Skip to main content
Log in

mGluR4-containing corticostriatal terminals: synaptic interactions with direct and indirect pathway neurons in mice

  • Original Article
  • Published:
Brain Structure and Function Aims and scope Submit manuscript

Abstract

Glutamatergic afferents from the cerebral cortex are the main excitatory drive of striatal projection neurons. The metabotropic glutamate receptor 4 (mGluR4) presynaptically modulates transmission at corticostriatal synapses, and is considered as a potent drug target for Parkinson’s disease and other brain disorders. To better characterize the anatomical substrate that underlies the functional effects of mGluR4 in the striatum, we undertook electron microscopic localization studies of mGluR4 expression in the mouse striatum. Our data demonstrate that more than 80 % mGluR4-immunoreactive structures are accounted for by unmyelinated axons and axon terminals, and that almost 50 % putative glutamatergic terminals (i.e. forming asymmetric synapses) express mGluR4 in the mouse striatum. Using vGluT1 as a presynaptic marker of glutamatergic corticostriatal boutons, our findings indicate: (1) all striatal mGluR4-positive terminals co-express vGluT1 immunoreactivity, (2) 44.3 % total striatal glutamatergic terminals co-express vGluT1 and mGluR4, and (3) mGluR4 is expressed in 73.4 % of total striatal vGluT1-positive terminals. To determine if mGluR4 terminals target preferentially direct vs. indirect pathway neurons, mGluR4 immunostaining was combined with D1 receptor immunoreactivity. These data showed that around 30 % mGluR4-immunoreactive glutamatergic terminals target D1 receptor-positive spines (i.e. direct pathway neurons), while almost 70 % formed synapses with D1 receptor-negative spines (i.e. putative indirect pathway neurons). Thus, these immuno-electron microscopic studies suggest that pre-synaptic mGluR4 in striatal glutamatergic terminals is expressed almost exclusively in cortical boutons to subserve regulatory influences upon a large contingent of corticostriatal terminals that preferentially target putative “indirect” pathway striatal projection neurons in mice. These observations provide a rationale for the use of mGluR4 allosteric potentiator as a potential therapy in Parkinson’s disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Bennouar KE, Uberti MA, Melon C, Bacolod MD, Jimenez HN, Cajina M, Kerkerian-Le Goff L, Doller D, Gubellini P (2013) Synergy between L-DOPA and a novel positive allosteric modulator of metabotropic glutamate receptor 4: implications for Parkinson’s disease treatment and dyskinesia. Neuropharmacology 66:158–169

    Article  CAS  PubMed  Google Scholar 

  • Beurrier C, Lopez S, Revy D, Selvam C, Goudet C, Lherondel M, Gubellini P, Kerkerian-LeGoff L, Acher F, Pin JP, Amalric M (2009) Electrophysiological and behavioral evidence that modulation of metabotropic glutamate receptor 4 with a new agonist reverses experimental parkinsonism. FASEB J 23:3619–3628

    Article  CAS  PubMed  Google Scholar 

  • Bogenpohl J, Galvan A, Hu X, Wichmann T, Smith Y (2013) Metabotropic glutamate receptor 4 in the basal ganglia of parkinsonian monkeys: ultrastructural localization and electrophysiological effects of activation in the striatopallidal complex. Neuropharmacology 66:242–252

    Article  CAS  PubMed  Google Scholar 

  • Bordelon JR, Smith Y, Nairn AC, Colbran RJ, Greengard P, Muly EC (2005) Differential localization of protein phosphatase-1alpha, beta and gamma1 isoforms in primate prefrontal cortex. Cereb Cortex 15:1928–1937

    Article  PubMed  PubMed Central  Google Scholar 

  • Bradley SR, Levey AI, Hersch SM, Conn PJ (1996) Immunocytochemical localization of group III metabotropic glutamate receptors in the hippocampus with subtype-specific antibodies. J Neurosci 16:2044–2056

    CAS  PubMed  Google Scholar 

  • Bradley SR, Standaert DG, Rhodes KJ, Rees HD, Testa CM, Levey AI, Conn PJ (1999) Immunohistochemical localization of subtype 4a metabotropic glutamate receptors in the rat and mouse basal ganglia. J Comp Neurol 407:33–46

