Skip to main content
Log in

Seasonal reorganization of hypothalamic neurogenic niche in adult sheep

  • Original Article
  • Published:
Brain Structure and Function Aims and scope Submit manuscript

Abstract

Neurogenesis is the process by which new neurons are generated. This process, well established during development, persists in adulthood owing to the presence of neural stem cells (NSCs) localized in specific brain areas called neurogenic niches. Adult neurogenesis has recently been shown to occur in the hypothalamus, a structure involved in the neuroendocrine regulation of reproduction and metabolism, among others. In the adult sheep—a long-lived mammalian model—we have previously reported the existence of such a neurogenic niche located in the hypothalamic arcuate nucleus and the median eminence. In addition, in this seasonal species, the proliferation as well as neuroblasts production varies depending on the time of the year. In the present study, we provide a better characterization of the hypothalamic neurogenic niche by identifying the main components (NSCs, migrating cells, glial cells and blood vessels) using immunohistochemistry for validated markers. Then, we demonstrate the strong sensitivity of these various neurogenic niche components to the season, particularly in the arcuate nucleus. Further, using an electron microscopic approach, we reveal the cellular and cytoarchitectural reorganization of the arcuate nucleus niche following exposure to contrasting seasons. This study provides evidence that the arcuate nucleus and the median eminence contain two independent niches that react differently to the season. In addition, our results support the view that the cytoarchitectural organization of the sheep arcuate nucleus share comparable features with the structure of the subventricular zone in humans and non-human primates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Aarum J, Sandberg K, Haeberlei S, Persson M (2003) Migration and differentiation of neural precursor cells can be directed by microglia. Proc Natl Acad Sci USA 100(26):15983–15988

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Akmayev IG, Fidelina OV, Kabolova Z, Popov A, Schitkova T (1973) Morphological aspects of the hypothalamic-hypophyseal system. IV. Medial basal hypothalamus. An experimental morphological study. Z Zellforsch Mik Anat 137(4):493–512

    Article  CAS  Google Scholar 

  • Alonso G, Prieto M, Chauvet N (1999) Tangential migration of young neurons arising from the subventricular zone of adult rats is impaired by surgical lesions passing through their natural migratory pathway. J Comp Neurol 405(4):508–528

    Article  CAS  PubMed  Google Scholar 

  • Alvarez-Buylla A, Theelen M, Nottebohm F (1990) Proliferation “hot spots” in adult avian ventricular zone reveal radial cell division. Neuron 5(1):101–109

    Article  CAS  PubMed  Google Scholar 

  • Alvarez-Buylla A, Garcia-Verdugo JM, Tramontin AD (2001) A unified hypothesis on the lineage of neural stem cells. Nat Rev Neurosci 2(4):287–293

    Article  CAS  PubMed  Google Scholar 

  • Alvarez-Buylla A, Seri B, Doetsch F (2002) Identification of neural stem cells in the adult vertebrate brain. Brain Res Bull 57(6):751–758

    Article  PubMed  Google Scholar 

  • Andreu-Agullo C, Morante-Redolat JM, Delgado AC, Farinas I (2009) Vascular niche factor PEDF modulates Notch-dependent stemness in the adult subependymal zone. Nat Neurosci 12(12):1514–1523

    Article  CAS  PubMed  Google Scholar 

  • Barnea A, Pravosudov V (2011) Birds as a model to study adult neurogenesis: bridging evolutionary, comparative and neuroethological approches. Eur J Neurosci 34(6):884–907

    Article  PubMed  PubMed Central  Google Scholar 

  • Batailler M, Droguerre M, Baroncini M, Fontaine C, Prevot V, Migaud M (2014) DCX-expressing cells in the vicinity of the hypothalamic neurogenic niche: a comparative study between mouse, sheep, and human tissues. J Comp Neurol 522(8):1966–1985

    Article  PubMed  Google Scholar 

  • Batailler M, Derouet L, Butruille L, Migaud M (2016) Sensitivity to the photoperiod and potential migratory features of neuroblasts in the adult sheep hypothalamus. Brain Struct Funct 221(6):3301–3314

