Skip to main content

Advertisement

Log in

Chemical anatomy of pallidal afferents in primates

  • Review
  • Published:
Brain Structure and Function Aims and scope Submit manuscript

Abstract

Neurons of the globus pallidus receive massive inputs from the striatum and the subthalamic nucleus, but their activity, as well as those of their striatal and subthalamic inputs, are modulated by brainstem afferents. These include serotonin (5-HT) projections from the dorsal raphe nucleus, cholinergic (ACh) inputs from the pedunculopontine tegmental nucleus, and dopamine (DA) afferents from the substantia nigra pars compacta. This review summarizes our recent findings on the distribution, quantitative and ultrastructural aspects of pallidal 5-HT, ACh and DA innervations. These results have led to the elaboration of a new model of the pallidal neuron based on a precise knowledge of the hierarchy and chemical features of the various synaptic inputs. The dense 5-HT, ACh and DA innervations disclosed in the associative and limbic pallidal territories suggest that these brainstem inputs contribute principally to the planification of motor behaviors and the regulation of attention and mood. Although 5-HT, ACh and DA inputs were found to modulate pallidal neurons and their afferents mainly through asynaptic (volume) transmission, genuine synaptic contacts occur between these chemospecific axon varicosities and pallidal dendrites, revealing that these brainstem projections have a direct access to pallidal neurons, in addition to their indirect input through the striatum and subthalamic nucleus. Altogether, these findings reveal that the brainstem 5-HT, ACh and DA pallidal afferents act in concert with the more robust GABAergic inhibitory striatopallidal and glutamatergic excitatory subthalamopallidal inputs. We hypothesize that a fragile equilibrium between forebrain and brainstem pallidal afferents plays a key role in the functional organization of the primate basal ganglia, in both health and disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Albin RL, Young AB, Penney JB (1989) The functional anatomy of basal ganglia disorders. Trends Neurosci 12(10):366–375

    Article  CAS  PubMed  Google Scholar 

  • Alexander GE, DeLong MR, Strick PL (1986) Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Annu Rev Neurosci 9:357–381

    Article  CAS  PubMed  Google Scholar 

  • Armonda RA, Carpenter MB (1991) Distribution of cholinergic pallidal neurons in the squirrel monkey (Saimiri sciureus) based upon choline acetyltransferase. Journal für Hirnforschung 32(3):357–367

    CAS  PubMed  Google Scholar 

  • Azmitia EC, Gannon PJ (1986) The primate serotonergic system: a review of human and animal studies and a report on Macaca fascicularis. Adv Neurol 43:407–468

    CAS  PubMed  Google Scholar 

  • Baker K, Halliday G, Törk I (1990) Cytoarchitecture of the human dorsal raphe nucleus. J Comp Neurol 301(2):147–161

    Article  CAS  PubMed  Google Scholar 

  • Baxter MG, Chiba AA (1999) Cognitive functions of the basal forebrain. Curr Opin Neurobiol 9(2):178–183

    Article  CAS  PubMed  Google Scholar 

  • Beaudet A, Sotelo C (1981) Synaptic remodeling of serotonin axon terminals in rat agranular cerebellum. Brain Res 206(2):305–329

    Article  CAS  PubMed  Google Scholar 

  • Beckstead RM (1983) A pallidostriatal projection in the cat and monkey. Brain Res Bull 11(6):629–632

    Article  CAS  PubMed  Google Scholar 

  • Bédard C, Wallman MJ, Pourcher E, Gould PV, Parent A, Parent M (2011) Serotonin and dopamine striatal innervation in Parkinson’s disease and Huntington’s chorea. Parkinson Relat Disord 17(8):593–598

    Article  Google Scholar 

  • Benazzouz A, Mamad O, Abedi P, Bouali-Benazzouz R, Chetrit J (2014) Involvement of dopamine loss in extrastriatal basal ganglia nuclei in the pathophysiology of Parkinson’s disease. Front Aging Neurosci 6(87):1–5

    Google Scholar 

  • Benhamou L, Bronfeld M, Bar-Gad I, Cohen D (2012) Globus Pallidus external segment neuron classification in freely moving rats: a comparison to primates. PLoS One 7(9):e45421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bernard V, Norm E, Bloch B (1992) Phenotypical characterization of the rat striatal neurons expressing muscarinic receptor genes. J Neurosci 12(9):3591–3600

    CAS  PubMed  Google Scholar 

  • Bevan MD, Clarke NP, Bolam JP (1997) Synaptic integration of functionally diverse pallidal information in the entopeduncular nucleus and subthalamic nucleus in the rat. J Neurosci 17(1):308–324

    CAS  PubMed  Google Scholar 

  • Björklund A, Dunnett SB (2007) Dopamine neuron systems in the brain: an update. Trends Neurosci 30(5):194–202

    Article  PubMed  CAS  Google Scholar 

  • Bobillier P, Seguin S, Petitjean F, Salvert D, Touret M, Jouvet M (1976) The raphe nuclei of the cat brain stem: a topographical atlas of their efferent projections as revealed by autoradiography. Brain Res 113(3):449–486

    Article  CAS  PubMed  Google Scholar 

  • Bogenpohl J, Galvan A, Hu X, Wichmann T, Smith Y (2013) Metabotropic glutamate receptor 4 in the basal ganglia of parkinsonian monkeys: ultrastructural localization and electrophysiological effects of activation in the striatopallidal complex. Neuropharmacology 66:242–252

    Article  CAS  PubMed  Google Scholar 

  • Bohnen NI, Albin RL (2011) The cholinergic system and Parkinson disease. Behav Brain Res 221(2):564–573

    Article  CAS  PubMed  Google Scholar 

  • Bolam JP, Smith Y (1992) The striatum and the globus pallidus send convergent synaptic inputs onto single cells in the entopeduncular nucleus of the rat: a double anterograde labelling study combined with postembedding immunocytochemistry for GABA. J Comp Neurol 321(3):456–476

    Article  CAS  PubMed  Google Scholar 

  • Boraud T, Bezard E, Guehl D, Bioulac B, Gross C (1998) Effects of l-DOPA on neuronal activity of the globus pallidus externalis (GPe) and globus pallidus internalis (GPi) in the MPTP-treated monkey. Brain Res 787(1):157–160

    Article  CAS  PubMed  Google Scholar 

  • Braak H, del Tredici K, Rüb U, de Vos RAI, Steur ENHJ, Braak E (2003) Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol Aging 24(2):197–211

    Article  PubMed  Google Scholar 

  • Bryant CE, Rupniak NM, Iversen SD (1988) Effects of different environmental enrichment devices on cage stereotypies and autoaggression in captive cynomolgus monkeys. J Med Primatol 17(5):257–269

    CAS  PubMed  Google Scholar 

  • Burdach K (1822) Vom Baue und Leben des Gehirns, vol 2. Dyk, Leipzig

    Google Scholar 

  • Canteras NS, Shammah-Lagnado SJ, Silva BA, Ricardo JA (1990) Afferent connections of the subthalamic nucleus: a combined retrograde and anterograde horseradish peroxidase study in the rat. Brain Res 513(1):43–59

    Article  CAS  PubMed  Google Scholar 

  • Carpenter MB, Strominger NL (1967) Efferent fibers of the subthalamic nucleus in the monkey. A comparison of the efferent projections of the subthalamic nucleus, substantia nigra and globus pallidus. Am J Anat 121(1):41–72

    Article  CAS  PubMed  Google Scholar 

  • Carpenter MB 3rd, Batton RR, Carleton SC, Keller JT (1981) Interconnections and organization of pallidal and subthalamic nucleus neurons in the monkey. J Comp Neurol 197(4):579–603

    Article  CAS  PubMed  Google Scholar 

  • Carta M, Carlsson T, Kirik D, Bjorklund A (2007) Dopamine released from 5-HT terminals is the cause of l-DOPA-induced dyskinesia in parkinsonian rats. Brain 130(7):1819–1833

    Article  PubMed  Google Scholar 

  • Castro ME, Pascual J, Romón T, Berciano J, Figols J, Pazos A (1998) 5-HT1B receptor binding in degenerative movement disorders. Brain Res 790:323–328

    Article  CAS  PubMed  Google Scholar 

  • Celio MR (1986) Parvalbumin in most gamma-aminobutyric acid-containing neurons of the rat cerebral cortex. Science 231(4741):995–997

