Skip to main content
Log in

Left medial orbitofrontal cortex volume correlates with skydive-elicited euphoric experience

  • Short Communication
  • Published:
Brain Structure and Function Aims and scope Submit manuscript

Abstract

The medial orbitofrontal cortex has been linked to the experience of positive affect. Greater medial orbitofrontal cortex volume is associated with greater expression of positive affect and reduced medial orbital frontal cortex volume is associated with blunted positive affect. However, little is known about the experience of euphoria, or extreme joy, and how this state may relate to variability in medial orbitofrontal cortex structure. To test the hypothesis that variability in euphoric experience correlates with the volume of the medial orbitofrontal cortex, we measured individuals’ (N = 31) level of self-reported euphoria in response to a highly anticipated first time skydive and measured orbitofrontal cortical volumes with structural magnetic resonance imaging. Skydiving elicited a large increase in self-reported euphoria. Participants’ euphoric experience was predicted by the volume of their left medial orbitofrontal cortex such that, the greater the volume, the greater the euphoria. Further analyses indicated that the left medial orbitofrontal cortex and amygdalo-hippocampal complex independently explain variability in euphoric experience and that medial orbitofrontal cortex volume, in conjunction with other structures within the mOFC-centered corticolimbic circuit, can be used to predict individuals’ euphoric experience.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Notes

  1. Note that the volume of the amygdalo-hippocampal complex was positively correlated with prejump (left r = 0.39, P = 0.03, right r = 0.34, P = 0.05) and postjump (left r = 0.47, P = 0.01, right r = 0.39, P = 0.03) state anxiety in partial correlations controlling for age, gender, handedness, sensation seeking, scanner, and intracranial volume.

  2. For those interested in reading more about the relationship between sensation seeking, state euphoria, state anxiety, and cortisol reactivity to skydiving we refer you to our previous work assessing these variables (Mujica-Parodi et al. 2014; Carlson et al. 2012).

  3. In a subsample of our participants (n = 20) we collected Beck Depression scores, which were found to negatively correlate with left mOFC volume (r = −0.45, P < 0.05 in a partial correlation controlling for age, gender, handedness, and intra-cranial volume.

References

  • Adolphs R, Gosselin F, Buchanan TW, Tranel D, Schyns P, Damasio AR (2005) A mechanism for impaired fear recognition after amygdala damage. Nature 433(7021):68–72

    Article  CAS  PubMed  Google Scholar 

  • Baare WF, Hulshoff Pol HE, Hijman R, Mali WP, Viergever MA, Kahn RS (1999) Volumetric analysis of frontal lobe regions in schizophrenia: relation to cognitive function and symptomatology. Biol Psychiatry 45(12):1597–1605

    Article  CAS  PubMed  Google Scholar 

  • Bartra O, McGuire JT, Kable JW (2013) The valuation system: a coordinate-based meta-analysis of BOLD fMRI experiments examining neural correlates of subjective value. Neuroimage 76:412–427. doi:10.1016/j.neuroimage.2013.02.063

    Article  PubMed  PubMed Central  Google Scholar 

  • Berridge KC, Robinson TE (2003) Parsing reward. Trends Neurosci 26(9):507–513. doi:10.1016/S0166-2236(03)00233-9

    Article  CAS  PubMed  Google Scholar 

  • Blood AJ, Zatorre RJ (2001) Intensely pleasurable responses to music correlate with activity in brain regions implicated in reward and emotion. P Natl Acad Sci USA 98(20):11818–11823

    Article  CAS  Google Scholar 

  • Breiter HC, Gollub RL, Weisskoff RM, Kennedy DN, Makris N, Berke JD, Goodman JM, Kantor HL, Gastfriend DR, Riorden JP, Mathew RT, Rosen BR, Hyman SE (1997) Acute effects of cocaine on human brain activity and emotion. Neuron 19(3):591–611

    Article  CAS  PubMed  Google Scholar 

  • Canli T, Sivers H, Whitfield SL, Gotlib IH, Gabrieli JD (2002) Amygdala response to happy faces as a function of extraversion. Science 296(5576):2191. doi:10.1126/science.1068749296/5576/2191