    Article  CAS  PubMed  Google Scholar 

  • Baumann N, Pham-Dinh D (2001) Biology of oligodendrocyte and myelin in the mammalian central nervous system. Physiol Rev 81(2):871–927

    Article  CAS  PubMed  Google Scholar 

  • Beltramo M, Dardente H, Cayla X, Caraty A (2014) Cellular mechanisms and integrative timing of neuroendocrine control of GnRH secretion by kisspeptin. Mol Cell Endocrinol 382(1):387–399

    Article  CAS  PubMed  Google Scholar 

  • Belvindrah R, Hankel S, Walker J, Patton BL, Müller U (2007) β1 integrins control the formation of cell chains in the adult rostral migratory stream. J Neurosci 27(10):2704–2717

    Article  CAS  PubMed  Google Scholar 

  • Bennett L, Yang M, Enikolopov G, Iacovitti L (2009) Circumventricular organs: a novel site of neural stem cells in the adult brain. Mol Cell Neurosci 41(3):337–347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bolborea M, Dale N (2013) Hypothalamic tanycytes: potential roles in the control of feeding and energy balance. Trends Neurosci 36(2):91–100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bolborea M, Laran-Chich MP, Rasri K, Hildebrandt H, Govitrapong P, Simonneaux V, Pévet P, Steinlechner S, Klosen P (2011) Melatonin controls photoperiodic changes in tanycyte vimentin and neural cell adhesion molecule expression in the Djungarian hamster (Phodopus sungorus). Endocrinology 152(10):3871–3883

    Article  CAS  PubMed  Google Scholar 

  • Bonfanti L (2006) PSA-NCAM in mammalian structural plasticity and neurogenesis. Prog Neurobiol 80(3):129–164

    Article  CAS  PubMed  Google Scholar 

  • Bonfanti L, Theodosis DT (1994) Expression of polysialylated neural cell adhesion molecule by proliferating cells in the subependymal layer of the adult rat, in its rostral extension and in the olfactory bulb. Neuroscience 62(1):291–305

    Article  CAS  PubMed  Google Scholar 

  • Bonfanti L, Olive S, Poulain DA, Theodosis DT (1992) Mapping of the distribution of polysialylated neural cell adhesion molecule throughout the central nervous system of the adult rat: an immunohistochemical study. Neuroscience 49(2):419–436

    Article  CAS  PubMed  Google Scholar 

  • Brus M, Meurisse M, Franceschini I, Keller M, Levy F (2010) Evidence for cell proliferation in the sheep brain and its down-regulation by parturition and interactions with the young. Horm Behav 58(5):737–746

    Article  CAS  PubMed  Google Scholar 

  • Brus M, Meurisse M, Gheusi G, Keller M, Lledo PM, Levy F (2013) Dynamics of olfactory and hippocampal neurogenesis in adult sheep. J Comp Neurol 521(1):169–188

    Article  CAS  PubMed  Google Scholar 

  • Cameron HA, Woolley CS, Mcewen BS, Gould E (1993) Differentiation of newly born neurons and glia in the dentate gyrus of the adult rat. Neuroscience 56(2):337–344

    Article  CAS  PubMed  Google Scholar 

  • Chalivoix S, Guillaume D, Cognié J, Thiéry JC, Malpaux B, Dufourny L (2013) Photoperiodic variations of the polysialylated form of neural cell adhesion molecule within the hypothalamus and related reproductive output in the ewe. Cell Tissue Res 352(2):387–399

    Article  CAS  PubMed  Google Scholar 

  • Chemineau P, Guillaume D, Migaud M, Thiéry J, Pellicer-Rubio M, Malpaux B (2008) Seasonality of reproduction in mammals: intimate regulatory mechanisms and practical implications. Reprod Domest Anim 43:40–47