    Article  CAS  PubMed  Google Scholar 

  • Chan-Palay V (1977) Indoleamine neurons and their processes in the normal rat brain and in chronic diet-induced thiamine deficiency demonstrated by uptake of 3H-serotonin. J Comp Neurol 176(4):467–493

    Article  CAS  PubMed  Google Scholar 

  • Charara A, Parent A (1994) Brainstem dopaminergic, cholinergic and serotoninergic afferents to the pallidum in the squirrel monkey. Brain Res 640:155–170

    Article  CAS  PubMed  Google Scholar 

  • Charara A, Heilman TC, Levey AI, Smith Y (2000) Pre- and postsynaptic localization of GABA(B) receptors in the basal ganglia in monkeys. Neuroscience 95(1):127–140

    Article  CAS  PubMed  Google Scholar 

  • Charara A, Galvan A, Kuwajima M, Hall RA, Smith Y (2004) An electron microscope immunocytochemical study of GABAB R2 receptors in the monkey basal ganglia: a comparative analysis with GABAB R1 receptor distribution. J Comp Neurol 476(1):65–79

    Article  CAS  PubMed  Google Scholar 

  • Charara A, Pare JF, Levey AI, Smith Y (2005) Synaptic and extrasynaptic GABA-A and GABA-B receptors in the globus pallidus: an electron microscopic immunogold analysis in monkeys. Neuroscience 131(4):917–933

    Article  CAS  PubMed  Google Scholar 

  • Cools A, van den Bercken J, Horstink M, van Spaendonck K, Berger H (1981) The basal ganglia and the programming of behaviour. Trends Neurosci 4:124–125

    Article  Google Scholar 

  • Cooper AJ, Stanford IM (2002) Calbindin D-28k positive projection neurons and calretinin positive interneurones of the rat globus pallidus. Brain Res 929(2):243–251

    Article  CAS  PubMed  Google Scholar 

  • Cortés R, Probst A, Palacios JM (1984) Quantitative light microscopic autoradiographic localization of cholinergic muscarinic receptors in the human brain: brainstem. Neuroscience 12(4):1003–1026

    Article  PubMed  Google Scholar 

  • Cortés R, Probst A, Palacios JM (1987) Quantitative light microscopic autoradiographic localization of cholinergic muscarinic receptors in the human brain: forebrain. Neuroscience 20(1):65–107

    Article  PubMed  Google Scholar 

  • Cossette M, Lévesque M, Parent A (1999) Extrastriatal dopaminergic innervation of human basal ganglia. Neurosci Res 34(1):51–54

    Article  CAS  PubMed  Google Scholar 

  • Dautan D, Huerta-Ocampo I, Witten IB, Deisseroth K, Bolam JP, Gerdjikov T, Mena-Segovia J (2014) A major external source of cholinergic innervation of the striatum and nucleus accumbens originates in the brainstem. J Neurosci 34(13):4509–4518

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Davids E, Zhang K, Tarazi FI, Baldessarini RJ (2003) Animal models of attention-deficit hyperactivity disorder. Brain Res Rev 42(1):1–21

    Article  PubMed  Google Scholar 

  • Debeir T, Ginestet L, François C, Laurens S, Martel JC, Chopin P, Marien M, Colpaert F, Raisman-Vozari R (2005) Effect of intrastriatal 6-OHDA lesion on dopaminergic innervation of the rat cortex and globus pallidus. Exp Neurol 193(2):444–454

    Article  CAS  PubMed  Google Scholar 

  • Delaville C, Navailles S, Benazzouz A (2012) Effects of noradrenaline and serotonin depletions on the neuronal activity of globus pallidus and substantia nigra pars reticulata in experimental parkinsonism. Neuroscience 202:424–433

    Article  CAS  PubMed  Google Scholar 

  • DeLong MR (1971) Activity of pallidal neurons during movement. J Neurophysiol 34(3):414–427

    CAS  PubMed  Google Scholar 

  • DeLong MR (1990) Primate models of movement disorders of basal ganglia origin. Trends Neurosci 13(7):281–285

    Article  CAS  PubMed  Google Scholar 

  • DeLong MR, Wichmann T (2015) Basal ganglia circuits as targets for neuromodulation in Parkinson disease. JAMA Neurol 72(11):1354–1360

    Article  PubMed  Google Scholar 

  • Descarries L (1998) The hypothesis of an ambient level of acetylcholine in the central nervous system. J Physiol 92(3–4):215–220

    CAS  Google Scholar 

  • Descarries L, Mechawar N (2008) Structural organization of monoamine and acetylcholine neuron systems in the rat CNS. In: Lajtha A, Vizi E (eds) Handbook of neurochemistry and molecular biology. Springer, New York, pp 1–20

    Google Scholar 

  • Descarries L, Gisiger V, Steriade M (1997) Diffuse transmission by acetylcholine in the CNS. Prog Neurobiol 53(5):603–625

    Article  CAS  PubMed  Google Scholar 

  • Descarries L, Riad M, Parent M (2010) Ultrastructure of the serotonin innervation in the mammalian central nervous system. In: Muller CP, Jacobs BL (eds) Handbook of behavioral neuroscience. Academic Press, London, pp 65–102

    Google Scholar 

  • Deschênes M, Bourassa J, Doan VD, Parent A (1996) A single-cell study of the axonal projections arising from the posterior intralaminar thalamic nuclei in the rat. Eur J Neurosci 8(2):329–343

    Article  PubMed  Google Scholar 

  • DeVito JL, Anderson ME, Walsh KE (1980) A horseradish peroxidase study of afferent connections of the globus pallidus in Macaca mulatta. Exp Brain Res 38(1):65–73

    Article  CAS  PubMed  Google Scholar 

  • Di Giovanni G, Esposito E, Di Matteo V (2010) Role of serotonin in central dopamine dysfunction. CNS Neurosci Ther 16(3):179–194

    Article  PubMed  CAS  Google Scholar 

  • Di Matteo V, Pierucci M, Esposito E, Crescimanno G, Benigno A, Di Giovanni G (2008) Serotonin modulation of the basal ganglia circuitry: therapeutic implication for Parkinson’s disease and other motor disorders. Prog Brain Res 172:423–463

    Article  PubMed  CAS  Google Scholar 

  • DiFiglia M, Rafols JA (1988) Synaptic organization of the globus pallidus. J Electron Microsc Tech 10(3):247–263

    Article  CAS  PubMed  Google Scholar 

  • DiFiglia M, Pasik P, Pasik T (1982) A Golgi and ultrastructural study of the monkey globus pallidus. J Comp Neurol 212(1):53–75

    Article  CAS  PubMed  Google Scholar 

  • Dopeso-Reyes IG, Rico AJ, Roda E, Sierra S, Pignataro D, Lanz M, Sucunza D, Chang-Azancot L, Lanciego JL (2014) Calbindin content and differential vulnerability of midbrain efferent dopaminergic neurons in macaques. Front Neuroanat 8(146):1–12

    Google Scholar 

  • Eid L, Parent M (2015a) Cholinergic neurons intrinsic to the primate external pallidum. Synapse 69(8):416–419

    Article  CAS  PubMed  Google Scholar 

  • Eid L, Parent M (2015b) Morphological evidence for dopamine interactions with pallidal neurons in primates. Front Neuroanat 9(111):1–14

    Google Scholar 

  • Eid L, Champigny MF, Parent A, Parent M (2013) Quantitative and ultrastructural study of serotonin innervation of the globus pallidus in squirrel monkeys. Eur J Neurosci 37(10):1659–1668

    Article  PubMed  Google Scholar 

  • Eid L, Parent A, Parent M (2016) Asynaptic feature and heterogeneous distribution of the cholinergic innervation of the globus pallidus in primates. Brain Struct Funct 221(2):1139–1155

    Article  CAS  PubMed  Google Scholar 

  • Everitt BJ, Sirkiä TE, Roberts AC, Jones GH, Robbins TW (1988) Distribution and some projections of cholinergic neurons in the brain of the common marmoset, Callithrix jacchus. J Comp Neurol 271(4):533–558

    Article  CAS  PubMed  Google Scholar 

  • Fernández-Suárez D, Celorrio M, Lanciego JL, Franco R, Aymerich MS (2012) Loss of parvalbumin-positive neurons from the globus pallidus in animal models of Parkinson disease. J Neuropathol Exp Neurol 71(11):973–982

    Article  PubMed  CAS  Google Scholar 

  • Filion M, Tremblay L (1991) Abnormal spontaneous activity of globus pallidus neurons in monkeys with MPTP-induced parkinsonism. Brain Res 547(1):142–151