    Article  CAS  PubMed  Google Scholar 

  • Brandstatter JH, Koulen P, Kuhn R, van der Putten H, Wassle H (1996) Compartmental localization of a metabotropic glutamate receptor (mGluR7): two different active sites at a retinal synapse. J Neurosci 16:4749–4756

    CAS  PubMed  Google Scholar 

  • Calabresi P, Pisani A, Mercuri NB, Bernardi G (1993) Heterogeneity of metabotropic glutamate receptors in the striatum: electrophysiological evidence. Eur J Neurosci 5:1370–1377

    Article  CAS  PubMed  Google Scholar 

  • Calabresi P, Pisani A, Mercuri NB, Bernardi G (1996) The corticostriatal projection: from synaptic plasticity to dysfunctions of the basal ganglia. Trends Neurosci 19:19–22

    Article  CAS  PubMed  Google Scholar 

  • Conn PJ, Pin JP (1997) Pharmacology and functions of metabotropic glutamate receptors. Annu Rev Pharmacol Toxicol 37:205–237

    Article  CAS  PubMed  Google Scholar 

  • Conn PJ, Battaglia G, Marino MJ, Nicoletti F (2005) Metabotropic glutamate receptors in the basal ganglia motor circuit. Nat Rev Neurosci 6:787–798

    Article  CAS  PubMed  Google Scholar 

  • Corti C, Restituito S, Rimland JM, Brabet I, Corsi M, Pin JP, Ferraguti F (1998) Cloning and characterization of alternative mRNA forms for the rat metabotropic glutamate receptors mGluR7 and mGluR8. Eur J Neurosci 10:3629–3641

    Article  CAS  PubMed  Google Scholar 

  • Corti C, Aldegheri L, Somogyi P, Ferraguti F (2002) Distribution and synaptic localisation of the metabotropic glutamate receptor 4 (mGluR4) in the rodent CNS. Neuroscience 110:403–420

    Article  CAS  PubMed  Google Scholar 

  • Cuomo D, Martella G, Barabino E, Platania P, Vita D, Madeo G, Selvam C, Goudet C, Oueslati N, Pin JP, Acher F, Pisani A, Beurrier C, Melon C, Kerkerian-Le Goff L, Gubellini P (2009) Metabotropic glutamate receptor subtype 4 selectively modulates both glutamate and GABA transmission in the striatum: implications for Parkinson’s disease treatment. J Neurochem 109:1096–1105

    Article  CAS  PubMed  Google Scholar 

  • Day NP, Phu NH, Bethell DP, Mai NT, Chau TT, Hien TT, White NJ (1996) The effects of dopamine and adrenaline infusions on acid-base balance and systemic haemodynamics in severe infection. Lancet 348:219–223

    Article  CAS  PubMed  Google Scholar 

  • De Blasi A, Conn PJ, Pin J, Nicoletti F (2001) Molecular determinants of metabotropic glutamate receptor signaling. Trends Pharmacol Sci 22:114–120

    Article  PubMed  Google Scholar 

  • Deng YP, Lei WL, Reiner A (2006) Differential perikaryal localization in rats of D1 and D2 dopamine receptors on striatal projection neuron types identified by retrograde labeling. J Chem Neuroanat 32:101–116

    Article  CAS  PubMed  Google Scholar 

  • Ferraguti F, Klausberger T, Cobden P, Baude A, Roberts JD, Szucs P, Kinoshita A, Shigemoto R, Somogyi P, Dalezios Y (2005) Metabotropic glutamate receptor 8-expressing nerve terminals target subsets of GABAergic neurons in the hippocampus. J Neurosci 25:10520–10536

    Article  CAS  PubMed  Google Scholar 

  • Freeze BS, Kravitz AV, Hammack N, Berke JD, Kreitzer AC (2013) Control of basal ganglia output by direct and indirect pathway projection neurons. J Neurosci 33:18531–18539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fremeau RT Jr, Kam K, Qureshi T, Johnson J, Copenhagen DR, Storm-Mathisen J, Chaudhry FA, Nicoll RA, Edwards RH (2004) Vesicular glutamate transporters 1 and 2 target to functionally distinct synaptic release sites. Science 304:1815–1819

    Article  CAS  PubMed  Google Scholar 

  • Fujiyama F, Unzai T, Nakamura K, Nomura S, Kaneko T (2006) Difference in organization of corticostriatal and thalamostriatal synapses between patch and matrix compartments of rat neostriatum. Eur J Neurosci 24:2813–2824