    Article  PubMed  Google Scholar 

  • Codega P, Silva-Vargas V, Paul A, Maldonado-Soto AR, Deleo AM, Pastrana E, Doetsch F (2014) Prospective identification and purification of quiescent adult neural stem cells from their in vivo niche. Neuron 82(3):545–559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Degendorfer G, Chuang CY, Hammer A, Malle E, Davies MJ (2015) Peroxynitrous acid induces structural and functional modifications to basement membranes and its key component, laminin. Free Radic Biol Med 89:721–733

    Article  CAS  PubMed  Google Scholar 

  • Djogo T, Robins SC, Schneider S, Kryzskaya D, Liu X, Mingay A, Gillon CJ, Kim JH, Storch K-F, Boehm U, Bourque CW, Stroh T, Dimou L, Kokoeva MV (2016) Adult NG2-glia are required for median eminence-mediated leptin sensing and body weight control. Cell Metab 23(5):797–810

    Article  CAS  PubMed  Google Scholar 

  • Doetsch F (2003) The glial identity of neural stem cells. Nat Neurosci 6(11):1127–1134

    Article  CAS  PubMed  Google Scholar 

  • Doetsch F, Caille I, Lim DA, Garcia-Verdugo JM, Alvarez-Buylla A (1999a) Subventricular zone astrocytes are neural stem cells in the adult mammalian brain. Cell 97(6):703–716

    Article  CAS  PubMed  Google Scholar 

  • Doetsch F, García-Verdugo JM, Alvarez-Buylla A (1999b) Regeneration of a germinal layer in the adult mammalian brain. Proc Natl Acad Sci USA 96(20):11619–11624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Episkopou V (2005) SOX2 functions in adult neural stem cells. Trends Neurosci 28(5):219–221

    Article  CAS  PubMed  Google Scholar 

  • Eriksdotter-Nilsson M, Björklund H, Olson L (1986) Laminin immunohistochemistry: a simple method to visualize and quantitate vascular structures in the mammalian brain. J Neurosci Methods 17(4):275–286

    Article  CAS  PubMed  Google Scholar 

  • Eriksson PS, Perfilieva E, Björk-Eriksson T, Alborn AM, Nordborg C, Peterson DA, Gage FH (1998) Neurogenesis in the adult human hippocampus. Nat Med 4(11):1313–1317

    Article  CAS  PubMed  Google Scholar 

  • Faissner A, Reinhard J (2015) The extracellular matrix compartment of neural stem and glial progenitor cells. Glia 63:1330–1349

    Article  PubMed  Google Scholar 

  • Ferri ALM, Cavallaro M, Braida D, Di Cristofano A, Canta A, Vezzani A, Ottolenghi S, Pandolfi PP, Sala M, Debiasi S, Nicolis SK (2004) Sox2 deficiency causes neurodegeneration and impaired neurogenesis in the adult mouse brain. Development 131(15):3805–3819

    Article  CAS  PubMed  Google Scholar 

  • Fowler C, Johnson F, Wang Z (2005) Estrogen regulation of cell proliferation and distribution of estrogen receptor-alpha in the brains of adult female prairie and meadow voles. J Comp Neurol 489(2):166–179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fuentealba LC, Obernier K, Alvarez-Buylla A (2012) Adult neural stem cells bridge their niche. Cell Stem Cell 10(6):698–708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gemma C, Bachstetter AD (2013) The role of microglia in adult hippocampal neurogenesis. Front Cell Neurosci 7:229

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gil-Perotin S, Duran-Moreno M, Belzunegui S, Luquin MR, Garcia-Verdugo JM (2009) Ultrastructure of the subventricular zone in Macaca fascicularis and evidence of a mouse-like migratory stream. J Comp Neurol 514:533–554

    Article  PubMed  Google Scholar 

  • Goldman SA, Nottebohm F (1983) Neuronal production, migration, and differentiation in a vocal control nucleus of the adult female canary brain. Proc Natl Acad Sci USA 80(8):2390–2394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gould E, Tanapat P, Mcewen BS, Flügge G, Fuchs E (1998) Proliferation of granule cell precursors in the dentate gyrus of adult monkeys is diminished by stress. Proc Natl Acad Sci USA 95(6):3168–3171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Graham V, Khudyakov J, Ellis P, Pevny L (2003) SOX2 functions to maintain neural progenitor identity. Neuron 39(5):749–765