    CAS  PubMed  Google Scholar 

  • Filion M, Tremblay L, Bédard PJ (1991) Effects of dopamine agonists on the spontaneous activity of globus pallidus neurons in monkeys with MPTP-induced parkinsonism. Brain Res 547(1):152–161

    CAS  PubMed  Google Scholar 

  • Flaherty AW, Graybiel AM (1994) Input-output organization of the sensorimotor striatum in the squirrel monkey. J Neurosci 14(2):599–610

    CAS  PubMed  Google Scholar 

  • Fortin M, Parent A (1994) Calretinin labels a specific neuronal subpopulation in primate globus pallidus. Neuroreport 5(16):2097–2100

    Article  CAS  PubMed  Google Scholar 

  • Fox SH (2013) Non-dopaminergic treatments for motor control in Parkinson’s disease. Drugs 73(13):1405–1415

    Article  CAS  PubMed  Google Scholar 

  • Fox CA, Andrade AN, Qui IJL, Rafols JA (1974) The primate globus pallidus: a Golgi and electron microscopic study. Journal für Hirnforschung 15(1):75–93

    CAS  PubMed  Google Scholar 

  • François C, Percheron G, Yelnik J, Heyner S (1984) A Golgi analysis of the primate globus pallidus. I. Inconstant processes of large neurons, other neuronal types, and afferent axons. J Comp Neurol 227(2):182–199

    Article  PubMed  Google Scholar 

  • François C, Yelnik J, Percheron G, Fénelon G (1994) Topographic distribution of the axonal endings from the sensorimotor and associative striatum in the macaque pallidum and substantia nigra. Exp Brain Res 102(2):305–318

    Article  PubMed  Google Scholar 

  • François C, Grabli D, McCairn K, Jan Karachi C, Hirsch EC, Féger J, Tremblay L (2004) Behavioural disorders induced by external globus pallidus dysfunction in primates II. Anatomical study. Brain 127(9):2055–2070

    Article  PubMed  Google Scholar 

  • Fuchs H, Hauber W (2004) Dopaminergic innervation of the rat globus pallidus characterized by microdialysis and immunohistochemistry. Exp Brain Res 154(1):66–75

    Article  CAS  PubMed  Google Scholar 

  • Gagnon D, Parent M (2014) Distribution of VGLUT3 in highly collateralized axons from the rat dorsal raphe nucleus as revealed by single-neuron reconstructions. PLoS One 9(2):e87709

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gagnon D, Gregoire L, Di Paolo T, Parent M (2015) Serotonin hyperinnervation of the striatum with high synaptic incidence in parkinsonian monkeys. Brain Struct Funct [Epub ahead of print]

  • Galvan A, Floran B, Erlij D, Aceves J (2001) Intrapallidal dopamine restores motor deficits induced by 6-hydroxydopamine in the rat. J Neural Transm 108(2):153–166

    Article  CAS  PubMed  Google Scholar 

  • Galvan A, Villalba RM, West SM, Maidment NT, Ackerson LC, Yol Smith Y, Smith Wichmann T (2005) GABAergic modulation of the activity of globus pallidus neurons in primates: in vivo analysis of the functions of GABA receptors and GABA transporters. J Neurophysiol 94(2):990–1000

    Article  CAS  PubMed  Google Scholar 

  • Gash DM, Zhang Z, Ovadia A, Cass WA, Yi A, Simmerman L, Russell D, Martin D, Lapchak PA, Collins F, Hoffer BJ, Gerhardt GA (1996) Functional recovery in parkinsonian monkeys treated with GDNF. Nature 380:252–255

    Article  CAS  PubMed  Google Scholar 

  • Gauthier J, Parent M, Lévesque M, Parent A (1999) The axonal arborization of single nigrostriatal neurons in rats. Brain Res 834:228–232

    Article  CAS  PubMed  Google Scholar 

  • Gerfen CR, Bolam JP (2010) The neuroanatomical organization of the basal ganglia. In: Steiner H, Tseng KY (eds) Handbook of basal ganglia structure and function. Academic Press/Elsevier, London, pp 3–28

    Chapter  Google Scholar 

  • Giménez-Amaya JM, Graybiel AM (1990) Compartmental origins of the striatopallidal projection in the primate. Neuroscience 34(1):111–126

    Article  PubMed  Google Scholar 

  • Grabli D, McCairn K, Hirsch EC, Agid Y, Féger J, François C, Tremblay L (2004) Behavioural disorders induced by external globus pallidus dysfunction in primates: I. Behavioural study. Brain 127(9):2039–2054

    Article  PubMed  Google Scholar 

  • Grabli D, Karachi C, Folgoas E, Monfort M, Tande D, Clark S, Civelli O, Hirsch EC, Francois C (2013) Gait disorders in parkinsonian monkeys with pedunculopontine nucleus lesions: a tale of two systems. J Neurosci 33(29):11986–11993

    Article  CAS  PubMed  Google Scholar 

  • Griffiths PD, Sambrook MA, Perry R, Crossman AR (1990) Changes in benzodiazepine and acetylcholine receptors in the globus pallidus in Parkinson’s disease. J Neurol Sci 100(1–2):131–136

    Article  CAS  PubMed  Google Scholar 

  • Groenewegen HJ, van den Heuvel OA, Cath DC, Voorn P, Veltman DJ (2003) Does an imbalance between the dorsal and ventral striatopallidal systems play a role in Tourette’s syndrome? A neuronal circuit approach. Brain Dev 25(Suppl 1):S3–S14

    Article  PubMed  Google Scholar 

  • Gurevich EV, Joyce JN (1999) Distribution of dopamine D3 receptor expressing neurons in the human forebrain: comparison with D2 receptor expressing neurons. Neuropsychopharmacology 20(1):60–80

    Article  CAS  PubMed  Google Scholar 

  • Haber S, Elde R (1982) The distribution of enkephalin immunoreactive fibers and terminals in the monkey central nervous system: an immunohistochemical study. Neuroscience 7(5):1049–1095

    Article  CAS  PubMed  Google Scholar 

  • Haber SN, Lynd E, Klein C, Groenewegen HJ (1990) Topographic organization of the ventral striatal efferent projections in the rhesus monkey: an anterograde tracing study. J Comp Neurol 293(2):282–298

    Article  CAS  PubMed  Google Scholar 

  • Hadipour-Niktarash A, Rommelfanger KS, Masilamoni GJ, Smith Y, Wichmann T (2012) Extrastriatal D2-like receptors modulate basal ganglia pathways in normal and parkinsonian monkeys. J Neurophysiol 107(5):1500–1512

    Article  CAS  PubMed  Google Scholar 

  • Hall H, Lundkvist C, Halldin C, Farde L, Pike VW, McCarron JA, Fletcher A, Cliffe IA, Barf T, Wikström H, Sedvall G (1997) Autoradiographic localization of 5-HT1A receptors in the post-mortem human brain using [3H]WAY-100635 and [11C]way-100635. Brain Res 745(1–2):96–108

    Article  CAS  PubMed  Google Scholar 

  • Halliday GM, Blumbergs PC, Cotton RG, Blessing WW, Geffen LB (1990a) Loss of brainstem serotonin- and substance P-containing neurons in Parkinson’s disease. Brain Res 510(1):104–107

    Article  CAS  PubMed  Google Scholar 

  • Halliday GM, Li YW, Blumbergs PC, Joh TH, Cotton RG, Howe PR, Blessing WW, Geffen LB (1990b) Neuropathology of immunohistochemically identified brainstem neurons in Parkinson’s disease. Ann Neurol 27(4):373–385

    Article  CAS  PubMed  Google Scholar 

  • Hanson JE, Smith Y (1999) Group I metabotropic glutamate receptors at GABAergic synapses in monkeys. J Neurosci 19(15):6488–6496

    CAS  PubMed  Google Scholar 

  • Hardman CD, Henderson JM, Finkelstein DI, Horne MK, Paxinos G, Halliday GM (2002) Comparison of the basal ganglia in rats, marmosets, macaques, baboons, and humans: volume and neuronal number for the output, internal relay, and striatal modulating nuclei. J Comp Neurol 445(3):238–255

    Article  PubMed  Google Scholar 

  • Hasselmo ME (1995) Neuromodulation and cortical function: modeling the physiological basis of behavior. Behav Brain Res 67(1):1–27

