Skip to main content
Log in

The mesencephalic GCt–ICo complex and tonic immobility in pigeons (Columba livia): a c-Fos study

  • Original Article
  • Published:
Brain Structure and Function Aims and scope Submit manuscript

Abstract

Tonic immobility (TI) is a response to a predator attack, or other inescapable danger, characterized by immobility, analgesia and unresponsiveness to external stimuli. In mammals, the periaqueductal gray (PAG) and deep tectal regions control the expression of TI as well as other defensive behaviors. In birds, little is known about the mesencephalic circuitry involved in the control of TI. Here, adult pigeons (both sex, n = 4/group), randomly assigned to non-handled, handled or TI groups, were killed 90 min after manipulations and the brains processed for detection of c-Fos immunoreactive cells (c-Fos-ir, marker for neural activity) in the mesencephalic central gray (GCt) and the adjacent nucleus intercollicularis (ICo). The NADPH-diaphorase staining delineated the boundaries of the sub nuclei in the ICo–GCt complex. Compared to non-handled, TI (but not handling) induced c-Fos-ir in NADPH-diaphorase-rich and -poor regions. After TI, the number of c-Fos-ir increased in the caudal and intermediate areas of the ICo (but not in the GCt), throughout the rostrocaudal axis of the dorsal stratum griseum periventriculare (SGPd) of the optic tectum and in the n. mesencephalicus lateralis pars dorsalis (MLd), which is part of the ascending auditory pathway. These data suggest that inescapable threatening stimuli such as TI may recruit neurons in discrete areas of ICo–GCt complex, deep tectal layer and in ascending auditory circuits that may control the expression of defensive behaviors in pigeons. Additionally, data indicate that the contiguous deep tectal SCPd (but not GCt) in birds may be functionally comparable to the mammalian dorsal PAG.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

Aq:

Cerebral aqueduct

EW:

Edinger–Westphal nucleus

FLM:

Medial longitudinal fasciculus

GCt:

Griseum centralis

ICo:

Intercollicular nucleus

ICo-l:

Lateral intercollicular nucleus

ICo-m:

Medial intercollicular nucleus

Laq:

Lateral expansion of the aqueduct

MLd:

Nucleus mesencephalicus lateralis, pars dorsalis

NADPHd:

Reduced nicotinamide adenine dinucleotide phosphate-diaphorase

nIII:

Nucleus of the oculomotor nerve

SGPd:

Dorsal part of the stratum griseum periventriculare

SGPv:

Ventral part of the stratum griseum periventriculare

References

  • Abercrombie M (1946) Estimation of nuclear population from microtome sections. Anat Rec 94(2):239–247

    Article  CAS  PubMed  Google Scholar 

  • Absil P, Riters L, Balthazart J (2001) Preoptic aromatase cells project to the mesencephalic central gray in the male Japanese quail (Coturnix japonica). Horm Behav 40(3):369–383

    Article  CAS  PubMed  Google Scholar 

  • Akesson T, De Lanerolle N, Cheng M-F (1987) Ascending vocalization pathways in the female ring dove: projections of the nucleus intercollicularis. Exp Neurol 95(1):34–43

    Article  CAS  PubMed  Google Scholar 

  • Alladi PA, Roy T, Singh N, Wadhwa S (2005) Developmentally regulated expression of c-Fos and c-Jun in the brainstem auditory nuclei of Gallus domesticus is modified by prenatal auditory enrichment. J Neurobiol 62(1):92–105

    Article  CAS  PubMed  Google Scholar 

  • Andrew R (1974) Changes in visual responsiveness following intercollicular lesions and their effects on avoidance and attack. Brain Behav Evol 10(4–5):400–424

    Google Scholar 

  • Atoji Y, Yamamoto Y, Suzuki Y (2001) Distribution of NADPH diaphorase-containing neurons in the pigeon central nervous system. J Chem Neuroanat 21(1):1–22