    Article  CAS  PubMed  Google Scholar 

  • Haan N, Goodman T, Najdi-Samiei A, Stratford CM, Rice R, El Agha E, Bellusci S, Hajihosseini MK (2013) Fgf10-expressing tanycytes add new neurons to the appetite/energy-balance regulating centers of the postnatal and adult hypothalamus. J Neurosci 33(14):6170–6180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hawken PaR, Jorre TJDS, Rodger J, Esmaili T, Blache D, Martin GB (2009) Rapid induction of cell proliferation in the adult female ungulate brain (Ovis aries) associated with activation of the reproductive axis by exposure to unfamiliar males. Biol Reprod 80(6):1146–1151

    Article  CAS  PubMed  Google Scholar 

  • Huang L, Devries GJ, Bittman EL (1998) Photoperiod regulates neuronal bromodeoxyuridine labeling in the brain of a seasonally breeding mammal. J Neurobiol 36:410–420

    Article  CAS  PubMed  Google Scholar 

  • Hughes EG, Appel B (2016) The cell biology of CNS myelination. Curr Opin Neurobiol 39:93–100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kameda Y (1996) Immunoelectron microscopic localization of vimentin in sustentacular cells of the carotid body and the adrenal medulla of guinea pigs. J Histochem Cytochem 44(12):1439–1449

    Article  CAS  PubMed  Google Scholar 

  • Kameda Y, Arai Y, Nishimaki T (2003) Ultrastructural localization of vimentin immunoreactivity and gene expression in tanycytes and their alterations in hamsters kept under different photoperiods. Cell Tissue Res 314(2):251–262

    Article  CAS  PubMed  Google Scholar 

  • Kaplan M, Bell D (1984) Mitotic neuroblasts in the 9-day-old and 11-month-old rodent hippocampus. J Neurosci 4(6):1429–1441

    CAS  PubMed  Google Scholar 

  • Kaplan M, Hinds J (1977) Neurogenesis in the adult rat: electron microscopic analysis of light radioautographs. Science 197(4308):1092–1094

    Article  CAS  PubMed  Google Scholar 

  • Kazanis I, Lathia JD, Vadakkan TJ, Raborn E, Wan R, Mughal MR, Eckley DM, Sasaki T, Patton B, Mattson MP, Hirschi KK, Dickinson ME, Ffrench-Constant C (2010) Quiescence and activation of stem and precursor cell populations in the subependymal zone of the mammalian brain are associated with distinct cellular and extracellular matrix signals. J Neurosci 30(29):9771–9781

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kempermann G, Song H, Gage FH (2015) Neurogenesis in the adult hippocampus. Cold Spring Harb Perspect Biol 7(9):a018812

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kerever A, Schnack J, Vellinga D, Ichikawa N, Moon C, Arikawa-Hirasawa E, Efird JT, Mercier F (2007) Novel extracellular matrix structures in the neural stem cell niche capture the neurogenic factor fibroblast growth factor 2 from the extracellular milieu. Stem cells 25:2146–2157

    Article  CAS  PubMed  Google Scholar 

  • Kleinman HK, Cannon FB, Laurie GW, Hassell JR, Aumailley M, Terranova VP, Martin GR, Dubois-Dalcq M (1985) Biological activities of laminin. J Cell Biochem 27:317–325

    Article  CAS  PubMed  Google Scholar 

  • Knigge KM, Scott DE (1970) Structure and function of the median eminence. Am J Anat 129(2):223–243

    Article  CAS  PubMed  Google Scholar 

  • Kokoeva MV, Yin H, Flier JS (2005) Neurogenesis in the hypothalamus of adult mice: potential role in energy balance. Science 310(5748):679–683

    Article  CAS  PubMed  Google Scholar 

  • Kokoeva MV, Yin H, Flier JS (2007) Evidence for constitutive neural cell proliferation in the adult murine hypothalamus. J Comp Neurol 505(2):209–220

