Skip to main content

Advertisement

Log in

Prolactin regulation of the HPA axis is not mediated by a direct action upon CRH neurons: evidence from the rat and mouse

  • Original Article
  • Published:
Brain Structure and Function Aims and scope Submit manuscript

Abstract

Centrally acting prolactin has been shown to have anti-stress effects by modulating the activity of the hypothalamic–pituitary–adrenal axis. We tested the hypothesis that prolactin directly targets hypothalamic corticotropin-releasing hormone (CRH) neurons. In situ hybridisation confirmed expression of mRNA encoding the long, but not the short, isoform of the prolactin receptor (PRLR) within the paraventricular nucleus (PVN) of the virgin rat; however, only 6% of CRH neurons expressed long-form Prlr mRNA. Examination of the functional response of CRH neurons to intracerebroventricular prolactin (500 ng) showed that these neurons did not respond with activation of phosphorylated signal transducer and activator of transcription 5 (pSTAT5), a marker of long-form PRLR activation. However, as only a subset of neurons expressing Crh mRNA could be detected using immunohistochemistry, we utilised a transgenic mouse model to label CRH neurons with a fluorescent reporter (CRH-Cre-tdTomato). In lactating animals, chronically elevated prolactin levels resulted in significantly increased pSTAT5 expression in the PVN. Overall, few tdTomato-labelled CRH neurons were double-labelled, although a small subset of CRH neurons in the caudal PVN were pSTAT5 positive (approximately 10% of tdTomato neurons at this level, compared to 1% in the rostral PVN). These data suggest that most CRH neurons do not respond directly to prolactin. To confirm that prolactin was not activating another signalling pathway, we used a transgenic mouse line to label PRLR-expressing neurons with Cre-dependent green fluorescent protein (GFP) expression (CRH-Cre-Prlrlox/lox). No GFP-expressing cells were evident in the PVN, indicating that in the mouse, as in the rat, the CRH neurons do not express either PRLR isoform. Together these data showed that the anti-stress effects of prolactin are not the result of prolactin directly regulating CRH neurons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Augustine RA, Grattan DR (2008) Induction of central leptin resistance in hyperphagic pseudopregnant rats by chronic prolactin infusion. Endocrinology 149:1049–1055

    Article  CAS  PubMed  Google Scholar 

  • Augustine RA, Kokay IC, Andrews ZB, Ladyman SR, Grattan DR (2003) Quantitation of prolactin receptor mRNA in the maternal rat brain during pregnancy and lactation. J Mol Endocrinol 31:221–232

    Article  CAS  PubMed  Google Scholar 

  • Augustine RA, Ladyman SR, Grattan DR (2008) From feeding one to feeding many: hormone-induced changes in bodyweight homeostasis during pregnancy. J Physiol 586:387–397. doi:10.1113/jphysiol.2007.146316

    Article  CAS  PubMed  Google Scholar 

  • Augustine RA, Bouwer GT, Seymour AJ, Grattan DR, Brown CH (2016) Reproductive regulation of gene expression in the hypothalamic supraoptic and paraventricular nuclei. J Neuroendocrinol 28. doi:10.1111/jne.12350

    PubMed  Google Scholar 

  • Bakowska JC, Morrell JI (1997) Atlas of the neurons that express mRNA for the long form of the prolactin receptor in the forebrain of the female rat. J Comp Neurol 386:161–177. doi:10.1002/(Sici)1096-9861

    Article  CAS  PubMed  Google Scholar 

  • Bakowska JC, Morrell JI (2003) The distribution of mRNA for the short form of the prolactin receptor in the forebrain of the female rat. Mol. Brain Res 116:50–58. doi:10.1016/S0169-328X(03)00213-4

    Article  CAS  Google Scholar 

  • Biag J, Huang Y, Gou L et al (2012) Cyto- and chemoarchitecture of the hypothalamic paraventricular nucleus in the C57BL/6 J male mouse: a study of immunostaining and multiple fluorescent tract tracing. J Comp Neurol 520:6–33. doi:10.1002/cne.22698

    Article  PubMed  PubMed Central  Google Scholar 

  • Bloom FE, Battenberg EL, Rivier J, Vale W (1982) Corticotropin releasing factor (CRF): immunoreactive neurones and fibers in rat hypothalamus. Regul Pept 4:43–48

