, Song H, Wang Z, Wang F, Fox PT (2017) Meta-connectomic analysis reveals commonly disrupted functional architectures in network modules and connectors across brain disorders. Cereb Cortex. https://doi.org/10.1093/cercor/bhx273

    Article  Google Scholar 

  • Silvers JA, Insel C, Powers A, Franz P, Helion C, Martin RE, Weber J, Mischel W, Casey BJ, Ochsner KN (2017) vlPFC–vmPFC–Amygdala interactions underlie age-related differences in cognitive regulation of emotion. Cereb Cortex 27(7):3502–3514. https://doi.org/10.1093/cercor/bhw073

    Article  PubMed  Google Scholar 

  • Simon JR, Craft JL, Small AM (1971) Reactions toward the apparent source of an auditory stimulus. J Exp Psychol 89(1):203–206. https://doi.org/10.1037/h0031164

    Article  CAS  PubMed  Google Scholar 

  • Song S, Zilverstand A, Song H, Uquillas FdO, Wang Y, Xie C, Cheng L, Zou Z (2017) The influence of emotional interference on cognitive control: a meta-analysis of neuroimaging studies using the emotional Stroop task. Sci Rep 7(1):2088

    PubMed  PubMed Central  Google Scholar 

  • Spielberg JM, Miller GA, Heller W, Banich MT (2015) Flexible brain network reconfiguration supporting inhibitory control. Proc Natl Acad Sci 112(32):10020–10025

    CAS  PubMed  PubMed Central  Google Scholar 

  • Stenberg G, Wiking S, Dahl M (1998) Judging words at face value: interference in a word processing task reveals automatic processing of affective facial expressions. Cogn Emot 12(6):755–782

    Google Scholar 

  • Stroop JR (1935) Studies of interference in serial verbal reactions. J Exp Psychol 18(6):643

    Google Scholar 

  • Swick D, Ashley V, Turken U (2008) Left inferior frontal gyrus is critical for response inhibition. BMC Neurosci 9(1):102

    PubMed  PubMed Central  Google Scholar 

  • Thompson-Schill SL, Swick D, Farah MJ, D’Esposito M, Kan IP, Knight RT (1998) Verb generation in patients with focal frontal lesions: a neuropsychological test of neuroimaging findings. Proc Natl Acad Sci 95(26):15855–15860

    CAS  PubMed  PubMed Central  Google Scholar 

  • Torres-Quesada M, Korb FM, Funes MJ, Lupianez J, Egner T (2014) Comparing neural substrates of emotional vs. non-emotional conflict modulation by global control context. Front Hum Neurosci 8:66. https://doi.org/10.3389/fnhum.2014.00066

    Article  PubMed  PubMed Central  Google Scholar 

  • Turkeltaub PE, Eden GF, Jones KM, Zeffiro TA (2002) Meta-analysis of the functional neuroanatomy of single-word reading: method and validation. Neuroimage 16(3):765–780

    PubMed  Google Scholar 

  • Turkeltaub PE, Eickhoff SB, Laird AR, Fox M, Wiener M, Fox P (2012) Minimizing within-experiment and within-group effects in activation likelihood estimation meta-analyses. Hum Brain Mapp 33(1):1–13

    PubMed  Google Scholar 

  • Turner JA, Laird AR (2012) The cognitive paradigm ontology: design and application. Neuroinform 10(1):57–66

    Google Scholar 

  • Vanderhasselt M-A, Baeken C, Van Schuerbeek P, Luypaert R, De Mey J, De Raedt R (2013) How brooding minds inhibit negative material: an event-related fMRI study. Brain Cogn 81(3):352–359

    PubMed  Google Scholar 

  • Vartanian O, Skov M (2014) Neural correlates of viewing paintings: evidence from a quantitative meta-analysis of functional magnetic resonance imaging data. Brain Cogn 87:52–56

    PubMed  Google Scholar 

  • Vincent JL, Kahn I, Snyder AZ, Raichle ME, Buckner RL (2008) Evidence for a frontoparietal control system revealed by intrinsic functional connectivity. J Neurophysiol 100(6):3328–3342

    PubMed  PubMed Central  Google Scholar 

  • Vrticka P, Lordier L, Bediou B, Sander D (2014) Human amygdala response to dynamic facial expressions of positive and negative surprise. Emotion 14(1):161–169

    PubMed  Google Scholar 

  • Wager TD, Lindquist M, Kaplan L (2007) Meta-analysis of functional neuroimaging data: current and future directions. Soc Cogn Affect Neurosci 2(2):150–158

    PubMed  PubMed Central  Google Scholar 

  • Wager TD, Davidson ML, Hughes BL, Lindquist MA, Ochsner KN (2008) Prefrontal-subcortical pathways mediating successful emotion regulation. Neuron 59(6):1037–1050

