Skip to main content
Log in

Deep brain stimulation of the nucleus ventralis intermedius: a thalamic site of graviceptive modulation

  • Short Communication
  • Published:
Brain Structure and Function Aims and scope Submit manuscript

Abstract

Based on animal studies, it has been shown that the nucleus ventralis intermedius (VIM) of the thalamus plays an important role within the vestibular system. A few human studies support the vestibular role of the VIM. In this study, we aimed to test the hypothesis whether changing the stimulation status in patients with unilateral deep brain stimulation in the VIM causally modulates the vestibular system, i.e., the graviceptive vertical perception. We tested six tremor patients for tilt of subjective visual vertical (SVV) with unilateral DBS in the VIM (mean age 67 years; mean time since electrode implantation 55 months). The mean tilt of the patients during the stimulator “on” condition was 1.4° to the contraversive side [standard deviation (SD) ± 0.4°] whereas during the “off” period a mean contraversive tilt of 4.4° (SD ± 3.0°) was obtained (p = 0.02). Thus, we were able to show that otolith-dominated graviceptive vertical perception can be directly modulated by changing the status of DBS VIM stimulation, indicating that the VIM is directly involved in (contraversive) vertical perception and its thalamic pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

References

  • Asanuma C, Thach WT, Jones EG (1983) Distribution of cerebellar terminations and their relation to other afferent terminations in the ventral lateral thalamic region of the monkey. Brain Res 286:237–265

    Article  CAS  PubMed  Google Scholar 

  • Baier B, Bense S, Dieterich M (2008) Are signs of ocular tilt reaction in patients with cerebellar lesions mediated by the dentate nucleus? Brain 131:1445–1454

    Article  CAS  PubMed  Google Scholar 

  • Baier B, Thömke F, Wilting J, Heinze C, Geber C, Dieterich M (2012a) A pathway in the brainstem for roll-tilt of the subjective visual vertical: evidence from a lesion-behavior mapping study. J Neurosci 32:14854–14858

    Article  CAS  PubMed  Google Scholar 

  • Baier B, Suchan J, Karnath HO, Dieterich M (2012b) Neural correlates of disturbed perception of verticality. Neurology 78:728–735

    Article  PubMed  Google Scholar 

  • Barra J, Marquer A, Joassin R, Reymond C, Metge L, Chauvineau V, Pérennou D (2010) Humans use internal models to construct and update sense of verticality. Brain 133:3552–3563

    Article  PubMed  Google Scholar 

  • Behrens TE, Johansen-Berg H, Woolrich MW, Smith SM, Wheeler-Kingshott CA, Boulby PA, Barker GJ, Sillery EL, Sheehan K, Ciccarelli O, Thompson AJ, Brady JM, Matthews PM (2003) Non-invasive mapping of connections between human thalamus and cortex using diffusion imaging. Nat Neurosci 6:750–757

    Article  CAS  PubMed  Google Scholar 

  • Bense S, Stephan T, Yousry TA, Brandt T, Dieterich M (2001) Multisensory cortical signal increases and decreases during vestibular galvanic stimulation (fMRI). J Neurophysiol 85:886–899

    CAS  PubMed  Google Scholar 

  • Brandt T, Dieterich M (1994) Vestibular syndromes in the roll plane: topographic diagnosis from brainstem to cortex. Ann Neurol 36:337–347

    Article  CAS  PubMed  Google Scholar 

  • Büttner U, Henn V (1976) Thalamic unit activity in the alert monkey during natural vestibular stimulation. Brain Res 103:127–132

    Article  PubMed  Google Scholar 

  • Ceballos-Baumann AO, Boecker H, Fogel W, Alesch F, Bartenstein P, Conrad B, Diederich N, von Falkenhayn I, Moringlane JR, Schwaiger M, Tronnier VM (2001) Thalamic stimulation for essential tremor activates motor and deactivates vestibular cortex. Neurology 56:1347–1354

    Article  CAS  PubMed  Google Scholar 

  • Conrad J, Baier B, Dieterich M (2014) The role of the thalamus in the human subcortical vestibular system. J Vest Res 24:375–385

    Google Scholar 

  • Dieterich M, Brandt T (1993) Thalamic infarctions: differential effects on vestibular function in the roll plane (35 patients). Neurology 43:1732–1740

    Article  CAS  PubMed  Google Scholar 

  • Dieterich M, Bense S, Lutz S, Drzezga A, Stephan T, Bartenstein P, Brandt T (2003) Dominance for vestibular cortical function in the non-dominant hemisphere. Cereb Cortex 13:994–1007