    Article  CAS  PubMed  Google Scholar 

  • Blume A, Torner L, Liu Y, Subburaju S, Aguilera G, Neumann ID (2009) Prolactin activates mitogen-activated protein kinase signaling and corticotropin releasing hormone transcription in rat hypothalamic neurons. Endocrinology 150:1841–1849. doi:10.1210/en.2008-1023

    Article  CAS  PubMed  Google Scholar 

  • Bole-Feysot C, Goffin V, Edery M, Binart N, Kelly PA (1998) Prolactin (PRL) and its receptor: actions, signal transduction pathways and phenotypes observed in PRL receptor knockout mice. Endocr Rev 19:225–268

    Article  CAS  PubMed  Google Scholar 

  • Bridges RS, Ronsheim PM (1990) Prolactin (PRL) regulation of maternal behavior in rats: bromocriptine treatment delays and PRL promotes the rapid onset of behavior. Endocrinology 126:837–848. doi:10.1210/endo-126-2-837

    Article  CAS  PubMed  Google Scholar 

  • Bridges RS, Numan M, Ronsheim PM, Mann PE, Lupini CE (1990) Central prolactin infusions stimulate maternal behavior in steroid-treated, nulliparous female rats. Proc Natl Acad Sci USA 87:8003–8007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brown RS, Kokay IC, Herbison AE, Grattan DR (2010) Distribution of prolactin-responsive neurons in the mouse forebrain. J Comp Neurol 518:92–102. doi:10.1002/cne.22208

    Article  CAS  PubMed  Google Scholar 

  • Brown RS, Herbison AE, Grattan DR (2011) Differential changes in responses of hypothalamic and brainstem neuronal populations to prolactin during lactation in the mouse. Biol Reprod 84:826–836. doi:10.1095/biolreprod.110.089185

    Article  CAS  PubMed  Google Scholar 

  • Brown RSE, Kokay IC, Phillipps HR et al (2016) Conditional deletion of the prolactin receptor reveals functional subpopulations of dopamine neurons in the arcuate nucleus of the hypothalamus. J Neurosci 36:9173–9185. doi:10.1523/jneurosci.1471-16.2016

    Article  CAS  PubMed  Google Scholar 

  • Brunton PJ, Meddle SL, Ma S, Ochedalski T, Douglas AJ, Russell JA (2005) Endogenous opioids and attenuated hypothalamic-pituitary-adrenal axis responses to immune challenge in pregnant rats. J Neurosci 25:5117–5126. doi:10.1523/JNEUROSCI.0866-05.2005

    Article  CAS  PubMed  Google Scholar 

  • Casanova E, Fehsenfeld S, Mantamadiotis T, Lemberger T, Greiner E, Stewart AF, Schutz G (2001) A CamKIIalpha iCre BAC allows brain-specific gene inactivation. Genesis 31:37–42

    Article  CAS  PubMed  Google Scholar 

  • da Costa AP, Wood S, Ingram CD, Lightman SL (1996) Region-specific reduction in stress-induced c-fos mRNA expression during pregnancy and lactation. Brain Res 742:177–184

    Article  PubMed  Google Scholar 

  • Das R, Vonderhaar BK (1995) Transduction of prolactin’s (PRL) growth signal through both long and short forms of the PRL receptor. Mol Endocrinol 9:1750–1759. doi:10.1210/mend.9.12.8614411

    CAS  PubMed  Google Scholar 

  • Donner N, Bredewold R, Maloumby R, Neumann ID (2007) Chronic intracerebral prolactin attenuates neuronal stress circuitries in virgin rats. Eur J Neurosci 25:1804–1814. doi:10.1111/j.1460-9568.2007.05416.x

    Article  PubMed  Google Scholar 

  • Drago F, Continella G, Conforto G, Scapagnini U (1985) Prolactin inhibits the development of stress-induced ulcers in the rat. Life Sci 36:191–197

    Article  CAS  PubMed  Google Scholar 

  • Feher P, Olah M, Bodnar I et al (2010) Dephosphorylation/inactivation of tyrosine hydroxylase at the median eminence of the hypothalamus is required for suckling-induced prolactin and adrenocorticotrop hormone responses. Brain Res Bull 82:141–145. doi:10.1016/j.brainresbull.2010.02.006