    Article  CAS  PubMed  Google Scholar 

  • Hauber W, Lutz S (1999) Dopamine D1 or D2 receptor blockade in the globus pallidus produces akinesia in the rat. Behav Brain Res 106:143–150

    Article  CAS  PubMed  Google Scholar 

  • Hazrati LN, Parent A (1992a) Convergence of subthalamic and striatal efferents at pallidal level in primates: an anterograde double-labeling study with biocytin and PHA-L. Brain Res 569(2):336–340

    Article  CAS  PubMed  Google Scholar 

  • Hazrati LN, Parent A (1992b) The striatopallidal projection displays a high degree of anatomical specificity in the primate. Brain Res 592:213–227

    Article  CAS  PubMed  Google Scholar 

  • Hazrati LN, Parent A, Mitchell S, Haber SN (1990) Evidence for interconnections between the two segments of the globus pallidus in primates: a PHA-L anterograde tracing study. Brain Res 533(1):171–175

    Article  CAS  PubMed  Google Scholar 

  • He L, Di Monte DA, Langston JW, Quik M (2000) Autoradiographic analysis of N-methyl-d-aspartate receptor binding in monkey brain: effects of 1-methyl-4-phenyl-1,2,3, 6-tetrahydropyridine and levodopa treatment. Neuroscience 99(4):697–704

    Article  CAS  PubMed  Google Scholar 

  • Heckers S, Geula C, Mesulam MM (1992) Cholinergic innervation of the human thalamus: dual origin and differential nuclear distribution. J Comp Neurol 325(1):68–82

    Article  CAS  PubMed  Google Scholar 

  • Hedreen JC (1999) Tyrosine hydroxylase-immunoreactive elements in the human globus pallidus and subthalamic nucleus. J Comp Neurol 409(3):400–410

    Article  CAS  PubMed  Google Scholar 

  • Hedreen JC, DeLong MR (1991) Organization of striatopallidal, striatonigral, and nigrostriatal projections in the macaque. J Comp Neurol 304(4):569–595

    Article  CAS  PubMed  Google Scholar 

  • Hikosaka O, Nakamura K, Sakai K, Nakahara H (2002) Central mechanisms of motor skill learning. Curr Opin Neurobiol 12(2):217–222

    Article  CAS  PubMed  Google Scholar 

  • Hoover B, Marshall J (2002) Further characterization of preproenkephalin mRNA-containing cells in the rodent globus pallidus. Neuroscience 111(1):111–125

    Article  CAS  PubMed  Google Scholar 

  • Hoyer D, Hannon JP, Martin GR (2002) Molecular, pharmacological and functional diversity of 5-HT receptors. Pharmacol Biochem Behav 71(4):533–554

    Article  CAS  PubMed  Google Scholar 

  • Huot P, Fox SH (2013) The serotonergic system in motor and non-motor manifestations of Parkinson’s disease. Exp Brain Res 230(4):463–476

    Article  CAS  PubMed  Google Scholar 

  • Huot P, Fox SH, Newman-Tancredi A, Brotchie JM (2011) Anatomically selective serotonergic type 1A and serotonergic type 2A therapies for Parkinson’s disease: an approach to reducing dyskinesia without exacerbating parkinsonism? J Pharmacol Exp Ther 339(1):2–8

    Article  CAS  PubMed  Google Scholar 

  • Huot P, Johnston TH, Winkelmolen L, Fox SH, Brotchie JM (2012) 5-HT2A receptor levels increase in MPTP-lesioned macaques treated chronically with l-DOPA. Neurobiol Aging 33(1):194.e5–194.e15

    Article  CAS  Google Scholar 

  • Jan C, François C, Tandé D, Yelnik J, Tremblay L, Agid Y, Hirsch E (2000) Dopaminergic innervation of the pallidum in the normal state, in MPTP-treated monkeys and in parkinsonian patients. Eur J Neurosci 12(12):4525–4535

    CAS  PubMed  Google Scholar 

  • Jin XT, Smith Y (2011) Localization and functions of kainate receptors in the basal ganglia. Adv Exp Med Biol 717:27–37

    Article  CAS  PubMed  Google Scholar 

  • Kane-Jackson R, Smith Y (2003) Pre-synaptic kainate receptors in GABAergic and glutamatergic axon terminals in the monkey globus pallidus. Neuroscience 122(2):285–289

    Article  CAS  PubMed  Google Scholar 

  • Karain B, Xu D, Bellone JA, Hartman RE, Shi WX (2015) Rat globus pallidus neurons: functional classification and effects of dopamine depletion. Synapse 69(1):41–51

    Article  CAS  PubMed  Google Scholar 

  • Kayadjanian N, Rétaux S, Menétrey A, Besson MJ (1994) Stimulation by nicotine of the spontaneous release of [H]gamma-aminobutyric acid in the substantia nigra and in the globus pallidus of the rat. Brain Res 649(1–2):129–135

    Article  CAS  PubMed  Google Scholar 

  • Kayadjanian N, Menétrey A, Besson MJ (1997) Activation of muscarinic receptors stimulates GABA release in the rat globus pallidus. Synapse 26(2):131–139

    Article  CAS  PubMed  Google Scholar 

  • Kempf F, Brücke C, Kühn AA, Schneider GH, Kupsch A, Chen CC, Androulidakis AG, Wang S, Vandenberghe W, Nuttin B, Aziz T, Brown P (2007) Modulation by dopamine of human basal ganglia involvement in feedback control of movement. Curr Biol 17(15):R587–R589

    Article  CAS  PubMed  Google Scholar 

  • Kim R, Nakano K, Jayaraman A, Carpenter MB (1976) Projections of the globus pallidus and adjacent structures: an autoradiographic study in the monkey. J Comp Neurol 169(3):263–290

    Article  CAS  PubMed  Google Scholar 

  • Kincaid AE, Penney JB Jr, Young AB, Newman SW (1991) The globus pallidus receives a projection from the parafascicular nucleus in the rat. Brain Res 553(1):18–26

    Article  CAS  PubMed  Google Scholar 

  • Kita H (2007) Globus pallidus external segment. Prog Brain Res 160:111–133

    Article  CAS  PubMed  Google Scholar 

  • Kita H (2010) Organization of the globus pallidus. In: Steiner H, Tseng KY (eds) Handbook of basal ganglia structure and function. Academic Press Elsevier, London, pp 223–247

    Google Scholar 

  • Kita H, Kitai ST (1987) Efferent projections of the subthalamic nucleus in the rat: light and electron microscopic analysis with the PHA-L method. J Comp Neurol 260(3):435–452

    Article  CAS  PubMed  Google Scholar 

  • Kita H, Tokuno H, Nambu A (1999) Monkey globus pallidus external segment neurons projecting to the neostriatum. Neuroreport 10(7):1467–1472

    Article  CAS  PubMed  Google Scholar 

  • Kita H, Nambu A, Kaneda K, Tachibana Y, Takada M (2004) Role of ionotropic glutamatergic and GABAergic inputs on the firing activity of neurons in the external pallidum in awake monkeys. J Neurophysiol 92(5):3069–3084

    Article  CAS  PubMed  Google Scholar 

  • Kita H, Chiken S, Tachibana Y, Nambu A (2007) Serotonin modulates pallidal neuronal activity in the awake monkey. J Neurosci 27(1):75–83

    Article  CAS  PubMed  Google Scholar 

  • Kitai S, Kita H (1987) Anatomy and physiology of the subthalamic nucleus: a driving force of the basal ganglia. In: Carpenter MB, Jayaraman A (eds) The basal ganglia II. Plenum Press, New York, pp 357–373

    Chapter  Google Scholar 

  • Kliem MA, Maidment NT, Ackerson LC, Chen S, Smith Y, Wichmann T (2007) Activation of nigral and pallidal dopamine D1-like receptors modulates basal ganglia outflow in monkeys. J Neurophysiol 98(3):1489–1500

    Article  CAS  PubMed  Google Scholar 

  • Kliem MA, Paré JF, Khan ZU, Wichmann T, Smith Y (2010) Ultrastructural localization and function of dopamine D1-like receptors in the substantia nigra pars reticulata and the internal segment of the globus pallidus of parkinsonian monkeys. Eur J Neurosci 31(5):836–851

    Article  PubMed  PubMed Central  Google Scholar 

  • Kosinski CM, Standaert DG, Counihan TJ, Scherzer CR, Kerner JA, Daggett LP, Veliçelebi G, Penney JB, Young AB, Landwehrmeyer GB (1998) Expression of N-methyl-d-aspartate receptor subunit mRNAs in the human brain: striatum and globus pallidus. J Comp Neurol 390(1):63–74