    Article  PubMed  Google Scholar 

  • Kuhn H, Dickinson-Anson H, Gage F (1996) Neurogenesis in the dentate gyrus of the adult rat: age-related decrease of neuronal progenitor proliferation. J Neurosci 16(6):2027–2033

    CAS  PubMed  Google Scholar 

  • Langlet F (2014) Tanycytes: a gateway to the metabolic hypothalamus. J Neuroendocrinol 26(11):753–760

    Article  CAS  PubMed  Google Scholar 

  • Laywell ED, Rakic P, Kukekov VG, Holland EC, Steindler DA (2000) Identification of a multipotent astrocytic stem cell in the immature and adult mouse brain. Proc Natl Acad Sci USA 97(25):13883–13888

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee DA, Bedont JL, Pak T, Wang H, Song J, Miranda-Angulo A, Takiar V, Charubhumi V, Balordi F, Takebayashi H, Aja S, Ford E, Fishell G, Blackshaw S (2012) Tanycytes of the hypothalamic median eminence form a diet-responsive neurogenic niche. Nat Neurosci 15(5):700–702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li J, Tang Y, Cai D (2012) IKKbeta/NF-kappaB disrupts adult hypothalamic neural stem cells to mediate a neurodegenerative mechanism of dietary obesity and pre-diabetes. Nat Cell Biol 14(10):999–1012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Licht T, Keshet E (2015) The vascular niche in adult neurogenesis. Mech Dev 138(1):56–62

    Article  CAS  PubMed  Google Scholar 

  • Lois C, Alvarez-Buylla A (1993) Proliferating subventricular zone cells in the adult mammalian forebrain can differentiate into neurons and glia. Proc Natl Acad Sci USA 90(5):2074–2077

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lopez-Garcia C, Molowny A, Garcia-Verdugo JM, Ferrer I (1988) Delayed postnatal neurogenesis in the cerebral cortex of lizards. Brain Res 43(2):167–174

    Article  Google Scholar 

  • Lugert S, Basak O, Knuckles P, Haussler U, Fabel K, Götz M, Haas CA, Kempermann G, Taylor V, Giachino C (2010) Quiescent and active hippocampal neural stem cells with distinct morphologies respond selectively to physiological and pathological stimuli and aging. Cell Stem Cell 6(5):445–456

    Article  CAS  PubMed  Google Scholar 

  • Luzzati F, Bonfanti L, Fasolo A, Peretto P (2009) DCX and PSA-NCAM expression identifies a population of neurons preferentially distributed in associative areas of different pallial derivatives and vertebrate species. Cereb Cortex 19(5):1028–1041

    Article  PubMed  Google Scholar 

  • Ma DK, Bonaguidi MA, Ming G-L, Song H (2009) Adult neural stem cells in the mammalian central nervous system. Cell Res 19(6):672–682

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marques S, Zeisel A, Codeluppi S, Van Bruggen D, Mendanha Falcão A, Xiao L, Li H, Häring M, Hochgerner H, Romanov RA, Gyllborg D, Muñoz-Manchado AB, La Manno G, Lönnerberg P, Floriddia EM, Rezayee F, Ernfors P, Arenas E, Hjerling-Leffler J, Harkany T, Richardson WD, Linnarsson S, Castelo-Branco G (2016) Oligodendrocyte heterogeneity in the mouse juvenile and adult central nervous system. Science 352(6291):1326–1329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mckinley MJ, Rm Mcallen, Fao Mendelsohn, Am Allen, Sy Chai, Bj Oldfield (1990) Circumventricular organs: neuroendocrine interfaces between the brain and the hemal milieu. Front Neuroendocrinol 11(2):91–127

    Google Scholar 

  • Mcnay DEG, Briançon N, Kokoeva MV, Maratos-Flier E, Flier JS (2012) Remodeling of the arcuate nucleus energy-balance circuit is inhibited in obese mice. J Clin Investig 122(1):142–152