    Article  CAS  PubMed  Google Scholar 

  • Carlson JM, Foti D, Mujica-Parodi LR, Harmon-Jones E, Hajcak G (2011) Ventral striatal and medial prefrontal BOLD activation is correlated with reward-related electrocortical activity: a combined ERP and fMRI study. Neuroimage 57(4):1608–1616. doi:10.1016/J.Neuroimage.05.037

    Article  PubMed  Google Scholar 

  • Carlson JM, Dikecligil GN, Greenberg T, Mujica-Parodi LR (2012) Trait reappraisal is associated with resilience to acute psychological stress. J Res Personal 46(5):609–613

    Article  Google Scholar 

  • Carlson JM, Cha J, Harmon-Jones E, Mujica-Parodi LR, Hajcak G (2014) Influence of the BDNF genotype on amygdalo-prefrontal white matter microstructure is linked to nonconscious attention bias to threat. Cereb Cortex 24(9):2249–2257. doi:10.1093/cercor/bht089

    Article  PubMed  Google Scholar 

  • Carlson JM, Depetro E, Maxwell J, Harmon-Jones E, Hajcak G (2015) Gender moderates the association between dorsal medial prefrontal cortex volume and depressive symptoms in a subclinical sample. Psychiatry Res 233(2):285–288. doi:10.1016/j.pscychresns.2015.06.005

    Article  PubMed  Google Scholar 

  • Cha J, Greenberg T, Carlson JM, DeDora DJ, Hajcak G, Mujica-Parodi LR (2014) Circuit-wide structural and functional measures predict ventromedial prefrontal fear generalization: implications for generalized anxiety disorder. J Neurosci 34(11):4043–4053. doi:10.1523/JNEUROSCI.3372-13.2014

    Article  CAS  PubMed  Google Scholar 

  • Chang CC, Lin CJ (2011) LIBSVM: a library for support vector machines. ACM Trans Intell Syst Technol 2(3):27

    Article  Google Scholar 

  • Chatterton RT Jr, Vogelsong KM, Lu YC, Hudgens GA (1997) Hormonal responses to psychological stress in men preparing for skydiving. J Clin Endocrinol Metab 82(8):2503–2509

    CAS  PubMed  Google Scholar 

  • Coan JA, Allen JJ (2003) Frontal EEG asymmetry and the behavioral activation and inhibition systems. Psychophysiology 40(1):106–114

    Article  PubMed  Google Scholar 

  • Dale AM, Fischl B, Sereno MI (1999) Cortical surface-based analysis I. Segmentation and surface reconstruction. Neuroimage 9(2):179–194. doi:10.1006/nimg.1998.0395

    Article  CAS  PubMed  Google Scholar 

  • Davidson RJ (1992) Anterior cerebral asymmetry and the nature of emotion. Brain Cognit 20(1):125–151

    Article  CAS  Google Scholar 

  • Davis M (1992) The role of the amygdala in fear and anxiety. Annu Rev Neurosci 15:353–375

    Article  CAS  PubMed  Google Scholar 

  • Davis M, Whalen PJ (2001) The amygdala: vigilance and emotion. Mol Psychiatry 6(1):13–34

    Article  CAS  PubMed  Google Scholar 

  • DeDora DJ, Carlson JM, Mujica-Parodi LR (2011) Acute stress eliminates female advantage in detection of ambiguous negative affect. Evol Psychol 9(4):532–542 (epjournal-1665 [pii])

    Article  PubMed  Google Scholar 

  • Der-Avakian A, Markou A (2012) The neurobiology of anhedonia and other reward-related deficits. Trends Neurosci 35(1):68–77. doi:10.1016/j.tins.2011.11.005

    Article  CAS  PubMed  Google Scholar 

  • Desikan RS, Segonne F, Fischl B, Quinn BT, Dickerson BC, Blacker D, Buckner RL, Dale AM, Maguire RP, Hyman BT, Albert MS, Killiany RJ (2006) An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. Neuroimage 31(3):968–980. doi:10.1016/j.neuroimage.2006.01.021