    Article  CAS  PubMed  Google Scholar 

  • Laurie DJ, Seeburg PH (1994) Ligand affinities at recombinant N-methyl-d-aspartate receptors depend on subunit composition. Eur J Pharmacol 268(3):335–345

    Article  CAS  PubMed  Google Scholar 

  • Lavoie B, Parent A (1990) Immunohistochemical study of the serotoninergic innervation of the basal ganglia in the squirrel monkey. J Comp Neurol 299(1):1–16

    Article  CAS  PubMed  Google Scholar 

  • Lavoie B, Parent A (1991) Serotoninergic innervation of the thalamus in the primate: an immunohistochemical study. J Comp Neurol 312(1):1–18

    Article  CAS  PubMed  Google Scholar 

  • Lavoie B, Parent A (1994a) Pedunculopontine nucleus in the squirrel monkey: cholinergic and glutamatergic projections to the substantia nigra. J Comp Neurol 344(2):232–241

    Article  CAS  PubMed  Google Scholar 

  • Lavoie B, Parent A (1994b) Pedunculopontine nucleus in the squirrel monkey: projections to the basal ganglia as revealed by anterograde tract-tracing methods. J Comp Neurol 344(2):210–231

    Article  CAS  PubMed  Google Scholar 

  • Lavoie B, Smith Y, Parent A (1989) Dopaminergic innervation of the basal ganglia in the squirrel monkey as revealed by tyrosine hydroxylase immunohistochemistry. J Comp Neurol 289(1):36–52

    Article  CAS  PubMed  Google Scholar 

  • Lee MS, Rinne JO, Marsden CD (2000) The pedunculopontine nucleus: its role in the genesis of movement disorders. Yonsei Med J 41(2):167–184

    Article  CAS  PubMed  Google Scholar 

  • Lee M, Ryu YH, Cho WG, Kang YW, Lee SJ, Jeon TJ, Lyoo CH, Kim CH, Kim DG, Lee K, Choi TH, Choi JY (2015) Relationship between dopamine deficit and the expression of depressive behavior resulted from alteration of serotonin system. Synapse 69(9):453–460

    Article  CAS  PubMed  Google Scholar 

  • Lénárd L, Karádi Z, Faludi B, Czurkó A, Niedetzky C, Vida I, Nishino H (1995) Glucose-sensitive neurons of the globus pallidus: I. Neurochemical characteristics. Brain Res Bull 37(2):149–155

    Article  PubMed  Google Scholar 

  • Lindvall O, Björklund A (1979) Dopaminergic innervation of the globus pallidus by collaterals from the nigrostriatal pathway. Brain Res 172(1):169–173

    Article  CAS  PubMed  Google Scholar 

  • Mallet N, Micklem BR, Henny P, Brown MT, Williams C, Bolam JP, Nakamura KC, Magill PJ (2012) Dichotomous organization of the external globus pallidus. Neuron 74(6):1075–1086

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marsden CD (1980) The enigma of the basal ganglia and movement. Trends Neurosci 3:284–287

    Article  Google Scholar 

  • Marsden CD (1981) The basal ganglia and the programming of behaviour: motor activity and the outputs of the basal ganglia. Trends Neurosci 4:124–125

    Article  Google Scholar 

  • Martinez-Gonzalez C, Bolam JP, Mena-Segovia J (2011) Topographical organization of the pedunculopontine nucleus. Front Neuroanat 5(22):1–10

    Google Scholar 

  • Martinez-Martin P, Chaudhuri KR, Rojo-Abuin JM, Rodriguez-Blazquez C, Alvarez-Sanchez M, Arakaki T, Bergareche-Yarza A, Chade A, Garretto N, Gershanik O, Kurtis MM, Martinez-Castrillo JC, Mendoza-Rodriguez A, Moore HP, Rodriguez-Violante M, Singer C, Tilley BC, Huang J, Stebbins GT, Goetz CG (2015) Assessing the non-motor symptoms of Parkinson’s disease: MDS-UPDRS and NMS Scale. Eur J Neurol 22(1):37–43

    Article  CAS  PubMed  Google Scholar 

  • Mastro KJ, Bouchard RS, Holt HAK, Gittis AH (2014) Transgenic mouse lines subdivide external segment of the globus pallidus (GPe) neurons and reveal distinct GPe output pathways. J Neurosci 34(6):2087–2099

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matsumoto N, Hanakawa T, Maki S, Graybiel AM, Kimura M (1999) Nigrostriatal dopamine system in learning to perform sequential motor tasks in a predictive manner. J Neurophysiol 82(2):978–998

    CAS  PubMed  Google Scholar 

  • McCormick DA (1992) Neurotransmitter actions in the thalamus and cerebral cortex and their role in neuromodulation of thalamocortical activity. Prog Neurobiol 39(4):337–388

    Article  CAS  PubMed  Google Scholar 

  • Mena-Segovia J, Bolam JP, Magill PJ (2004) Pedunculopontine nucleus and basal ganglia: distant relatives or part of the same family? Trends Neurosci 27(10):585–588

    Article  CAS  PubMed  Google Scholar 

  • Mena-Segovia J, Sims HM, Magill PJ, Bolam JP (2008) Cholinergic brainstem neurons modulate cortical gamma activity during slow oscillations. J Physiol 586(12):2947–2960

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mesulam MM, Mufson EJ (1984) Neural inputs into the nucleus basalis of the substantia innominata (Ch4) in the rhesus monkey. Brain 107:253–274

    Article  PubMed  Google Scholar 

  • Mesulam MM, Mash D, Hersh L, Bothwell M, Geula C (1992) Cholinergic innervation of the human striatum, globus pallidus, subthalamic nucleus, substantia nigra, and red nucleus. J Comp Neurol 323(2):252–268

    Article  CAS  PubMed  Google Scholar 

  • Milardi D, Gaeta M, Marino S, Arrigo A, Vaccarino G, Mormina E, Rizzo G, Milazzo C, Finocchio G, Baglieri A, Anastasi G, Quartarone A (2015) Basal ganglia network by constrained spherical deconvolution: a possible cortico-pallidal pathway? Mov Disord 30(3):342–349

    Article  PubMed  Google Scholar 

  • Mineur YS, Obayemi A, Wigestrand MB, Fote GM, Calarco CA, Li AM, Picciotto MR (2013) Cholinergic signaling in the hippocampus regulates social stress resilience and anxiety- and depression-like behavior. Proc Natl Acad Sci 110(9):3573–3578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miyamoto Y, Fukuda T (2015) Immunohistochemical study on the neuronal diversity and three-dimensional organization of the mouse entopeduncular nucleus. Neurosci Res 94:37–49

    Article  CAS  PubMed  Google Scholar 

  • Miyoshi R, Kito S, Shimoyama M (1989) Quantitative autoradiographic localization of the M1 and M2 subtypes of muscarinic acetylcholine receptors in the monkey brain. Jpn J Pharmacol 51(2):247–255

    Article  CAS  PubMed  Google Scholar 

  • Moore RY, Halaris AE, Jones BE (1978) Serotonin neurons of the midbrain raphe: ascending projections. J Comp Neurol 180(3):417–438

    Article  CAS  PubMed  Google Scholar 

  • Mostany R, Pazos A, Castro ME (2005) Autoradiographic characterisation of [35S]GTPgammaS binding stimulation mediated by 5-HT1B receptor in postmortem human brain. Neuropharmacology 48(1):25–33

    Article  CAS  PubMed  Google Scholar 

  • Mounayar S, Boulet S, Tandé D, Jan C, Pessiglione M, Hirsch EC, Féger J, Savasta M, François C, Tremblay L (2007) A new model to study compensatory mechanisms in MPTP-treated monkeys exhibiting recovery. Brain 130(11):2898–2914

    Article  PubMed  Google Scholar 

  • Mrzljak L, Bergson C, Pappy M, Huff R, Levenson R, Goldman-Rakic PS (1996) Localization of dopamine D4 receptors in GABAergic neurons of the primate brain. Nature 381(6579):245–248

    Article  CAS  PubMed  Google Scholar 

  • Naito A, Kita H (1994) The cortico-pallidal projection in the rat: an anterograde tracing study with biotinylated dextran amine. Brain Res 653(1–2):251–257