    Article  CAS  PubMed  Google Scholar 

  • Forsyth IA, Wallis M (2002) Growth hormone and prolactin–molecular and functional evolution. J Mammary Gland Biol Neoplasia 7:291–312

    Article  PubMed  Google Scholar 

  • Freeman ME, Kanyicska B, Lerant A, Nagy G (2000) Prolactin: structure, function, and regulation of secretion. Physiol Rev 80:1523–1631

    CAS  PubMed  Google Scholar 

  • Fujikawa T, Soya H, Yoshizato H, Sakaguchi K, Doh-Ura K, Tanaka M, Nakashima K (1995) Restraint stress enhances the gene expression of prolactin receptor long form at the choroid plexus. Endocrinology 136:5608–5613. doi:10.1210/endo.136.12.7588315

    Article  CAS  PubMed  Google Scholar 

  • Fujikawa T, Soya H, Tamashiro KL et al (2004) Prolactin prevents acute stress-induced hypocalcemia and ulcerogenesis by acting in the brain of rat. Endocrinology 145:2006–2013. doi:10.1210/en.2003-1446

    Article  CAS  PubMed  Google Scholar 

  • Fujikawa T, Tamura K, Kawase T et al (2005) Prolactin receptor knockdown in the rat paraventricular nucleus by a morpholino-antisense oligonucleotide causes hypocalcemia and stress gastric erosion. Endocrinology 146:3471–3480. doi:10.1210/en.2004-1528

    Article  CAS  PubMed  Google Scholar 

  • Furigo IC, Metzger M, Teixeira PD, Soares CR, Donato J Jr (2016) Distribution of growth hormone-responsive cells in the mouse brain. Brain Struct Funct. doi:10.1007/s00429-016-1221-1

    PubMed  Google Scholar 

  • Grattan DR (2015) 60 Years of neuroendocrinology: the hypothalamo-prolactin axis. J Endocrinol 226:T101–122. doi:10.1530/JOE-15-0213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kokay IC, Bull PM, Davis RL, Ludwig M, Grattan DR (2006) Expression of the long form of the prolactin receptor in magnocellular oxytocin neurons is associated with specific prolactin regulation of oxytocin neurons. Am J Physiol Regul Integr Comp Physiol 290:R1216–R1225. doi:10.1152/ajpregu.00730.2005

    Article  CAS  PubMed  Google Scholar 

  • Larsen CM, Grattan DR (2010) Prolactin-induced mitogenesis in the subventricular zone of the maternal brain during early pregnancy is essential for normal postpartum behavioral responses in the mother. Endocrinology 151:3805–3814. doi:10.1210/en.2009-1385

    Article  CAS  PubMed  Google Scholar 

  • Lightman SL, Young WS 3rd (1989) Lactation inhibits stress-mediated secretion of corticosterone and oxytocin and hypothalamic accumulation of corticotropin-releasing factor and enkephalin messenger ribonucleic acids. Endocrinology 124:2358–2364

    Article  CAS  PubMed  Google Scholar 

  • Madisen L, Zwingman TA, Sunkin SM et al (2010) A robust and high-throughput Cre reporting and characterization system for the whole mouse brain. Nat Neurosci 13:133–140. doi:10.1038/nn.2467

    Article  CAS  PubMed  Google Scholar 

  • Neumann ID, Johnstone HA, Hatzinger M et al (1998) Attenuated neuroendocrine responses to emotional and physical stressors in pregnant rats involve adenohypophysial changes. J Physiol 508(Pt 1):289–300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Neumann ID, Kromer SA, Toschi N, Ebner K (2000a) Brain oxytocin inhibits the (re)activity of the hypothalamo-pituitary-adrenal axis in male rats: involvement of hypothalamic and limbic brain regions. Regul Pept 96:31–38

    Article  CAS  PubMed  Google Scholar 

  • Neumann ID, Torner L, Wigger A (2000b) Brain oxytocin: differential inhibition of neuroendocrine stress responses and anxiety-related behaviour in virgin, pregnant and lactating rats. Neuroscience 95:567–575