    Article  PubMed  Google Scholar 

  • Dikecligil GN, Mujica-Parodi LR (2010) Ambulatory and challenge-associated heart rate variability measures predict cardiac responses to real-world acute emotional stress. Biol Psychiat 67(12):1185–1190. doi:10.1016/J.Biopsych.02.001

    Article  PubMed  PubMed Central  Google Scholar 

  • Drevets WC, Gautier C, Price JC, Kupfer DJ, Kinahan PE, Grace AA, Price JL, Mathis CA (2001) Amphetamine-induced dopamine release in human ventral striatum correlates with euphoria. Biol Psychiatry 49(2):81–96

    Article  CAS  PubMed  Google Scholar 

  • Fagen R (1974) Selective and evolutionary aspects of animal play. Am Nat 108(964):850–858

    Article  Google Scholar 

  • Fekete T, Wilf M, Rubin D, Edelman S, Malach R, Mujica-Parodi LR (2013) Combining classification with fMRI-derived complex network measures for potential neurodiagnostics. PLoS One 8(5):e62867. doi:10.1371/journal.pone.0062867

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fischl B, Dale AM (2000) Measuring the thickness of the human cerebral cortex from magnetic resonance images. Proc Natl Acad Sci USA 97(20):11050–11055. doi:10.1073/pnas.200033797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fischl B, Sereno MI, Dale AM (1999) Cortical surface-based analysis. II: inflation, flattening, and a surface-based coordinate system. Neuroimage 9(2):195–207. doi:10.1006/nimg.1998.0396

    Article  CAS  PubMed  Google Scholar 

  • Fischl B, Salat DH, Busa E, Albert M, Dieterich M, Haselgrove C, van der Kouwe A, Killiany R, Kennedy D, Klaveness S, Montillo A, Makris N, Rosen B, Dale AM (2002) Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain. Neuron 33(3):341–355

    Article  CAS  PubMed  Google Scholar 

  • Foti D, Carlson JM, Sauder CL, Proudfit GH (2014) Reward dysfunction in major depression: multimodal neuroimaging evidence for refining the melancholic phenotype. Neuroimage 101:50–58. doi:10.1016/j.neuroimage.2014.06.058

    Article  PubMed  PubMed Central  Google Scholar 

  • Ge Y, Grossman RI, Babb JS, Rabin ML, Mannon LJ, Kolson DL (2002) Age-related total gray matter and white matter changes in normal adult brain. Part I: volumetric MR imaging analysis. AJNR Am J Neuroradiol 23(8):1327–1333

    PubMed  Google Scholar 

  • Gilbert DG, Carlson JM, Riise H, Rabinovich NE, Sugai C, Froeliger B (2008) Effects of nicotine and depressive traits on affective priming of lateralized emotional word identification. Exp Clin Psychopharmacol 16(4):293–300. doi:10.1037/a0012871

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Greenberg T, Carlson JM, Cha J, Hajcak G, Mujica-Parodi LR (2013a) Neural reactivity tracks fear generalization gradients. Biol Psychol 92(1):2–8. doi:10.1016/j.biopsycho.2011.12.007

    Article  PubMed  Google Scholar 

  • Greenberg T, Carlson JM, Cha J, Hajcak G, Mujica-Parodi LR (2013b) Ventromedial prefrontal cortex reactivity is altered in generalized anxiety disorder during fear generalization. Depress Anxiety 30(3):242–250. doi:10.1002/da.22016

    Article  PubMed  Google Scholar 

  • Greenberg T, Carlson JM, Rubin D, Cha J, Mujica-Parodi L (2014) Anticipation of high arousal aversive and positive movie clips engages common and distinct neural substrates. Soc Cognit Affect Neurosci. doi:10.1093/scan/nsu091

    Google Scholar 

  • Greenberg T, Chase HW, Almeida JR, Stiffler R, Zevallos CR, Aslam HA, Deckersbach T, Weyandt S, Cooper C, Toups M, Carmody T, Kurian B, Peltier S, Adams P, McInnis MG, Oquendo MA, McGrath PJ, Fava M, Weissman M, Parsey R, Trivedi MH, Phillips ML (2015) Moderation of the relationship between reward expectancy and prediction error-related ventral striatal reactivity by anhedonia in unmedicated major depressive disorder: findings from the EMBARC study. Am J Psychiatry 172(9):881–891. doi:10.1176/appi.ajp.2015.14050594