    Article  CAS  PubMed  Google Scholar 

  • Mercier F, Hatton GI (2001) Connexin 26 and basic fibroblast growth factor are expressed primarily in the subpial and subependymal layers in adult brain parenchyma: roles in stem cell proliferation and morphological plasticity? J Comp Neurol 431:88–104

    Article  CAS  PubMed  Google Scholar 

  • Mercier F, Cho Kwon Y, Kodama R (2011) Meningeal/vascular alterations and loss of extracellular matrix in the neurogenic zone of adult BTBR T + tf/J mice, animal model for autism. Neurosci Lett 498(3):173–178

    Article  CAS  PubMed  Google Scholar 

  • Merkle FT, Tramontin AD, García-Verdugo JM, Alvarez-Buylla A (2004) Radial glia give rise to adult neural stem cells in the subventricular zone. Proc Natl Acad Sci USA 101(50):17528–17532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Messager S, Chatzidaki EE, Ma D, Hendrick AG, Zahn D, Dixon J, Thresher RR, Malinge I, Lomet D, Carlton MBL, Colledge WH, Caraty A, SaJR Aparicio (2005) Kisspeptin directly stimulates gonadotropin-releasing hormone release via G protein-coupled receptor 54. Proc Natl Acad Sci USA 102(5):1761–1766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Migaud M, Batailler M, Segura S, Duittoz A, Franceschini I, Pillon D (2010) Emerging new sites for adult neurogenesis in the mammalian brain: a comparative study between the hypothalamus and the classical neurogenic zones. Eur J Neurosci 32(12):2042–2052

    Article  PubMed  Google Scholar 

  • Migaud M, Batailler M, Pillon D, Franceschini I, Malpaux B (2011) Seasonal changes in cell proliferation in the adult sheep brain and pars tuberalis. J Biol Rhythms 26(6):486–496

    Article  PubMed  Google Scholar 

  • Migaud M, Butruille L, Batailler M (2015) Seasonal regulation of structural plasticity and neurogenesis in the adult mammalian brain: focus on the sheep hypothalamus. Front Neuroendocrinol 37:146–157

    Article  PubMed  Google Scholar 

  • Migaud M, Butruille L, Duittoz A, Pillon D, Batailler M (2016) Adult neurogenesis and reproductive functions in mammals. Theriogenology 86(1):313–323

    Article  PubMed  Google Scholar 

  • Miller FD, Gauthier-Fisher A (2009) Home at last: neural stem cell niches defined. Cell Stem Cell 4(6):507–510

    Article  CAS  PubMed  Google Scholar 

  • Ming GL, Song H (2011) Adult neurogenesis in the mammalian brain: significant answers and significant questions. Neuron 70(4):687–702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mirzadeh Z, Merkle FT, Soriano-Navarro M, García-Verdugo JM, Alvarez-Buylla A (2008) Neural stem cells confer unique pinwheel architecture to the ventricular surface in neurogenic regions of the adult brain. Cell Stem Cell 3(3):265–278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morshead CM, Reynolds BA, Craig CG, Mcburney MW, Staines WA, Morassutti D, Weiss S, Van Der Kooy D (1994) Neural stem cells in the adult mammalian forebrain: a relatively quiescent subpopulation of subependymal cells. Neuron 13(5):1071–1082

    Article  CAS  PubMed  Google Scholar 

  • Mullier A, Bouret SG, Prevot V, Dehouck B (2010) Differential distribution of tight junction proteins suggests a role for tanycytes in blood–hypothalamus barrier regulation in the adult mouse brain. J Comp Neurol 518(7):943–962

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Palmer TD, Willhoite AR, Gage FH (2000) Vascular niche for adult hippocampal neurogenesis. J Comp Neurol 425(4):479–494

    Article  CAS  PubMed  Google Scholar 

  • Pencea V, Bingaman KD, Wiegand SJ, Luskin MB (2001) Infusion of brain-derived neurotrophic factor into the lateral ventricle of the adult rat leads to new neurons in the parenchyma of the striatum, septum, thalamus, and hypothalamus. J Neurosci 21(17):6706–6717