    Article  CAS  PubMed  Google Scholar 

  • Gauthier L, Dehaut F, Joanette Y (1989) The bells test: a quantitative and qualitative test for visual neglect. Int J Clin Neuropsychol 11:49–54

    Google Scholar 

  • Hawrylyshyn PA, Rubin AM, Tasker RR, Organ LW, Fredrickson M (1978) Vestibulothalamic projections in man—a sixth primary sensory pathway. J Neurophysiol 41:394–401

    CAS  PubMed  Google Scholar 

  • Hyam JA, Owen SL, Kringelbach ML, Jenkinson N, Stein JF, Green AL, Aziz TZ (2012) Contrasting connectivity of the ventralis intermedius and ventralis oralis posterior nuclei of the motor thalamus demonstrated by probabilistic tractography. Neurosurgery 70:162–169

    Article  PubMed  Google Scholar 

  • Karnath HO, Johannsen L, Broetz D, Küker W (2005) Posteriorthalamic hemorrhage induces ‘‘pusher syndrome’’. Neurology 64:1014–1019

    Article  PubMed  Google Scholar 

  • Kirsch V, Keeser D, Hergenroeder T, Erat O, Ertl-Wagner B, Brandt T, Dieterich M (2015) Structural and functional connectivity mapping of the vestibular circuitry from human brainstem to cortex. Brain Struct Funct (Epub ahead of print)

  • Lopez C, Blanke O (2011) The thalamocortical vestibular system in animals and humans. Brain Res Rev 67:119–146

    Article  PubMed  Google Scholar 

  • Marlinski V, McCrea RA (2008) Activity of ventroposterior thalamus neurons during rotation and translation in the horizontal plane in the alert squirrel monkey. J Neurophysiol 99:2533–2545

    Article  PubMed  Google Scholar 

  • Meng H, May PJ, Dickman JD, Angelaki DE (2007) Vestibular signals in primate thalamus: properties and origins. J Neurosci 27:13590–13602

    Article  CAS  PubMed  Google Scholar 

  • Mike A, Balas I, Varga D, Janszky J, Nagy F, Kovacs N (2009) Subjective visual vertical may be altered by bilateral subthalamic deep brain stimulation. Mov Disord 24:1556–1557

    Article  PubMed  Google Scholar 

  • Pérennou DA, Mazibrada G, Chauvineau V, Greenwood R, Rothwell J, Gresty MA, Bronstein AM (2008) Lateropulsion, pushing and verticality perception in hemisphere stroke: a causal relationship? Brain 131:2401–2413

    Article  PubMed  Google Scholar 

  • Saiki S, Yoshioka A, Yamaha Y et al (2000) Two cases of thalamic infarction presenting with “thalamic astasia”. Rinsho Shinkeigaku 40:383–387

    CAS  PubMed  Google Scholar 

  • Shiroyama T, Kayahara T, Yasui Y, Nomura J, Nakano K (1999) Projections of the vestibular nuclei to the thalamus in the rat: a Phaseolus vulgaris leucoagglutinin study. J Comp Neurol 407:318–332

    Article  CAS  PubMed  Google Scholar 

  • Spiegelmann R, Nissim O, Daniels D, Ocherashvilli A, Mardor Y (2006) Stereotactic targeting of the ventrointermediate nucleus of the thalamus by direct visualization with high-field MRI. Stereotact Funct Neurosurg 84:19–23

    Article  PubMed  Google Scholar 

  • Tarnutzer AA, Bockisch C, Straumann D, Olasagasti I (2009) Gravity dependence of subjective visual vertical variability. J Neurophysiol 102:1657–1671

    Article  CAS  PubMed  Google Scholar 

  • Telford R, Vattoth S (2014) MR anatomy of deep brain nuclei with special reference to specific diseases and deep brain stimulation localization. Neuroradiol J 27:29–43

    Article  PubMed  PubMed Central  Google Scholar 

  • Yardley L (1990) Contribution of somatosensory information to perception of the visual vertical with body tilt and rotating visual field. Percept Psychophys 48:131–134

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Deutsche Forschungsgemeinschaft (BA 4097/1-1 to BB) and the BMBF (IFB code 01 EO 0901 to MD).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernhard Baier.

Ethics declarations

Disclosure

The authors report no conflicts of interest.

Additional information

B. Baier and T. Vogt contributed equally to the study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baier, B., Vogt, T., Rohde, F. et al. Deep brain stimulation of the nucleus ventralis intermedius: a thalamic site of graviceptive modulation. Brain Struct Funct 222, 645–650 (2017). https://doi.org/10.1007/s00429-015-1157-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-015-1157-x

Keywords

Navigation