    Article  PubMed  PubMed Central  Google Scholar 

  • Grieve SM, Korgaonkar MS, Koslow SH, Gordon E, Williams LM (2013) Widespread reductions in gray matter volume in depression. NeuroImage Clin 3:332–339. doi:10.1016/j.nicl.2013.08.016

    Article  PubMed  PubMed Central  Google Scholar 

  • Gur RE, Cowell PE, Latshaw A, Turetsky BI, Grossman RI, Arnold SE, Bilker WB, Gur RC (2000) Reduced dorsal and orbital prefrontal gray matter volumes in schizophrenia. Arch Gen Psychiatry 57(8):761–768

    Article  CAS  PubMed  Google Scholar 

  • Guyon I, Weston J, Barnhill S, Vapnik V (2002) Gene selection for cancer classification using support vector machines. Mach Learn 46:389–422

    Article  Google Scholar 

  • Hamann S, Mao H (2002) Positive and negative emotional verbal stimuli elicit activity in the left amygdala. Neuroreport 13(1):15–19

    Article  PubMed  Google Scholar 

  • Hamann SB, Ely TD, Hoffman JM, Kilts CD (2002) Ecstasy and agony: activation of the human amygdala in positive and negative emotion. Psychol Sci 13(2):135–141

    Article  PubMed  Google Scholar 

  • Han X, Jovicich J, Salat D, van der Kouwe A, Quinn B, Czanner S, Busa E, Pacheco J, Albert M, Killiany R, Maguire P, Rosas D, Makris N, Dale A, Dickerson B, Fischl B (2006) Reliability of MRI-derived measurements of human cerebral cortical thickness: the effects of field strength, scanner upgrade and manufacturer. Neuroimage 32(1):180–194. doi:10.1016/j.neuroimage.2006.02.051

    Article  PubMed  Google Scholar 

  • Harmon-Jones E, Allen JJ (1998) Anger and frontal brain activity: EEG asymmetry consistent with approach motivation despite negative affective valence. J Personal Soc Psychol 74(5):1310–1316

    Article  CAS  Google Scholar 

  • Harmon-Jones E, Gable PA, Peterson CK (2010) The role of asymmetric frontal cortical activity in emotion-related phenomena: a review and update. Biol Psychol 84(3):451–462. doi:10.1016/j.biopsycho.2009.08.010

    Article  PubMed  Google Scholar 

  • Harvey PO, Armony J, Malla A, Lepage M (2010) Functional neural substrates of self-reported physical anhedonia in non-clinical individuals and in patients with schizophrenia. J Psychiatr Res 44(11):707–716. doi:10.1016/j.jpsychires.2009.12.008

    Article  PubMed  Google Scholar 

  • Hu LT, Bentler PM (1999) Cutoff criteria for fit indexes in covariance structure analysis: conventional criteria verses new alternatives. Struct Equ Model 6:1–55

    Article  Google Scholar 

  • Ishai A (2007) Sex, beauty and the orbitofrontal cortex. Int J Psychophysiol 63(2):181–185. doi:10.1016/j.ijpsycho.2006.03.010

    Article  PubMed  Google Scholar 

  • Keedwell PA, Andrew C, Williams SC, Brammer MJ, Phillips ML (2005) The neural correlates of anhedonia in major depressive disorder. Biol Psychiatry 58(11):843–853. doi:10.1016/j.biopsych.2005.05.019

    Article  PubMed  Google Scholar 

  • Kempton MJ, Salvador Z, Munafo MR, Geddes JR, Simmons A, Frangou S, Williams SC (2011) Structural neuroimaging studies in major depressive disorder. Meta-analysis and comparison with bipolar disorder. Arch Gen Psychiatry 68(7):675–690. doi:10.1001/archgenpsychiatry.2011.60

    Article  PubMed  Google Scholar 

  • Knutson B, Adams CM, Fong GW, Hommer D (2001a) Anticipation of increasing monetary reward selectively recruits nucleus accumbens. J Neurosci 21(16):159 (20015472 [pii])