    Article  CAS  PubMed  Google Scholar 

  • Nambu A (2007) Globus pallidus internal segment. Prog Brain Res 160:135–150

    Article  CAS  PubMed  Google Scholar 

  • Nauta WJ, Mehler WR (1966) Projections of the lentiform nucleus in the monkey. Brain Res 1(1):3–42

    Article  CAS  PubMed  Google Scholar 

  • Nevalainen N, af Bjerkén S, Lundblad M, Gerhardt GA, Strömberg I (2011) Dopamine release from serotonergic nerve fibers is reduced in l-DOPA-induced dyskinesia. J Neurochem 118(1):12–23

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nobin A, Björklund A (1973) Topography of the monoamine neuron systems in the human brain as revealed in fetuses. Acta Physiol Scand Suppl 388(Suppl.):1–40

    CAS  PubMed  Google Scholar 

  • Novak MA, Kinsey JH, Jorgensen MJ, Hazen TJ (1998) Effects of puzzle feeders on pathological behavior in individually housed rhesus monkeys. Am J Primatol 46(3):213–227

    Article  CAS  PubMed  Google Scholar 

  • Palkovits M, Brownstein M, Saavedra JM (1974) Serotonin content of the brain stem nuclei in the rat. Brain Res 80(2):237–249

    Article  CAS  PubMed  Google Scholar 

  • Paquet M, Smith Y (1996) Differential localization of AMPA glutamate receptor subunits in the two segments of the globus pallidus and the substantia nigra pars reticulata in the squirrel monkey. Eur J Neurosci 8(1):229–233

    Article  CAS  PubMed  Google Scholar 

  • Parent A (1990) Extrinsic connections of the basal ganglia. Trends Neurosci 13(7):254–258

    Article  CAS  PubMed  Google Scholar 

  • Parent A, de Bellefeuille L (1983) The pallidointralaminar and pallidonigral projections in primate as studied by retrograde double-labeling method. Brain Res 278(1–2):11–27

    Article  CAS  PubMed  Google Scholar 

  • Parent A, Hazrati L (1995) Functional anatomy of the basal ganglia. I. The cortico-basal ganglia-thalamo-cortical loop. Brain Res Rev 20:91–127

    Article  CAS  PubMed  Google Scholar 

  • Parent A, Lavoie B (1993) The heterogeneity of the mesostriatal dopaminergic system as revealed in normal and parkinsonian monkeys. Adv Neurol 60:25–33

    CAS  PubMed  Google Scholar 

  • Parent M, Parent A (2004) The pallidofugal motor fiber system in primates. Parkinson Relat Disord 10(4):203–211

    Article  Google Scholar 

  • Parent M, Parent A (2005) Single-axon tracing and three-dimensional reconstruction of centre médian-parafascicular thalamic neurons in primates. J Comp Neurol 481(1):127–144

    Article  PubMed  Google Scholar 

  • Parent M, Parent A (2016) The primate basal ganglia connectome as revealed by single-axon tracing. In: Rockland KS (ed) Axons and brain architecture. Elsevier, Amsterdam, pp 27–37

    Chapter  Google Scholar 

  • Parent A, Smith Y (1987a) Differential dopaminergic innervation of the two pallidal segments in the squirrel monkey (Saimiri sciureus). Brain Res 426(2):397–400

    Article  CAS  PubMed  Google Scholar 

  • Parent A, Smith Y (1987b) Organization of efferent projections of the subthalamic nucleus in the squirrel monkey as revealed by retrograde labeling methods. Brain Res 436(2):296–310

    Article  CAS  PubMed  Google Scholar 

  • Parent A, Gravel S, Olivier A (1979) The extrapyramidal and limbic systems relationship at the globus pallidus level: A comparative histochemical study in rat, cat and monkey. In: Poirier LJ, Sourkes TL, Bédard PJ (eds) The extrapyramidal system, its disorders. Raven Press, New York, pp 1–11

    Google Scholar 

  • Parent A, Mackey A, de Bellefeuille L (1983) The subcortical afferents to caudate nucleus and putamen in primate: a fluorescence retrograde double labeling study. Neuroscience 10(4):1137–1150

    Article  CAS  PubMed  Google Scholar 

  • Parent A, Lavoie B, Smith Y, Bédard P (1990) The dopaminergic nigropallidal projection in primates: distinct cellular origin and relative sparing in MPTP-treated monkeys. Adv Neurol 53:111–116

    CAS  PubMed  Google Scholar 

  • Parent A, Charara A, Pinault D (1995) Single striatofugal axons arborizing in both pallidal segments and in the substantia nigra in primates. Brain Res 698(1–2):280–284

    Article  CAS  PubMed  Google Scholar 

  • Parent M, Lévesque M, Parent A (1999) The pallidofugal projection system in primates: evidence for neurons branching ipsilaterally and contralaterally to the thalamus and brainstem. J Chem Neuroanat 16(3):153–165

    Article  CAS  PubMed  Google Scholar 

  • Parent M, Lévesque M, Parent A (2001) Two types of projection neurons in the internal pallidum of primates: single-axon tracing and three-dimensional reconstruction. J Comp Neurol 439(2):162–175

    Article  CAS  PubMed  Google Scholar 

  • Parent M, Wallman MJ, Gagnon D, Parent A (2011) Serotonin innervation of basal ganglia in monkeys and humans. J Chem Neuroanat 41(4):256–265

    Article  CAS  PubMed  Google Scholar 

  • Pasik P, Pasik T, Holstein GR, Saavedra JP (1984a) Serotoninergic innervation of the monkey basal ganglia: an immunocytochemical, light and electron microscopic study. In: McKenzie JS, Kenn RE, Wilcock LN (eds) The basal ganglia: structure and function. Plenum Press, New York, pp 115–129

    Chapter  Google Scholar 

  • Pasik P, Pasik T, Pecci-Saavedra J, Holstein GR, Yahr MD (1984b) Serotonin in pallidal neuronal circuits: an immunocytochemical study in monkeys. Adv Neurol 40:63–76

    CAS  PubMed  Google Scholar 

  • Pellicano C, Assogna F, Cravello L, Langella R, Caltagirone C, Spalletta G, Pontieri FE (2015) Neuropsychiatric and cognitive symptoms and body side of onset of parkinsonism in unmedicated Parkinson’s disease patients. Parkinson Relat Disord 21(9):11096–11100

    Article  Google Scholar 

  • Penney JB, Young AB (1983) Speculations on the functional anatomy of basal ganglia disorders. Annu Rev Neurosci 6:73–94

    Article  PubMed  Google Scholar 

  • Percheron G, Yelnik J, Francois C (1984) A Golgi analysis of the primate globus pallidus. III. Spatial organization of the striato-pallidal complex. J Comp Neurol 227(2):214–227

    Article  CAS  PubMed  Google Scholar 

  • Politis M, Wu K, Loane C, Brooks DJ, Kiferle L, Turkheimer FE, Bain P, Molloy S, Piccini P (2014) Serotonergic mechanisms responsible for levodopa-induced dyskinesias in Parkinson’s disease patients. J Clin Investig 124(3):1340–1349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Porritt M, Stanic D, Finkelstein D, Batchelor P, Lockhart S, Hughes A, Kalnins R, Howells D (2005) Dopaminergic innervation of the human striatum in Parkinson’s disease. Mov Disord 20(7):810–818

    Article  PubMed  Google Scholar 

  • Prensa L, Parent A (2001) The nigrostriatal pathway in the rat: a single-axon study of the relationship between dorsal and ventral tier nigral neurons and the striosome/matrix striatal compartments. J Neurosci 21(18):7247–7260

    CAS  PubMed  Google Scholar 

  • Prensa L, Cossette M, Parent A (2000) Dopaminergic innervation of human basal ganglia. J Chem Neuroanat 20:207–213

    Article  CAS  PubMed  Google Scholar 

  • Qamhawi Z, Towey D, Shah B, Pagano G, Seibyl J, Marek K, Borghammer P, Brooks DJ, Pavese N (2015) Clinical correlates of raphe serotonergic dysfunction in early Parkinson’s disease. Brain 138:2964–2973

    Article  PubMed  Google Scholar 

  • Quik M, Polonskaya Y, Gillespie A, Jakowec M, Lloyd GK, Langston JW (2000) Localization of nicotinic receptor subunit mRNAs in monkey brain by in situ hybridization. J Comp Neurol 425(1):58–69