    Article  CAS  PubMed  Google Scholar 

  • Bandler R, Depaulis A (1991) Midbrain periaqueductal gray control of defensive behavior in the cat and the rat. In: Bandler R, Depaulis A (eds) The midbrain periaqueductal gray matter. Springer, New York, pp 175–198

    Chapter  Google Scholar 

  • Bandler R, Shipley MT (1994) Columnar organization in the midbrain periaqueductal gray: modules for emotional expression? Trends Neurosci 17(9):379–389

    Article  CAS  PubMed  Google Scholar 

  • Behbehani MM (1995) Functional characteristics of the midbrain periaqueductal gray. Prog Neurobiol 46(6):575–605

    Article  CAS  PubMed  Google Scholar 

  • Berk ML, Butler AB (1981) Efferent projections of the medial preoptic nucleus and medial hypothalamus in the pigeon. J Comp Neurol 203(3):379–399

    Article  CAS  PubMed  Google Scholar 

  • Berk ML, Finkelstein JA (1983) Long descending projections of the hypothalamus in the pigeon, Columba livia. J Comp Neurol 220(2):127–136

    Article  CAS  PubMed  Google Scholar 

  • Bittencourt A, Carobrez A, Zamprogno L, Tufik S, Schenberg L (2004) Organization of single components of defensive behaviors within distinct columns of periaqueductal gray matter of the rat: role of N-methyl-d-aspartic acid glutamate receptors. Neuroscience 125(1):71–89

    Article  CAS  PubMed  Google Scholar 

  • Bittencourt A, Nakamura-Palacios E, Mauad H, Tufik S, Schenberg L (2005) Organization of electrically and chemically evoked defensive behaviors within the deeper collicular layers as compared to the periaqueductal gray matter of the rat. Neuroscience 133(4):873–892

    Article  CAS  PubMed  Google Scholar 

  • Bittencourt MdA, Melleu FF, Marino-Neto J (2015) Stress-induced core temperature changes in pigeons (Columba livia). Physiol Behav 139:449–458

    Article  CAS  Google Scholar 

  • Borelli KG, Ferreira-Netto C, Brandão ML (2006) Distribution of Fos immunoreactivity in the rat brain after freezing or escape elicited by inhibition of glutamic acid decarboxylase or antagonism of GABA-A receptors in the inferior colliculus. Behav Brain Res 170(1):84–93

    Article  CAS  PubMed  Google Scholar 

  • Brandão ML, Borelli KG, Nobre MJ, Santos JM, Albrechet-Souza L, Oliveira AR, Martinez RC (2005) Gabaergic regulation of the neural organization of fear in the midbrain tectum. Neurosci Biobehav Rev 29(8):1299–1311

    Article  PubMed  Google Scholar 

  • Briganti F, Beani L, Panzica G (1996) Connections of the dorsomedial part of the nucleus intercollicularis in a male non-songbird, the grey partridge: a tract-tracing study. Neurosci Lett 221(1):61–65

    Article  CAS  PubMed  Google Scholar 

  • Butler AB, Hodos W (2005) Comparative vertebrate neuroanatomy: evolution and adaptation. John Wiley & Sons, Hoboken, NJ

    Book  Google Scholar 

  • Canteras NS, Goto M (1999) Fos-like immunoreactivity in the periaqueductal gray of rats exposed to a natural predator. Neuroreport 10(2):413–418

    Article  CAS  PubMed  Google Scholar 

  • Carrive P, Paxinos G (1994) The supraoculomotor cap: a region revealed by NADPH diaphorase histochemistry. Neuroreport 5(17):2257–2260

    Article  CAS  PubMed  Google Scholar 

  • Carrive P, Leung P, Harris J, Paxinos G (1997) Conditioned fear to context is associated with increased Fos expression in the caudal ventrolateral region of the midbrain periaqueductal gray. Neuroscience 78(1):165–177

    Article  CAS  PubMed  Google Scholar 

  • Cheng M-F, Havens MH (1993) Auditory-responsive units in the midbrain vocal nuclei in the ring dove (Streptopelia risoria). Brain Res Bull 30(5):711–715