    Google Scholar 

  • Knutson B, Fong GW, Adams CM, Varner JL, Hommer D (2001b) Dissociation of reward anticipation and outcome with event-related fMRI. Neuroreport 12(17):3683–3687

    Article  CAS  PubMed  Google Scholar 

  • Knutson B, Bhanji JP, Cooney RE, Atlas LY, Gotlib IH (2008) Neural responses to monetary incentives in major depression. Biol Psychiatry 63(7):686–692. doi:10.1016/j.biopsych.2007.07.023

    Article  PubMed  Google Scholar 

  • Koolschijn PC, van Haren NE, Lensvelt-Mulders GJ, Hulshoff Pol HE, Kahn RS (2009) Brain volume abnormalities in major depressive disorder: a meta-analysis of magnetic resonance imaging studies. Hum Brain Mapp 30(11):3719–3735. doi:10.1002/hbm.20801

    Article  PubMed  Google Scholar 

  • Kring AM, Barch DM (2014) The motivation and pleasure dimension of negative symptoms: neural substrates and behavioral outputs. Eur Neuropsychopharmacol 24(5):725–736. doi:10.1016/j.euroneuro.2013.06.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kringelbach ML (2005) The human orbitofrontal cortex: linking reward to hedonic experience. Nat Rev Neurosci 6(9):691–702. doi:10.1038/nrn1747

    Article  CAS  PubMed  Google Scholar 

  • Kringelbach ML, Rolls ET (2004) The functional neuroanatomy of the human orbitofrontal cortex: evidence from neuroimaging and neuropsychology. Prog Neurobiol 72(5):341–372. doi:10.1016/j.pneurobio.2004.03.006

    Article  PubMed  Google Scholar 

  • Kringelbach ML, O’Doherty J, Rolls ET, Andrews C (2003) Activation of the human orbitofrontal cortex to a liquid food stimulus is correlated with its subjective pleasantness. Cereb Cortex 13(10):1064–1071

    Article  CAS  PubMed  Google Scholar 

  • LeDoux JE (1996) The emotional brain the mysterious underpinnings of emotional life. Weidenfeld and Nicholson, London

    Google Scholar 

  • Liao J, Yan H, Liu Q, Yan J, Zhang L, Jiang S, Zhang X, Dong Z, Yang W, Cai L, Guo H, Wang Y, Li Z, Tian L, Zhang D, Wang F (2015) Reduced paralimbic system gray matter volume in schizophrenia: correlations with clinical variables, symptomatology and cognitive function. J Psychiatr Res 65:80–86. doi:10.1016/j.jpsychires.2015.04.008

    Article  PubMed  Google Scholar 

  • Linhart H, Zucchini W (1986) Model selection. Wiley series in probability and mathematical statistics. Wiley, Oxford

    Google Scholar 

  • Lorenzetti V, Allen NB, Fornito A, Yucel M (2009) Structural brain abnormalities in major depressive disorder: a selective review of recent MRI studies. J Affect Disord 117(1–2):1–17. doi:10.1016/j.jad.2008.11.021

    Article  PubMed  Google Scholar 

  • Marteau TM, Bekker H (1992) The development of a six-item short-form of the state scale of the Spielberger State-Trait Anxiety Inventory (STAI). Br J Clin Psychol 31(Pt 3):301–306

    Article  PubMed  Google Scholar 

  • McGaugh JL (2002) Memory consolidation and the amygdala: a systems perspective. Trends Neurosci 25(9):456

    Article  CAS  PubMed  Google Scholar 

  • Millan MJ, Fone K, Steckler T, Horan WP (2014) Negative symptoms of schizophrenia: clinical characteristics, pathophysiological substrates, experimental models and prospects for improved treatment. Eur Neuropsychopharmacol 24(5):645–692. doi:10.1016/j.euroneuro.2014.03.008

    Article  CAS  PubMed  Google Scholar 

  • Moore GJ, Cortese BM, Glitz DA, Zajac-Benitez C, Quiroz JA, Uhde TW, Drevets WC, Manji HK (2009) A longitudinal study of the effects of lithium treatment on prefrontal and subgenual prefrontal gray matter volume in treatment-responsive bipolar disorder patients. J Clin Psychiatry 70(5):699–705. doi:10.4088/JCP.07m03745