    CAS  PubMed  Google Scholar 

  • Perera AD, Lagenaur CF, Plant TM (1993) Postnatal expression of polysialic acid-neural cell adhesion molecule in the hypothalamus of the male rhesus monkey (Macaca mulatta). Endocrinology 133(6):2729–2735

    Article  CAS  PubMed  Google Scholar 

  • Pérez-Martín M, Cifuentes M, Grondona JM, López-Ávalos MD, Gómez-Pinedo U, García-Verdugo JM, Fernández-Llebrez P (2010) IGF-I stimulates neurogenesis in the hypothalamus of adult rats. Eur J Neurosci 31:1533–1548

    PubMed  Google Scholar 

  • Prevot V, Dutoit S, Croix D, Tramu G, Beauvillain JC (1998) Semi-quantitative ultrastructural analysis of the localization and neuropeptide content of gonadotropin releasing hormone nerve terminals in the median eminence throughout the estrous cycle of the rat. Neuroscience 84(1):177–191

    Article  CAS  PubMed  Google Scholar 

  • Prevot V, Croix D, Bouret S, Dutoit S, Tramu G, Stefano GB, Beauvillain JC (1999) Definitive evidence for the existence of morphological plasticity in the external zone of the median eminence during the rat estrous cycle: implication of neuro-glio-endothelial interactions in gonadotropin-releasing hormone release. Neuroscience 94(3):809–819

    Article  CAS  PubMed  Google Scholar 

  • Prevot V, Bellefontaine N, Baroncini M, Sharif A, Hanchate NK, Parkash J, Campagne C, De Seranno S (2010) Gonadotrophin-releasing hormone nerve terminals, tanycytes and neurohaemal junction remodelling in the adult median eminence: functional consequences for reproduction and dynamic role of vascular endothelial cells. J Neuroendocrinol 22(7):639–649

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rinne UK (1966) Ultrastructure of the median eminence of the rat. Z Zellforsch Mik Anat 74(1):98–122

    Article  CAS  Google Scholar 

  • Robins SC, Stewart I, Mcnay DE, Taylor V, Giachino C, Goetz M, Ninkovic J, Briancon N, Maratos-Flier E, Flier JS, Kokoeva MV, Placzek M (2013) α-Tanycytes of the adult hypothalamic third ventricle include distinct populations of FGF-responsive neural progenitors. Nat Commun 4:2049

    Article  CAS  PubMed  Google Scholar 

  • Rodríguez EM, González CB, Delannoy L (1979) Cellular organization of the lateral and postinfundibular regions of the median eminence in the rat. Cell Tissue Res 201(3):377–408

    Article  PubMed  Google Scholar 

  • Rodríguez EM, Blázquez JL, Pastor FE, Peláez B, Peña P, Peruzzo B, Amat P (2005) Hypothalamic tanycytes: a key component of brain–endocrine interaction. Int Rev Cytol 247:89–164

    Article  PubMed  CAS  Google Scholar 

  • Sanai N, Tramontin AD, Quinones-Hinojosa A, Barbaro NM, Gupta N, Kunwar S, Lawton MT, Mcdermott MW, Parsa AT, Manuel-Garcia Verdugo J, Berger MS, Alvarez-Buylla A (2004) Unique astrocyte ribbon in adult human brain contains neural stem cells but lacks chain migration. Nature 427(6976):740–744

    Article  CAS  PubMed  Google Scholar 

  • Sawamoto K, Hirota Y, Alfaro-Cervello C, Soriano-Navarro M, He X, Hayakawa-Yano Y, Yamada M, Hikishima K, Tabata H, Iwanami A, Nakajima K, Toyama Y, Itoh T, Alvarez-Buylla A, Garcia-Verdugo JM, Okano H (2011) Cellular composition and organization of the subventricular zone and rostral migratory stream in the adult and neonatal common marmoset brain. J Comp Neurol 519(4):690–713

    Article  PubMed  PubMed Central  Google Scholar 

  • Scott DE, Sladek JR (1981) Age related changes in the endocrine hypothalamus: I. Tanycytes and the blood–brain–cerebrospinal fluid barrier. Neurobiol Aging 2(2):89–94