    Article  CAS  PubMed  Google Scholar 

  • Reijnders JSAM, Ehrt U, Weber WEJ, Aarsland D, Leentjens AFG (2008) A systematic review of prevalence studies of depression in Parkinson’s disease. Mov Disord 23(2):183–189

    Article  PubMed  Google Scholar 

  • Riahi G, Morissette M, Parent M, Di Paolo T (2011) Brain 5-HT2A receptors in MPTP monkeys and levodopa-induced dyskinesias. Eur J Neurosci 33(10):1823–1831

    Article  PubMed  Google Scholar 

  • Riahi G, Morissette M, Samadi P, Parent M, Di Paolo T (2013) Basal ganglia serotonin 1B receptors in parkinsonian monkeys with l-DOPA-induced dyskinesia. Biochem Pharmacol 86(7):970–978

    Article  CAS  PubMed  Google Scholar 

  • Richfield EK, Young AB, Penney JB (1987) Comparative distribution of dopamine D-1 and D-2 receptors in the basal ganglia of turtles, pigeons, rats, cats, and monkeys. J Comp Neurol 262(3):446–463

    Article  CAS  PubMed  Google Scholar 

  • Rinvik E, Grofova I, Hammond C, Féger J, Deniau JM (1979) A study of the afferent connections to the subthalamic nucleus in the monkey and the cat using the HRP technique. In: Poirier LJ, Sourkes TL, Bédard PJ (eds) Advances in neurology. Raven Press, New York, pp 53–70

    Google Scholar 

  • Rodrigo J, Fernández P, Bentura ML, de Velasco JM, Serrano J, Uttenthal O, Martínez-Murillo R (1998) Distribution of catecholaminergic afferent fibres in the rat globus pallidus and their relations with cholinergic neurons. J Chem Neuroanat 15(1):1–20

    Article  CAS  PubMed  Google Scholar 

  • Rommelfanger KS, Wichmann T (2010) Extrastriatal dopaminergic circuits of the basal ganglia. Front Neuroanat 4(139):1–17

    Google Scholar 

  • Roš H, Magill PJ, Moss J, Bolam JP, Mena-Segovia J (2010) Distinct types of non-cholinergic pedunculopontine neurons are differentially modulated during global brain states. Neuroscience 170(1):78–91

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rouse ST, Marino MJ, Bradley SR, Awad H, Wittmann M, Conn PJ (2000) Distribution and roles of metabotropic glutamate receptors in the basal ganglia motor circuit: implications for treatment of Parkinson’s disease and related disorders. Pharmacol Ther 88(3):427–435

    Article  CAS  PubMed  Google Scholar 

  • Royce GJ, Mourey RJ (1985) Efferent connections of the centromedian and parafascicular thalamic nuclei: an autoradiographic investigation in the cat. J Comp Neurol 235(3):277–300

    Article  CAS  PubMed  Google Scholar 

  • Ruskin DN, Bergstrom DA, Baek D, Freeman LE, Walters JR (2001) Cocaine or selective block of dopamine transporters influences multisecond oscillations in firing rate in the globus pallidus. Neuropsychopharmacology 25(1):28–40

    Article  CAS  PubMed  Google Scholar 

  • Rylander D, Parent M, O’Sullivan SS, Dovero S, Lees AJ, Bezard E, Descarries L, Cenci MA (2010) Maladaptive plasticity of serotonin axon terminals in levodopa-induced dyskinesia. Ann Neurol 68(5):619–628

    Article  CAS  PubMed  Google Scholar 

  • Sadikot AF, Parent A, François C (1992) Efferent connections of the centromedian and parafascicular thalamic nuclei in the squirrel monkey: a PHA-L study of subcortical projections. J Comp Neurol 315(2):137–159

    Article  CAS  PubMed  Google Scholar 

  • Saint-Cyr JA, Ungerleider LG, Desimone R (1990) Organization of visual cortical inputs to the striatum and subsequent outputs to the pallido-nigral complex in the monkey. J Comp Neurol 298(2):129–156

    Article  CAS  PubMed  Google Scholar 

  • Sari Y (2004) Serotonin receptors: from protein to physiological function and behavior. Neurosci Biobehav Rev 28(6):565–582

    Article  CAS  PubMed  Google Scholar 

  • Sarter M, Bruno JP, Givens B (2003) Attentional functions of cortical cholinergic inputs: what does it mean for learning and memory? Neurobiol Learn Mem 80(3):245–256

    Article  CAS  PubMed  Google Scholar 

  • Sato F, Lavallée P, Lévesque M, Parent A (2000a) Single-axon tracing study of neurons of the external segment of the globus pallidus in primate. J Comp Neurol 417(1):17–31

    Article  CAS  PubMed  Google Scholar 

  • Sato F, Parent M, Levesque M, Parent A (2000b) Axonal branching pattern of neurons of the subthalamic nucleus in primates. J Comp Neurol 424(1):142–152

    Article  CAS  PubMed  Google Scholar 

  • Saunders A, Oldenburg IA, Berezovskii VK, Johnson CA, Kingery ND, Elliott HL, Xie T, Gerfen CR, Sabatini BL (2015) A direct GABAergic output from the basal ganglia to frontal cortex. Nature 521(7550):85–89

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schneider JS, Dacko S (1991) Relative sparing of the dopaminergic innervation of the globus pallidus in monkeys made hemi-parkinsonian by intracarotid MPTP infusion. Brain Res 556(2):292–296

    Article  CAS  PubMed  Google Scholar 

  • Schröder K, Hopf A, Lange H, Thörner G, Thörner G (1975) Morphometrisch-statistische strukturanalysen des striatum, pallidum un nucleus subthalamicus bei memschen. J Hirnforsch 16(4):222–250

    Google Scholar 

  • Schultz W, Apicella P, Scarnati E, Ljungberg T (1992) Neuronal activity in monkey ventral striatum related to the expectation of reward. J Neurosci 12(12):4595–4610

    CAS  PubMed  Google Scholar 

  • Selemon LD, Goldman-Rakic PS (1990) Topographic intermingling of striatonigral and striatopallidal neurons in the rhesus monkey. J Comp Neurol 297(3):359–376

    Article  CAS  PubMed  Google Scholar 

  • Semba K, Fibiger HC (1992) Afferent connections of the laterodorsal and the pedunculopontine tegmental nuclei in the rat: a retro- and antero-grade transport and immunohistochemical study. J Comp Neurol 323(3):387–410

    Article  CAS  PubMed  Google Scholar 

  • Shabel SJ, Proulx CD, Trias A, Murphy RT, Malinow R (2012) Input to the lateral habenula from the basal ganglia is excitatory, aversive, and suppressed by serotonin. Neuron 74(3):475–481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shink E, Smith Y (1995) Differential synaptic innervation of neurons in the internal and external segments of the globus pallidus by the GABA- and glutamate-containing terminals in the squirrel monkey. J Comp Neurol 358(1):119–141

    Article  CAS  PubMed  Google Scholar 

  • Shink E, Bevan MD, Bolam JP, Smith Y (1996) The subthalamic nucleus and the external pallidum: two tightly interconnected structures that control the output of the basal ganglia in the monkey. Neuroscience 73(2):335–357

    Article  CAS  PubMed  Google Scholar 

  • Sidibé M, Bevan MD, Bolam JP, Smith Y (1997) Efferent connections of the internal globus pallidus in the squirrel monkey: I. Topography and synaptic organization of the pallidothalamic projection. J Comp Neurol 382(3):323–347

    Article  PubMed  Google Scholar 

  • Smith Y, Bolam JP (1989) Neurons of the substantia nigra reticulata receive a dense GABA-containing input from the globus pallidus in the rat. Brain Res 493(1):160–167

    Article  CAS  PubMed  Google Scholar 

  • Smith Y, Bolam JP (1990) The output neurones and the dopaminergic neurones of the substantia nigra receive a GABA-containing input from the globus pallidus in the rat. J Comp Neurol 296(1):47–64

    Article  CAS  PubMed  Google Scholar 

  • Smith Y, Bolam JP (1991) Convergence of synaptic inputs from the striatum and the globus pallidus onto identified nigrocollicular cells in the rat: a double anterograde labelling study. Neuroscience 44(1):45–73

    Article  CAS  PubMed  Google Scholar 

  • Smith Y, Parent A (1986) Differential connections of caudate nucleus and putamen in the squirrel monkey (Saimiri sciureus). Neuroscience 18(2):347–371