    Article  CAS  PubMed  Google Scholar 

  • Cheng M-F, Akesson TR, de Lanerolle NC (1987) Retrograde HRP demonstration of afferent projections to the midbrain and nest calls in the ring dove. Brain Res Bull 18(1):45–48

    Article  CAS  PubMed  Google Scholar 

  • Coimbra N, De Oliveira R, Freitas R, Ribeiro S, Borelli K, Pacagnella R, Moreira J, Da Silva L, Melo L, Lunardi L (2006) Neuroanatomical approaches of the tectum-reticular pathways and immunohistochemical evidence for serotonin-positive perikarya on neuronal substrates of the superior colliculus and periaqueductal gray matter involved in the elaboration of the defensive behavior and fear-induced analgesia. Exp Neurol 197(1):93–112

    Article  CAS  PubMed  Google Scholar 

  • Comoli E, Ribeiro-Barbosa E, Canteras NS (2003) Predatory hunting and exposure to a live predator induce opposite patterns of Fos immunoreactivity in the PAG. Behav Brain Res 138(1):17–28

    Article  CAS  PubMed  Google Scholar 

  • Conlee JW, Parks TN (1986) Origin of ascending auditory projections to the nucleus mesencephalicus lateralis pars dorsalis in the chicken. Brain Res 367(1):96–113

    Article  CAS  PubMed  Google Scholar 

  • Cunha RP, Reiner A, Toledo CA (2007) Involvement of urocortinergic neurons below the midbrain central gray in the physiological response to restraint stress in pigeons. Brain Res 1147:175–183

    Article  CAS  PubMed  Google Scholar 

  • De Lanerolle N, Andrew R (1974) Midbrain structures controlling vocalization in the domestic chick. Brain Behav Evol 10(4–5):354–376

    Google Scholar 

  • De Oliveira R, Del Bel E, Guimaraes F (2001) Effects of excitatory amino acids and nitric oxide on flight behavior elicited from the dorsolateral periaqueductal gray. Neurosci Biobehav Rev 25(7):679–685

    Article  PubMed  Google Scholar 

  • de Souza ACB, Averbeck E, Paschoalini MA, Faria MS, Lino-de-Oliveira C, Marino-Neto J (2009) The peeping response of pigeons (Columba livia) to isolation from conspecifics and exposure to a novel environment. Behav Process 81(1):26–33

    Article  Google Scholar 

  • DesJardin JT, Holmes AL, Forcelli PA, Cole CE, Gale JT, Wellman LL, Gale K, Malkova L (2013) Defense-like behaviors evoked by pharmacological disinhibition of the superior colliculus in the primate. J Neurosci 33(1):150–155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deviche P, Güntürkün O (1992) Peptides for calling? An immunohistochemical study of the avian n. intercollicularis. Brain Res 569(1):93–99

    Article  CAS  PubMed  Google Scholar 

  • Distel H (1978) Behavior and electrical brain stimulation in the green iguana, Iguana iguana L. II. Stimulation effects. Exp Brain Res 31(3):353–367

    Article  CAS  PubMed  Google Scholar 

  • dos Santos TS, Krüger J, Melleu FF, Herold C, Zilles K, Poli A, Güntürkün O, Marino-Neto J (2015) Distribution of serotonin 5-HT 1A-binding sites in the brainstem and the hypothalamus, and their roles in 5-HT-induced sleep and ingestive behaviors in rock pigeons (Columba livia). Behav Brain Res 295:45–63

    Article  PubMed  Google Scholar 

  • Dubbeldam J, den Boer-Visser A (2002) The central mesencephalic grey in birds: nucleus intercollicularis and substantia grisea centralis. Brain Res Bull 57(3):349–352

    Article  CAS  PubMed  Google Scholar 

  • Ellis JM, Riters LV (2012) Vocal parameters that indicate threat level correlate with FOS immunolabeling in social and vocal control brain regions. Brain Behav Evol 79(2):128