    Article  CAS  PubMed  Google Scholar 

  • Olah M, Feher P, Ihm Z et al (2009) Dopamine-regulated adrenocorticotropic hormone secretion in lactating rats: functional plasticity of melanotropes. Neuroendocrinology 90:391–401. doi:10.1159/000232313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paxinos G, Franklin KB (2004) The mouse brain in stereotaxic coordinates. 4th edn, Gulf Professional Publishing, Houston

    Google Scholar 

  • Paxinos G, Watson C (2006) The rat brain in stereotaxic coordinates. 6th edn, Academic Press, Cambridge

    Google Scholar 

  • Sapsford TJ, Kokay IC, Ostberg L, Bridges RS, Grattan DR (2012) Differential sensitivity of specific neuronal populations of the rat hypothalamus to prolactin action. J Comp Neurol 520:1062–1077. doi:10.1002/cne.22775

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schlein P, Zarrow M, Denenberg V (1974) The role of prolactin in the depressed or ‘buffered’ adrenocorticosteroid response of the rat. J Endocrinol 62:93–99

    Article  CAS  PubMed  Google Scholar 

  • Shanks N, Windle RJ, Perks P, Wood S, Ingram CD, Lightman SL (1999) The hypothalamic-pituitary-adrenal axis response to endotoxin is attenuated during lactation. J Neuroendocrinol 11:857–865

    Article  CAS  PubMed  Google Scholar 

  • Taniguchi H, He M, Wu P et al (2011) A resource of Cre driver lines for genetic targeting of GABAergic neurons in cerebral cortex. Neuron 71:995–1013. doi:10.1016/j.neuron.2011.07.026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Torner L, Toschi N, Pohlinger A, Landgraf R, Neumann ID (2001) Anxiolytic and anti-stress effects of brain prolactin: improved efficacy of antisense targeting of the prolactin receptor by molecular modeling. J Neurosci 21:3207–3214

    CAS  PubMed  Google Scholar 

  • Torner L, Toschi N, Nava G, Clapp C, Neumann ID (2002) Increased hypothalamic expression of prolactin in lactation: involvement in behavioural and neuroendocrine stress responses. Eur J Neurosci 15:1381–1389

    Article  PubMed  Google Scholar 

  • Ulrich-Lai YM, Herman JP (2009) Neural regulation of endocrine and autonomic stress responses. Nat Rev Neurosci 10:397–409. doi:10.1038/nrn2647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Walker CD, Lightman SL, Steele MK, Dallman MF (1992) Suckling is a persistent stimulus to the adrenocortical system of the rat. Endocrinology 130:115–125. doi:10.1210/endo.130.1.1309321

    Article  CAS  PubMed  Google Scholar 

  • Walker CD, Tilders FJ, Burlet A (2001) Increased colocalization of corticotropin-releasing factor and arginine vasopressin in paraventricular neurones of the hypothalamus in lactating rats: evidence from immunotargeted lesions and immunohistochemistry. J Neuroendocrinol 13:74–85

    Article  CAS  PubMed  Google Scholar 

  • Wamsteeker Cusulin JI, Fuzesi T, Watts AG, Bains JS (2013) Characterization of corticotropin-releasing hormone neurons in the paraventricular nucleus of the hypothalamus of Crh-IRES-Cre mutant mice. PLoS One 8:e64943

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weber RF, Calogero AE (1991) Prolactin stimulates rat hypothalamic corticotropin-releasing hormone and pituitary adrenocorticotropin secretion in vitro. Neuroendocrinology 54:248–253

    Article  CAS  PubMed  Google Scholar 

  • Windle RJ, Wood S, Shanks N et al (1997) Endocrine and behavioural responses to noise stress: comparison of virgin and lactating female rats during non-disrupted maternal activity. J Neuroendocrinol 9:407–414

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by a Programme Grant from the Health Research Council of New Zealand (14–568). PG was supported by a University of Otago PhD Scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Grattan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Additional information

Papillon Gustafson and Ilona Kokay have contributed equally to this study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gustafson, P., Kokay, I., Sapsford, T. et al. Prolactin regulation of the HPA axis is not mediated by a direct action upon CRH neurons: evidence from the rat and mouse. Brain Struct Funct 222, 3191–3204 (2017). https://doi.org/10.1007/s00429-017-1395-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-017-1395-1

Keywords

Navigation