    Article  CAS  PubMed  Google Scholar 

  • Mujica-Parodi LR, Carlson JM, Cha J, Rubin D (2014) The fine line between ‘brave’ and ‘reckless’: amygdala reactivity and regulation predict recognition of risk. Neuroimage 103:1–9. doi:10.1016/j.neuroimage.2014.08.038

    Article  CAS  PubMed  Google Scholar 

  • Nitschke JB, Nelson EE, Rusch BD, Fox AS, Oakes TR, Davidson RJ (2003) Orbitofrontal cortex tracks positive mood in mothers viewing pictures of their newborn infants. Neuroimage 21(2):583–592. doi:10.1016/J.Neuroimaging.10.005

    Article  Google Scholar 

  • O’Doherty J, Kringelbach ML, Rolls ET, Hornak J, Andrews C (2001) Abstract reward and punishment representations in the human orbitofrontal cortex. Nat Neurosci 4(1):95–102. doi:10.1038/82959

    Article  PubMed  Google Scholar 

  • O’Doherty JP, Deichmann R, Critchley HD, Dolan RJ (2002) Neural responses during anticipation of a primary taste reward. Neuron 33(5):815–826 (S0896627302006037 [pii])

    Article  PubMed  Google Scholar 

  • O’Doherty J, Winston J, Critchley H, Perrett D, Burt DM, Dolan RJ (2003) Beauty in a smile: the role of medial orbitofrontal cortex in facial attractiveness. Neuropsychologia 41(2):147–155 (S0028393202001458 [pii])

    Article  PubMed  Google Scholar 

  • Phan KL, Wager T, Taylor SF, Liberzon I (2002) Functional neuroanatomy of emotion: a meta-analysis of emotion activation studies in PET and fMRI. Neuroimage 16(2):331–348. doi:10.1006/nimg.2002.1087

    Article  PubMed  Google Scholar 

  • Phelps EA (2004) Human emotion and memory: interactions of the amygdala and hippocampal complex. Curr Opin Neurobiol 14(2):198–202. doi:10.1016/j.conb.2004.03.015

    Article  CAS  PubMed  Google Scholar 

  • Pitkänen A, Pikkarainen M, Nurminen N, Ylinen A (2006) Reciprocal connections between the amygdala and the hippocampal formation, perirhinal cortex, and postrhinal cortex in rat. Ann N Y Acad Sci 911(1):369–391

    Article  Google Scholar 

  • Pizzagalli DA, Holmes AJ, Dillon DG, Goetz EL, Birk JL, Bogdan R, Dougherty DD, Iosifescu DV, Rauch SL, Fava M (2009) Reduced caudate and nucleus accumbens response to rewards in unmedicated individuals with major depressive disorder. Am J Psychiatry 166(6):702–710. doi:10.1176/appi.ajp.2008.08081201

    Article  PubMed  PubMed Central  Google Scholar 

  • Rajkowska G (2000) Postmortem studies in mood disorders indicate altered numbers of neurons and glial cells. Biol Psychiatry 48(8):766–777

    Article  CAS  PubMed  Google Scholar 

  • Reuter M, Schmansky NJ, Rosas HD, Fischl B (2012) Within-subject template estimation for unbiased longitudinal image analysis. Neuroimage 61(4):1402–1418. doi:10.1016/j.neuroimage.2012.02.084

    Article  PubMed  PubMed Central  Google Scholar 

  • Rilling J, Gutman D, Zeh T, Pagnoni G, Berns G, Kilts C (2002) A neural basis for social cooperation. Neuron 35(2):395–405 (S0896627302007559 [pii])

    Article  CAS  PubMed  Google Scholar 

  • Rosso IM, Makris N, Thermenos HW, Hodge SM, Brown A, Kennedy D, Caviness VS, Faraone SV, Tsuang MT, Seidman LJ (2010) Regional prefrontal cortex gray matter volumes in youth at familial risk for schizophrenia from the Harvard Adolescent High Risk Study. Schizophr Res 123(1):15–21. doi:10.1016/j.schres.2010.06.015