    Article  PubMed  Google Scholar 

  • Gregory KJ, Noetzel MJ, Niswender CM (2013) Pharmacology of metabotropic glutamate receptor allosteric modulators: structural basis and therapeutic potential for CNS disorders. Prog Mol Biol Transl Sci 115:61–121

    Article  CAS  PubMed  Google Scholar 

  • Gubellini P, Pisani A, Centonze D, Bernardi G, Calabresi P (2004) Metabotropic glutamate receptors and striatal synaptic plasticity: implications for neurological diseases. Prog Neurobiol 74:271–300

    Article  CAS  PubMed  Google Scholar 

  • Gubellini P, Melon C, Dale E, Doller D, Kerkerian-Le Goff L (2014) Distinct effects of mGluR4 receptor positive allosteric modulators at corticostriatal vs. striatopallidal synapses may differentially contribute to their antiparkinsonian action. Neuropharmacology 85:166–177

    Article  CAS  PubMed  Google Scholar 

  • Hersch SM, Ciliax BJ, Gutekunst CA, Rees HD, Heilman CJ, Yung KK, Bolam JP, Ince E, Yi H, Levey AI (1995) Electron microscopic analysis of D1 and D2 dopamine receptor proteins in the dorsal striatum and their synaptic relationships with motor corticostriatal afferents. J Neurosci 15:5222–5237

    CAS  PubMed  Google Scholar 

  • Johnson KA, Conn PJ, Niswender CM (2009) Glutamate receptors as therapeutic targets for Parkinson’s disease. CNS Neurol Disord Drug Targets 8:475–491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jones CK, Bubser M, Thompson AD, Dickerson JW, Turle-Lorenzo N, Amalric M, Blobaum AL, Bridges TM, Morrison RD, Jadhav S, Engers DW, Italiano K, Bode J, Daniels JS, Lindsley CW, Hopkins CR, Conn PJ, Niswender CM (2012) The metabotropic glutamate receptor 4-positive allosteric modulator VU0364770 produces efficacy alone and in combination with L-DOPA or an adenosine 2A antagonist in preclinical rodent models of Parkinson’s disease. J Pharmacol Exp Ther 340:404–421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kinoshita A, Shigemoto R, Ohishi H, van der Putten H, Mizuno N (1998) Immunohistochemical localization of metabotropic glutamate receptors, mGluR7a and mGluR7b, in the central nervous system of the adult rat and mouse: a light and electron microscopic study. J Comp Neurol 393:332–352

    Article  CAS  PubMed  Google Scholar 

  • Kinzie JM, Saugstad JA, Westbrook GL, Segerson TP (1995) Distribution of metabotropic glutamate receptor 7 messenger RNA in the developing and adult rat brain. Neuroscience 69:167–176

    Article  CAS  PubMed  Google Scholar 

  • Kosinski CM, Risso Bradley S, Conn PJ, Levey AI, Landwehrmeyer GB, Penney JB Jr, Young AB, Standaert DG (1999) Localization of metabotropic glutamate receptor 7 mRNA and mGluR7a protein in the rat basal ganglia. J Comp Neurol 415:266–284

    Article  CAS  PubMed  Google Scholar 

  • Kravitz AV, Freeze BS, Parker PR, Kay K, Thwin MT, Deisseroth K, Kreitzer AC (2010) Regulation of parkinsonian motor behaviours by optogenetic control of basal ganglia circuitry. Nature 466:622–626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kravitz AV, Tye LD, Kreitzer AC (2012) Distinct roles for direct and indirect pathway striatal neurons in reinforcement. Nat Neurosci 15:816–818

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuramoto E, Fujiyama F, Unzai T, Nakamura K, Hioki H, Furuta T, Shigemoto R, Ferraguti F, Kaneko T (2007) Metabotropic glutamate receptor 4-immunopositive terminals of medium-sized spiny neurons selectively form synapses with cholinergic interneurons in the rat neostriatum. J Comp Neurol 500:908–922

    Article  CAS  PubMed  Google Scholar 

  • Kuwajima M, Dehoff MH, Furuichi T, Worley PF, Hall RA, Smith Y (2007) Localization and expression of group I metabotropic glutamate receptors in the mouse striatum, globus pallidus, and subthalamic nucleus: regulatory effects of MPTP treatment and constitutive Homer deletion. J Neurosci 27:6249–6260