    Article  CAS  PubMed  Google Scholar 

  • Shen Q, Wang Y, Kokovay E, Lin G, Chuang S-M, Goderie SK, Roysam B, Temple S (2008) Adult SVZ stem cells lie in a vascular niche: a quantitative analysis of niche cell–cell interactions. Cell Stem Cell 3(3):289–300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Simmoneaux V, Ancel C, Poirel VJ, Gauer F (2013) Kisspeptins and RFRP-3 act in concert to synchronize rodent reproduction with seasons. Front Neurosci 7:22

    Google Scholar 

  • Sousa-Ferreira L, Álvaro AR, Aveleira C, Santana M, Brandão I, Kügler S, Pereira De Almeida L, Cavadas C (2011) Proliferative hypothalamic neurospheres express NPY, AGRP, POMC, CART and orexin-A and differentiate to functional neurons. PLoS One 6(5):e19745

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tanti A, Rainer Q, Minier F, Surget A, Belzung C (2012) Differential environmental regulation of neurogenesis along the septo-temporal axis of the hippocampus. Neuropharmacology 63(3):374–384

    Article  CAS  PubMed  Google Scholar 

  • Taupin P, Gage FH (2002) Adult neurogenesis and neural stem cells of the central nervous system in mammals. J Neurosci Res 69(6):745–749

    Article  CAS  PubMed  Google Scholar 

  • Viguié C, Jansen HT, Glass JD, Watanabe M, Billings HJ, Coolen L, Lehman MN, Karsch FJ (2001) Potential for polysialylated form of neural cell adhesion molecule-mediated neuroplasticity within the gonadotropin-releasing hormone neurosecretory system of the ewe. Endocrinology 142(3):1317–1324

    Article  PubMed  Google Scholar 

  • Walton NM, Sutter BM, Laywell ED, Levkoff LH, Kearns SM, Marshall GP, Scheffler B, Steindler DA (2006) Microglia instruct subventricular zone neurogenesis. Glia 54:815–825

    Article  PubMed  Google Scholar 

  • Wei LC, Shi M, Chen LW, Cao R, Zhang P, Chan YS (2002) Nestin-containing cells express glial fibrillary acidic protein in the proliferative regions of central nervous system of postnatal developing and adult mice. Dev Brain Res 139(1):9–17

    Article  CAS  Google Scholar 

  • Wiese C, Rolletschek A, Kania G, Blyszczuk P, Tarasov KV, Tarasova Y, Wersto RP, Boheler KR, Wobus AM (2004) Nestin expression—a property of multi-lineage progenitor cells? Cell Mol Life Sci 61(19):2510–2522

    Article  CAS  PubMed  Google Scholar 

  • Woodfill CJ, Robinson JE, Malpaux B, Karsch FJ (1991) Synchronization of the circannual reproductive rhythm of the ewe by discrete photoperiodic signals. Biol Reprod 45(1):110–121

    Article  CAS  PubMed  Google Scholar 

  • Xu Y, Tamamaki N, Noda T, Kimura K, Itokazu Y, Matsumoto N, Dezawa M, Ide C (2005) Neurogenesis in the ependymal layer of the adult rat 3rd ventricle. Exp Neurol 192(2):251–264

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the experimental unit PAO No. 1297 (EU0028; INRA Val de Loire) for animal care. This work was funded by the French National Research Agency (Agence Nationale pour la Recherche: ANR-09-JCJC-0049-01). L. Butruille is a Ph.D. student supported by the Région Centre. We also wish to thank the PIC platform and more specifically M. Letheule. The authors thank Dr. S. Rasika for her critical comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martine Migaud.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Butruille, L., Batailler, M., Mazur, D. et al. Seasonal reorganization of hypothalamic neurogenic niche in adult sheep. Brain Struct Funct 223, 91–109 (2018). https://doi.org/10.1007/s00429-017-1478-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-017-1478-z

Keywords

Navigation