    Article  PubMed  Google Scholar 

  • Ewert J-P (1985) Concepts in vertebrate neuroethology. Anim Behav 33(1):1–29

    Article  Google Scholar 

  • Ferreira-Netto C, Borelli KG, Brandão ML (2007) Distinct Fos expression in the brain following freezing behavior elicited by stimulation with NMDA of the ventral or dorsal inferior colliculus. Exp Neurol 204(2):693–704

    Article  CAS  PubMed  Google Scholar 

  • Furigo IC, de Oliveira WF, de Oliveira AR, Comoli E, Baldo M, Mota-Ortiz S, Canteras N (2010) The role of the superior colliculus in predatory hunting. Neuroscience 165(1):1–15

    Article  CAS  PubMed  Google Scholar 

  • Gallup GG, Rager DR (1996) Tonic immobility as a model of extreme states of behavioral inhibition. In: Kavaliers M (ed) Motor activity and movement disorders. Humana Press, Totowa, NJ, pp 57–80

    Chapter  Google Scholar 

  • Gargaglioni LH, Pereira AS, Hoffmann A (2001) Basal midbrain modulation of tonic immobility in the toad Bufo paracnemis. Physiol Behav 72(3):297–303

    Article  CAS  PubMed  Google Scholar 

  • Gentle MJ, Jones RB, Woolley SC (1989) Physiological changes during tonic immobility in Gallus gallus var domesticus. Physiol Behav 46(5):843–847

    Article  CAS  PubMed  Google Scholar 

  • Gross CT, Canteras NS (2012) The many paths to fear. Nat Rev Neurosci 13(9):651–658

    Article  CAS  PubMed  Google Scholar 

  • Hazard D, Couty M, Richard S, Guémené D (2008) Intensity and duration of corticosterone response to stressful situations in Japanese quail divergently selected for tonic immobility. Gen Comp Endocrinol 155(2):288–297

    Article  CAS  PubMed  Google Scholar 

  • Hellmann B, Güntürkün O (1999) Visual-field-specific heterogeneity within the tecto-rotundal projection of the pigeon. Eur J Neurosci 11(8):2635–2650

    Article  CAS  PubMed  Google Scholar 

  • Henningsen AD (1994) Tonic immobility in 12 elasmobranchs:use as an aid in captive husbandry. Zoo Biol 13(4):325–332

    Article  Google Scholar 

  • Hoffmann A, Brazil Romero SM, de Oliveira LM (1993) Agonistic behavior and its cardiovascular components elicited by microinjection of l-glutamic acid into the basal midbrain of the toad Bufo paracnemis. Brain Behav Evol 41(6):316–325

    Article  CAS  PubMed  Google Scholar 

  • Hohtola E (1981) Tonic immobility and shivering in birds: evolutionary implications. Physiol Behav 27 (3):475–480

    Article  CAS  PubMed  Google Scholar 

  • Holstege G (1991) Descending pathways from the periaqueductal gray and adjacent areas. In: Bandler R, Depaulis A (eds) The midbrain periaqueductal gray matter. Springer, New York, pp 239–265

    Chapter  Google Scholar 

  • Hyde PS, Knudsen EI (2000) Topographic projection from the optic tectum to the auditory space map in the inferior colliculus of the barn owl. J Comp Neurol 421(2):146–160

    Article  CAS  PubMed  Google Scholar 

  • Iyilikci O, Baxter S, Balthazart J, Ball GF (2014) Fos expression in monoaminergic cell groups in response to sociosexual interactions in male and female Japanese quail. Behav Neurosci 128(1):48

    Article  PubMed  PubMed Central  Google Scholar 

  • Karten HJ, Hodos W (1967) Stereotaxic Atlas of the brain of the pigeon (Columba livia). Johns Hopkins University Press, Baltimore