    Article  CAS  PubMed  Google Scholar 

  • Lacey CJ, Pothecary CA, Salt TE (2005) Modulation of retino-collicular transmission by Group III metabotropic glutamate receptors at different ages during development. Neuropharmacology 49(Suppl 1):26–34

    Article  CAS  PubMed  Google Scholar 

  • Le Poul E, Bolea C, Girard F, Poli S, Charvin D, Campo B, Bortoli J, Bessif A, Luo B, Koser AJ, Hodge LM, Smith KM, DiLella AG, Liverton N, Hess F, Browne SE, Reynolds IJ (2012) A potent and selective metabotropic glutamate receptor 4 positive allosteric modulator improves movement in rodent models of Parkinson’s disease. J Pharmacol Exp Ther 343:167–177

    Article  CAS  PubMed  Google Scholar 

  • Lei W, Jiao Y, Del Mar N, Reiner A (2004) Evidence for differential cortical input to direct pathway versus indirect pathway striatal projection neurons in rats. J Neurosci 24:8289–8299

    Article  CAS  PubMed  Google Scholar 

  • Levey AI, Hersch SM, Rye DB, Sunahara RK, Niznik HB, Kitt CA, Price DL, Maggio R, Brann MR, Ciliax BJ (1993) Localization of D1 and D2 dopamine receptors in brain with subtype-specific antibodies. Proc Natl Acad Sci USA 90:8861–8865

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lopez S, Turle-Lorenzo N, Acher F, De Leonibus E, Mele A, Amalric M (2007) Targeting group III metabotropic glutamate receptors produces complex behavioral effects in rodent models of Parkinson’s disease. J Neurosci 27:6701–6711

    Article  CAS  PubMed  Google Scholar 

  • Marino MJ, Valenti O, O’Brien JA, Williams DL Jr, Conn PJ (2003) Modulation of inhibitory transmission in the rat globus pallidus by activation of mGluR4. Ann N Y Acad Sci 1003:435–437

    Article  PubMed  Google Scholar 

  • Mitrano DA, Smith Y (2007) Comparative analysis of the subcellular and subsynaptic localization of mGluR1a and mGluR5 metabotropic glutamate receptors in the shell and core of the nucleus accumbens in rat and monkey. J Comp Neurol 500:788–806

    Article  CAS  PubMed  Google Scholar 

  • Montana V, Ni Y, Sunjara V, Hua X, Parpura V (2004) Vesicular glutamate transporter-dependent glutamate release from astrocytes. J Neurosci 24:2633–2642

    Article  CAS  PubMed  Google Scholar 

  • Niswender CM, Conn PJ (2010) Metabotropic glutamate receptors: physiology, pharmacology, and disease. Annu Rev Pharmacol Toxicol 50:295–322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ohishi H, Akazawa C, Shigemoto R, Nakanishi S, Mizuno N (1995a) Distributions of the mRNAs for L-2-amino-4-phosphonobutyrate-sensitive metabotropic glutamate receptors, mGluR4 and mGluR7, in the rat brain. J Comp Neurol 360:555–570

    Article  CAS  PubMed  Google Scholar 

  • Ohishi H, Nomura S, Ding YQ, Shigemoto R, Wada E, Kinoshita A, Li JL, Neki A, Nakanishi S, Mizuno N (1995b) Presynaptic localization of a metabotropic glutamate receptor, mGluR7, in the primary afferent neurons: an immunohistochemical study in the rat. Neurosci Lett 202:85–88

    Article  CAS  PubMed  Google Scholar 

  • Pisani A, Calabresi P, Centonze D, Bernardi G (1997) Activation of group III metabotropic glutamate receptors depresses glutamatergic transmission at corticostriatal synapse. Neuropharmacology 36:845–851

    Article  CAS  PubMed  Google Scholar 

  • Raju DV, Smith Y (2005) Differential localization of vesicular glutamate transporters 1 and 2 in the rat striatum. In: Bolam JP et al (eds) The basal ganglia VIII. Advances in behavioral biology, vol 56. Springer, USA, pp 601–610