    Article  PubMed  PubMed Central  Google Scholar 

  • Roy M, Shohamy D, Wager TD (2012) Ventromedial prefrontal-subcortical systems and the generation of affective meaning. Trends Cognit Sci 16(3):147–156. doi:10.1016/j.tics.2012.01.005

    Article  Google Scholar 

  • Royet JP, Zald D, Versace R, Costes N, Lavenne F, Koenig O, Gervais R (2000) Emotional responses to pleasant and unpleasant olfactory, visual, and auditory stimuli: a positron emission tomography study. J Neurosci 20(20):7752–7759 (20/20/7752 [pii])

    CAS  PubMed  Google Scholar 

  • Sackeim HA, Greenberg MS, Weiman AL, Gur RC, Hungerbuhler JP, Geschwind N (1982) Hemispheric asymmetry in the expression of positive and negative emotions. Neurologic evidence. Arch Neurol 39(4):210–218

    Article  CAS  PubMed  Google Scholar 

  • Spielberger CD, Gorsuch RL, Lushene RE (1970) Manual for the state-trait axiety inventory (self- evaluation questionnaire). Consulating Psychology Press, Palo Alto

    Google Scholar 

  • Steele JD, Kumar P, Ebmeier KP (2007) Blunted response to feedback information in depressive illness. Brain 130(Pt 9):2367–2374. doi:10.1093/brain/awm150

    Article  CAS  PubMed  Google Scholar 

  • Tisserand DJ, van Boxtel MP, Pruessner JC, Hofman P, Evans AC, Jolles J (2004) A voxel-based morphometric study to determine individual differences in gray matter density associated with age and cognitive change over time. Cereb Cortex 14(9):966–973. doi:10.1093/cercor/bhh057bhh057

    Article  PubMed  Google Scholar 

  • Wacker J, Dillon DG, Pizzagalli DA (2009) The role of the nucleus accumbens and rostral anterior cingulate cortex in anhedonia: integration of resting EEG, fMRI, and volumetric techniques. Neuroimage 46(1):327–337. doi:10.1016/j.neuroimage.2009.01.058

    Article  PubMed  PubMed Central  Google Scholar 

  • Wagner G, Koch K, Schachtzabel C, Reichenbach JR, Sauer HS, Schlosser RGM (2008) Enhanced rostral anterior cingulate cortex activation during cognitive control is related to orbitofrontal volume reduction in unipolar depression. J Psychiatry Neurosci 33(3):199–208

    PubMed  PubMed Central  Google Scholar 

  • Walter M, Bermpohl F, Mouras H, Schiltz K, Tempelmann C, Rotte M, Heinze HJ, Bogerts B, Northoff G (2008) Distinguishing specific sexual and general emotional effects in fMRI-subcortical and cortical arousal during erotic picture viewing. Neuroimage 40(4):1482–1494. doi:10.1016/j.neuroimage.2008.01.040

    Article  PubMed  Google Scholar 

  • Welborn BL, Papademetris X, Reis DL, Rajeevan N, Bloise SM, Gray JR (2009) Variation in orbitofrontal cortex volume: relation to sex, emotion regulation and affect. Soc Cognit Affect Neurosci 4(4):328–339. doi:10.1093/scan/nsp028

    Article  Google Scholar 

  • Zhou W, Chen D (2008) Encoding human sexual chemosensory cues in the orbitofrontal and fusiform cortices. J Neurosci 28(53):14416–14421. doi:10.1523/JNEUROSCI.3148-08.2008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zuckerman M, Link K (1968) Construct validity for the sensation-seeking scale. J Consult Clin Psychol 32(4):420–426

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Funding for this study was provided by the Office of Naval Research #N0014-04-1-005 (LRMP) and the National Institutes of Health # 5MO1-RR-10710 (GCRC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joshua M. Carlson.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 645 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carlson, J.M., Cha, J., Fekete, T. et al. Left medial orbitofrontal cortex volume correlates with skydive-elicited euphoric experience. Brain Struct Funct 221, 4269–4279 (2016). https://doi.org/10.1007/s00429-015-1139-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-015-1139-z

Keywords

Navigation