    Google Scholar 

  • Kincheski GC, Mota-Ortiz SR, Pavesi E, Canteras NS, Carobrez AP (2012) The dorsolateral periaqueductal gray and its role in mediating fear learning to life threatening events. PLoS One 7(11):e50361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kingsbury MA, Kelly AM, Schrock SE, Goodson JL (2011) Mammal-like organization of the avian midbrain central gray and a reappraisal of the intercollicular nucleus. PLoS One 6(6):e20720

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klemm W (1989) Drug effects on active immobility responses: what they tell us about neurotransmitter systems and motor functions. Prog neurobiol 32(5):403–422

    Article  CAS  PubMed  Google Scholar 

  • Lino-de-Oliveira C, Sales AJ, Del Bel EA, Silveira MCL, Guimarães FS (2001) Effects of acute and chronic fluoxetine treatments on restraint stress-induced Fos expression. Brain Res Bull 55(6):747–754

    Article  CAS  PubMed  Google Scholar 

  • Lino-de-Oliveira C, de Oliveira RM, Carobrez AP, de Lima TC, Del Bel EA, Guimarães FS (2006) Antidepressant treatment reduces Fos-like immunoreactivity induced by swim stress in different columns of the periaqueductal gray matter. Brain Res Bull 70(4):414–421

    Article  CAS  PubMed  Google Scholar 

  • Lovick T (1993) Integrated activity of cardiovascular and pain regulatory systems: role in adaptive behavioural responses. Prog Neurobiol 40(5):631–644

    Article  CAS  PubMed  Google Scholar 

  • Meyer G, Banuelos-Pineda J, Montagnese C, Ferres-Meyer G, Gonzalez-Hernandez T (1993) Laminar distribution and morphology of NADPH-diaphorase containing neurons in the optic tectum of the pigeon. J Hirnforsch 35(3):445–452

    Google Scholar 

  • Mills AD, Faure J-M (1991) Divergent selection for duration of tonic immobility and social reinstatement behavior in Japanese quail (Coturnix coturnix japonica) chicks. J Comp Psychol 105 (1):25–36

    Article  CAS  PubMed  Google Scholar 

  • Nash RF, Gallup GG, Czech DA (1976) Psychophysiological correlates of tonic immobility in the domestic chicken (Gallus gallus). Physiol Behav 17(3):413–418

    Article  CAS  PubMed  Google Scholar 

  • Phillips RE, Youngren OM (1971) Brain stimulation and species-typical behaviour: activities evoked by electrical stimulation of the brains of chickens (Gallus gallus). Anim Behav 19(4):757–779

    Article  CAS  PubMed  Google Scholar 

  • Rasband WS (1997–2011) ImageJ. U. S. National Institutes of Health, Bethesda, Maryland, USA, http://imagej.nih.gov/ij/

  • Reiner A, Karten HJ (1982) Laminar distribution of the cells of origin of the descending tectofugal pathways in the pigeon (Columba livia). J Comp Neurol 204(2):165–187

    Article  CAS  PubMed  Google Scholar 

  • Rosskothen-Kuhl N, Illing R-B (2012) The impact of hearing experience on signal integration in the auditory brainstem: a c-Fos study of the rat. Brain Res 1435:40–55

    Article  CAS  PubMed  Google Scholar 

  • Satpute AB, Wager TD, Cohen-Adad J, Bianciardi M, Choi J-K, Buhle JT, Wald LL, Barrett LF (2013) Identification of discrete functional subregions of the human periaqueductal gray. Proc Natl Acad Sci 110(42):17101–17106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schenberg L, Póvoa R, Costa A, Caldellas A, Tufik S, Bittencourt A (2005) Functional specializations within the tectum defense systems of the rat. Neurosci Biobehav Rev 29(8):1279–1298

    Article  CAS  PubMed  Google Scholar 

  • Siebert S, Jürgens U (2003) Vocalization after periaqueductal grey inactivation with the GABA agonist muscimol in the squirrel monkey. Neurosci Lett 340(2):111–114

    Article  CAS  PubMed  Google Scholar 

  • Silveira MCL, Sandner G, Graeff FG (1993) Induction of Fos immunoreactivity in the brain by exposure to the elevated plus-maze. Behav Brain Res 56(1):115–118