    Google Scholar 

  • Raju DV, Shah DJ, Wright TM, Hall RA, Smith Y (2006) Differential synaptology of vGluT2-containing thalamostriatal afferents between the patch and matrix compartments in rats. J Comp Neurol 499:231–243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raju DV, Ahern TH, Shah DJ, Wright TM, Standaert DG, Hall RA, Smith Y (2008) Differential synaptic plasticity of the corticostriatal and thalamostriatal systems in an MPTP-treated monkey model of parkinsonism. Eur J Neurosci 27:1647–1658

    Article  PubMed  Google Scholar 

  • Reynolds ES (1963) The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J Cell Biol 17:208–212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saugstad JA, Kinzie JM, Shinohara MM, Segerson TP, Westbrook GL (1997) Cloning and expression of rat metabotropic glutamate receptor 8 reveals a distinct pharmacological profile. Mol Pharmacol 51:119–125

    CAS  PubMed  Google Scholar 

  • Shigemoto R, Kinoshita A, Wada E, Nomura S, Ohishi H, Takada M, Flor PJ, Neki A, Abe T, Nakanishi S, Mizuno N (1997) Differential presynaptic localization of metabotropic glutamate receptor subtypes in the rat hippocampus. J Neurosci 17:7503–7522

    CAS  PubMed  Google Scholar 

  • Simonyi A, Miller LA, Sun GY (2000) Region-specific decline in the expression of metabotropic glutamate receptor 7 mRNA in rat brain during aging. Brain Res Mol Brain Res 82:101–106

    Article  CAS  PubMed  Google Scholar 

  • Smiley JF, Levey AI, Ciliax BJ, Goldman-Rakic PS (1994) D1 dopamine receptor immunoreactivity in human and monkey cerebral cortex: predominant and extrasynaptic localization in dendritic spines. Proc Natl Acad Sci USA 91:5720–5724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith Y, Villalba R (2008) Striatal and extrastriatal dopamine in the basal ganglia: an overview of its anatomical organization in normal and Parkinsonian brains. Mov Disord 23(Suppl 3):S534–S547

    Article  PubMed  Google Scholar 

  • Smith Y, Charara A, Paquet M, Kieval JZ, Pare JF, Hanson JE, Hubert GW, Kuwajima M, Levey AI (2001) Ionotropic and metabotropic GABA and glutamate receptors in primate basal ganglia. J Chem Neuroanat 22:13–42

    Article  CAS  PubMed  Google Scholar 

  • Smith Y, Galvan A, Ellender TJ, Doig N, Villalba RM, Huerta-Ocampo I, Wichmann T, Bolam JP (2014) The thalamostriatal system in normal and diseased states. Front Syst Neurosci 8:5

    PubMed  PubMed Central  Google Scholar 

  • Tanabe Y, Nomura A, Masu M, Shigemoto R, Mizuno N, Nakanishi S (1993) Signal transduction, pharmacological properties, and expression patterns of two rat metabotropic glutamate receptors, mGluR3 and mGluR4. J Neurosci 13:1372–1378

    CAS  PubMed  Google Scholar 

  • Testa CM, Freiberg IK, Weiss SW, Standaert DS (1998) Immunohistochemical localization of metabotropic glutamate receptors mGluR1a and mGluR2/3 in the rat basal ganglia. J Comp Neurol 390:5–19

    Article  CAS  PubMed  Google Scholar 

  • Valenti O, Marino MJ, Wittmann M, Lis E, DiLella AG, Kinney GG, Conn PJ (2003) Group III metabotropic glutamate receptor-mediated modulation of the striatopallidal synapse. J Neurosci 23:7218–7226

    CAS  PubMed  Google Scholar 

  • Yung KK, Bolam JP, Smith AD, Hersch SM, Ciliax BJ, Levey AI (1995) Immunocytochemical localization of D1 and D2 dopamine receptors in the basal ganglia of the rat: light and electron microscopy. Neuroscience 65:709–730

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the National Institute of Health to YS (R01 NS037423; R01NS037948) and the Yerkes National Primate Center NIH base grant (P51-OD011132). Thanks are due to Susan Jenkins and Jean-Francois Pare for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoland Smith.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iskhakova, L., Smith, Y. mGluR4-containing corticostriatal terminals: synaptic interactions with direct and indirect pathway neurons in mice. Brain Struct Funct 221, 4589–4599 (2016). https://doi.org/10.1007/s00429-016-1187-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-016-1187-z

Keywords

Navigation