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang L, LaBar KS, Smoski M, Rosenthal MZ, Dolcos F, Lynch TR, Krishnan RR, McCarthy G (2008) Prefrontal mechanisms for executive control over emotional distraction are altered in major depression. Psychiatry Res Neuroimaging 163(2):143–155

    Google Scholar 

  • Watanabe T, Yahata N, Kawakubo Y, Inoue H, Takano Y, Iwashiro N, Natsubori T, Takao H, Sasaki H, Gonoi W (2013) Network structure underlying resolution of conflicting non-verbal and verbal social information. Soc Cogn Affect Neurosci 9(6):767–775

    PubMed  PubMed Central  Google Scholar 

  • Watson R, Latinus M, Noguchi T, Garrod O, Crabbe F, Belin P (2013) Dissociating task difficulty from incongruence in face-voice emotion integration. Front Hum Neurosci 7:744

    PubMed  PubMed Central  Google Scholar 

  • Whitney C, Kirk M, O’sullivan J, Lambon Ralph MA, Jefferies E (2010) The neural organization of semantic control: TMS evidence for a distributed network in left inferior frontal and posterior middle temporal gyrus. Cereb Cortex 21(5):1066–1075

    PubMed  PubMed Central  Google Scholar 

  • Wittfoth M, Schröder C, Schardt DM, Dengler R, Heinze H-J, Kotz SA (2010) On emotional conflict: interference resolution of happy and angry prosody reveals valence-specific effects. Cereb Cortex 20(2):383–392. https://doi.org/10.1093/cercor/bhp106

    Article  PubMed  Google Scholar 

  • Wu H, Luo Y, Feng C (2016) Neural signatures of social conformity: a coordinate-based activation likelihood estimation meta-analysis of functional brain imaging studies. Neurosci Biobehav Rev 71:101–111

    PubMed  Google Scholar 

  • Xu M, Xu G, Yang Y (2016) Neural systems underlying emotional and non-emotional interference processing: an ALE meta-analysis of functional neuroimaging studies. Front Behav Neurosci 10:220

    PubMed  PubMed Central  Google Scholar 

  • Xue S, Wang X, Chang J, Liu J, Qiu J (2016) Amplitude of low-frequency oscillations associated with emotional conflict control. Exp Brain Res 234(9):2561–2566

    PubMed  Google Scholar 

  • Yantis S, Serences JT (2003) Cortical mechanisms of space-based and object-based attentional control. Curr Opin Neurobiol 13(2):187–193

    CAS  PubMed  Google Scholar 

  • Yantis S, Schwarzbach J, Serences JT, Carlson RL, Steinmetz MA, Pekar JJ, Courtney SM (2002) Transient neural activity in human parietal cortex during spatial attention shifts. Nat Neurosci 5(10):995–1002

    CAS  PubMed  Google Scholar 

  • Yeo BT, Krienen FM, Sepulcre J, Sabuncu MR, Lashkari D, Hollinshead M, Roffman JL, Smoller JW, Zöllei L, Polimeni JR (2011) The organization of the human cerebral cortex estimated by intrinsic functional connectivity. J Neurophysiol 106(3):1125–1165

    PubMed  Google Scholar 

  • Zaki J, Hennigan K, Weber J, Ochsner KN (2010) Social cognitive conflict resolution: contributions of domain-general and domain-specific neural systems. J Neurosci 30(25):8481–8488

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang R, Geng X, Lee TM (2017) Large-scale functional neural network correlates of response inhibition: an fMRI meta-analysis. Brain Struct Funct 222(9):1–18

    Google Scholar 

Download references

Funding

This work was supported by the National Postdoctoral Program for Innovative Talents under Grant agreement no. BX201600019 (to C.F.), the China Postdoctoral Science Foundation under Grant agreement nos. 2017M610055 (to C.F.) and 2013M530401 (to T.C.), the National Natural Science Foundation of China under Grant agreement nos. 81401398 (to T.C.), 91632117 (to B.B.), and 31500920 (to C.F.), and the National Institute of Mental Health (R01-MH074457, to E.S.), the Helmholtz Portfolio Theme “Supercomputing and Modeling for the Human Brain” and the European Union’s Horizon 2020 Research and Innovation Programme under Grant Agreement no. 7202070 (HBP SGA1, to E.S.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunliang Feng.

Ethics declarations

Conflict of interest

The authors are unaware of any conflicts of interest, financial or otherwise.

Ethical approval

The study was approved by the Ethics Committee of Beijing Normal University.

Informed consent

Not applicable. This is a meta-analytic study.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 4121 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, T., Becker, B., Camilleri, J. et al. A domain-general brain network underlying emotional and cognitive interference processing: evidence from coordinate-based and functional connectivity meta-analyses. Brain Struct Funct 223, 3813–3840 (2018). https://doi.org/10.1007/s00429-018-1727-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-018-1727-9

Keywords

Navigation