    Article  CAS  PubMed  Google Scholar 

  • Sugerman RA, Demski LS (1978) Agonistic behavior elicited by electrical stimulation of the brain in western collared lizards, Crotaphytus collaris. Brain Behav Evol 15(5–6):446–469

    CAS  PubMed  Google Scholar 

  • Tsuneoka Y, Maruyama T, Yoshida S, Nishimori K, Kato T, Numan M, Kuroda KO (2013) Functional, anatomical, and neurochemical differentiation of medial preoptic area subregions in relation to maternal behavior in the mouse. J Comp Neurol 521(7):1633–1663

    Article  CAS  PubMed  Google Scholar 

  • Valance D, Després G, Richard S, Constantin P, Mignon-Grasteau S, Leman S, Boissy A, Faure J-M, Leterrier C (2008) Changes in Heart Rate Variability during a tonic immobility test in quail. Physiol Behav 93(3):512–520

    Article  CAS  PubMed  Google Scholar 

  • Vicario DS (1993) A new brain stem pathway for vocal control in the zebra finch song system. Neuroreport 4(7):983–986

    Article  CAS  PubMed  Google Scholar 

  • Vieira EB, Menescal-de-Oliveira L, Leite-Panissi CRA (2011) Functional mapping of the periaqueductal gray matter involved in organizing tonic immobility behavior in guinea pigs. Behav Brain Res 216(1):94–99

    Article  PubMed  Google Scholar 

  • Vincent S, Kimura H (1992) Histochemical mapping of nitric oxide synthase in the rat brain. Neuroscience 46(4):755–784

    Article  CAS  PubMed  Google Scholar 

  • Walker P, Carrive P (2003) Role of ventrolateral periaqueductal gray neurons in the behavioral and cardiovascular responses to contextual conditioned fear and poststress recovery. Neuroscience 116(3):897–912

    Article  CAS  PubMed  Google Scholar 

  • Wang S, Ni Y, Guo F, Fu W, Grossmann R, Zhao R (2013) Effect of corticosterone on growth and welfare of broiler chickens showing long or short tonic immobility. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology 164(3):537–543

  • Webster DG, Lanthorn TH, Dewsbury DA, Meyer ME (1981) Tonic immobility and the dorsal immobility response in twelve species of muroid rodents. Behav neural biol 31(1):32–41

    Article  CAS  PubMed  Google Scholar 

  • Wei P, Liu N, Zhang Z, Liu X, Tang Y, He X, Wu B, Zhou Z, Liu Y, Li J (2015) Processing of visually evoked innate fear by a non-canonical thalamic pathway. Nat Commun 6:1–13

    Google Scholar 

  • Wild J (1997) Functional anatomy of neural pathways contributing to the control of song production in birds. Eur J Morphol 35(4):303–325

    Article  CAS  PubMed  Google Scholar 

  • Yajima Y, Hayashi Y, Yoshi N (1980) The midbrain central gray substance as a highly sensitive neural structure for the production of ultrasonic vocalization in the rat. Brain Res 198(2):446–452

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The present study was supported by an Alexander von Humboldt Foundation Research (‘‘Equipment Grant’’) to CLO as well as by CNPq Research Grants to JMN (proc. 471888/03-6 and 441577/2014-8). FFM received CAPES PhD fellowships. We wish to thank the excellent and devoted technical help and animal care provided by Mr. Eduardo Henrique Gonçalves, Mrs. Joanésia M. J. Rothstein, Mr. Marco A. de Lorenzo, and Mr. Emerson V. Fornalski throughout the experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fernando Falkenburger Melleu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 657 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Melleu, F.F., Lino-de-Oliveira, C. & Marino-Neto, J. The mesencephalic GCt–ICo complex and tonic immobility in pigeons (Columba livia): a c-Fos study. Brain Struct Funct 222, 1253–1265 (2017). https://doi.org/10.1007/s00429-016-1275-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-016-1275-0

Keywords

Navigation