    Article  CAS  PubMed  Google Scholar 

  • Smith Y, Parent A (1988) Neurons of the subthalamic nucleus in primates display glutamate but not GABA immunoreactivity. Brain Res 453(1–2):353–356

    CAS  PubMed  Google Scholar 

  • Smith Y, Villalba R (2008) Striatal and extrastriatal dopamine in the basal ganglia: an overview of its anatomical organization in normal and Parkinsonian brains. Mov Disord 23(S3):S534–S547

    Article  PubMed  Google Scholar 

  • Smith Y, Wichmann T (2014) The cortico-pallidal projection: an additional route for cortical regulation of the basal ganglia circuitry. Mov Disord 30(3):293–295

    Article  PubMed  PubMed Central  Google Scholar 

  • Smith Y, Parent A, Seguela P, Descarries L (1987) Distribution of GABA-immunoreactive neurons in the basal ganglia of the squirrel monkey (Saimiri sciureus). J Comp Neurol 259(1):50–64

    Article  CAS  PubMed  Google Scholar 

  • Smith Y, Lavoie B, Dumas J, Parent A (1989) Evidence for a distinct nigropallidal dopaminergic projection in the squirrel monkey. Brain Res 482(2):381–386

    Article  CAS  PubMed  Google Scholar 

  • Smith Y, Wichmann T, DeLong MR (1994) Synaptic innervation of neurones in the internal pallidal segment by the subthalamic nucleus and the external pallidum in monkeys. J Comp Neurol 343(2):297–318

    Article  CAS  PubMed  Google Scholar 

  • Smith Y, Charara A, Hanson JE, Paquet M, Levey AI (2000) GABA(B) and group I metabotropic glutamate receptors in the striatopallidal complex in primates. J Anat 196:555–576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith R, Wu K, Hart T, Loane C, Brooks D, Björklund A, Odin P, Piccini P, Politis M (2015) The role of pallidal serotonergic function in Parkinson’s disease dyskinesias: a positron emission tomography study. Neurobiol Aging 36:1736–1742

    Article  CAS  PubMed  Google Scholar 

  • Stanford IM, Kantaria MA, Chahal HS, Loucif KC, Wilson CL (2005) 5-Hydroxytryptamine induced excitation and inhibition in the subthalamic nucleus: action at 5-HT(2C), 5-HT(4) and 5-HT(1A) receptors. Neuropharmacology 49(8):1228–1234

    Article  CAS  PubMed  Google Scholar 

  • Sutoo D, Akiyama K, Yabe K, Kohno K (1994) Quantitative analysis of immunohistochemical distributions of cholinergic and catecholaminergic systems in the human brain. Neuroscience 58(1):227–234

    Article  CAS  PubMed  Google Scholar 

  • Tremblay PL, Bedard MA, Langlois D, Blanchet PJ, Lemay M, Parent M (2010) Movement chunking during sequence learning is a dopamine-dependant process: a study conducted in Parkinson’s disease. Exp Brain Res 205(3):375–385

    Article  PubMed  Google Scholar 

  • Tremblay L, Worbe Y, Thobois S, Sgambato-Faure V, Féger J (2015) Selective dysfunction of basal ganglia subterritories: from movement to behavioral disorders. Mov Disord 30(9):1155–1170

    Article  PubMed  Google Scholar 

  • Varnäs K, Hall H, Bonaventure P, Sedvall G (2001) Autoradiographic mapping of 5-HT(1B) and 5-HT(1D) receptors in the post mortem human brain using [(3)H]GR 125743. Brain Res 915(1):47–57

    Article  PubMed  Google Scholar 

  • Varnäs K, Halldin C, Hall H (2004) Autoradiographic distribution of serotonin transporters and receptor subtypes in human brain. Hum Brain Mapp 22(3):246–260

    Article  PubMed  Google Scholar 

  • Varnäs K, Hurd YL, Hall H (2005) Regional expression of 5-HT1B receptor mRNA in the human brain. Synapse 56(1):21–28

    Article  PubMed  CAS  Google Scholar 

  • Varnäs K, Nyberg S, Halldin C, Varrone A, Takano A, Karlsson P, Andersson J, McCarthy D, Smith M, Pierson ME, Söderström J, Farde L (2010) Quantitative analysis of [11C]AZ10419369 binding to 5-HT1B receptors in human brain. J Cereb Blood Flow Metab 31(1):113–123

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vertes RP (1991) A PHA-L analysis of ascending projections of the dorsal raphe nucleus in the rat. J Comp Neurol 313(4):643–668

    Article  CAS  PubMed  Google Scholar 

  • Vicente AM, Costa RM (2012) Looking at the trees in the central forest: a new pallidal–striatal cell type. Neuron 74(6):967–969

    Article  CAS  PubMed  Google Scholar 

  • Vonsattel JP, Myers RH, Stevens TJ, Ferrante RJ, Bird ED, Richardson EP Jr (1985) Neuropathological classification of Huntington’s disease. J Neuropathol Exp Neurol 44(6):559–577

    Article  CAS  PubMed  Google Scholar 

  • Waldvogel HJ, Kubota Y, Fritschy J, Mohler H, Faull RL (1999) Regional and cellular localisation of GABA(A) receptor subunits in the human basal ganglia: an autoradiographic and immunohistochemical study. J Comp Neurol 415(3):313–340

    Article  CAS  PubMed  Google Scholar 

  • Waldvogel HJ, Billinton A, White JH, Emson PC, Faull RLM (2004) Comparative cellular distribution of GABAA and GABAB receptors in the human basal ganglia: immunohistochemical colocalization of the alpha-1 subunit of the GABAA receptor, and the GABABR1 and GABABR2 receptor subunits. J Comp Neurol 470(4):339–356

    Article  CAS  PubMed  Google Scholar 

  • Wallman MJ, Gagnon D, Parent M (2011) Serotonin innervation of human basal ganglia. Eur J Neurosci 33(8):1519–1532

    Article  PubMed  Google Scholar 

  • Whone AL, Moore RY, Piccini PP, Brooks DJ (2003) Plasticity of the nigropallidal pathway in Parkinson’s disease. Annals of Neurology 53(2):206–213

    Article  PubMed  Google Scholar 

  • Willis T (1664) Cerebri anatome: Cui accessit nervorum descriptio et usus. Martyn & Allestry, London

  • Woolf NJ, Butcher LL (1986) Cholinergic systems in the rat brain: III. Projections from the pontomesencephalic tegmentum to the thalamus, tectum, basal ganglia, and basal forebrain. Brain Res Bull 16(5):603–637

    Article  CAS  PubMed  Google Scholar 

  • Yan Z, Flores-Hernandez J, Surmeier DJ (2001) Coordinated expression of muscarinic receptor messenger RNAs in striatal medium spiny neurons. Neuroscience 103(4):1017–1024

    Article  CAS  PubMed  Google Scholar 

  • Yelnik J, Percheron G, François C (1984) A Golgi analysis of the primate globus pallidus. II. Quantitative morphology and spatial orientation of dendritic arborizations. J Comp Neurol 227(2):200–213

    Article  CAS  PubMed  Google Scholar 

  • Yoshida A, Tanaka M (2016) Two types of neurons in the primate globus pallidus external segment play distinct roles in antisaccade generation. Cereb Cortex 26(3):1187–1199

    Article  PubMed  Google Scholar 

  • Young AB, Dauth GW, Hollingsworth Z, Penney JB, Kaatz K, Gilman S (1990) Quisqualate- and NMDA-sensitive [3H]glutamate binding in primate brain. J Neurosci Res 27(4):512–521

    Article  CAS  PubMed  Google Scholar 

  • Zeng BY, Iravani MM, Jackson MJ, Rose S, Parent A, Jenner P (2010) Morphological changes in serotoninergic neurites in the striatum and globus pallidus in levodopa primed MPTP treated common marmosets with dyskinesia. Neurobiol Dis 40(3):599–607

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by research grants from the Canadian Institutes of Health Research (CIHR MOP-115008) and the Natural Sciences and Engineering Research Council of Canada (NSERC 386396-2010). L.E. was the recipient of a doctoral fellowship from the Fonds de recherche du Québec en santé (FRQS 14D 29441). We thank Marie-Josée Wallman for her technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Parent.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 23 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eid, L., Parent, M. Chemical anatomy of pallidal afferents in primates. Brain Struct Funct 221, 4291–4317 (2016). https://doi.org/10.1007/s00429-016-1216-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-016-1216-y

Keywords

Navigation