Skip to main content

Advertisement

Log in

High expression of cytochrome b 5 reductase isoform 3/cytochrome b 5 system in the cerebellum and pyramidal neurons of adult rat brain

  • Original Article
  • Published:
Brain Structure and Function Aims and scope Submit manuscript

Abstract

Cytochrome b 5 reductase (Cb 5R) and cytochrome b 5 (Cb 5) form an enzymatic redox system that plays many roles in mammalian cells. In the last 15 years, it has been proposed that this system is involved in the recycling of ascorbate, a vital antioxidant molecule in the brain and that its deregulation can lead to the production of reactive oxygen species that play a major role in oxidative-induced neuronal death. In this work, we have performed a regional and cellular distribution study of the expression of this redox system in adult rat brain by anti-Cb 5R isoform 3 and anti-Cb 5 antibodies. We found high expression levels in cerebellar cortex, labeling heavily granule neurons and Purkinje cells, and in structures such as the fastigial, interposed and dentate cerebellar nuclei. A large part of Cb 5R isoform 3 in the cerebellum cortex was regionalized in close proximity to the lipid raft-like nanodomains, labeled with cholera toxin B, as we have shown by fluorescence resonance energy transfer imaging. In addition, vestibular, reticular and motor nuclei located at the brain stem level and pyramidal neurons of somatomotor areas of the brain cortex and of the hippocampus have been also found to display high expression levels of these proteins. All these results point out the enrichment of Cb 5R isoform 3/Cb 5 system in neuronal cells and structures of the cerebellum and brain stem whose functional impairment can account for neurological deficits reported in type II congenital methemoglobinemia, as well as in brain areas highly prone to undergo oxidative stress-induced neurodegeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Aalfs CM, Salieb-Beugelaar GB, Wanders RJA, Mannens MMAM, Wijburg FA (2000) A case of methemoglobinemia type II due to NADH-cytochrome b 5 reductase deficiency: determination of the molecular basis. Hum Mutat 16:18–22

    Article  CAS  PubMed  Google Scholar 

  • Borgese N, D’Arrigo A, De Silvestris M, Pietrini G (1993) NADH-cytochrome b 5 reductase and cytochrome b 5 isoforms as models for the study of post-translational targeting to the endoplasmic reticulum. FEBS Lett 325:70–75

    Article  CAS  PubMed  Google Scholar 

  • Canu N, Calissano P (2003) In vitro cultured neurons for molecular studies correlating apoptosis with events related to Alzheimer disease. Cerebellum 2:270–278

    Article  CAS  PubMed  Google Scholar 

  • Celio MR (1990) Calbindin-D28 k and parvalbumin in the rat nervous system. Neuroscience 35:375–475

    Article  CAS  PubMed  Google Scholar 

  • Chatenay-Rivauday C, Cakar ZP, Jeno P, Kuzmenko ES, Fiedler K (2004) Caveolae: biochemical analysis. Mol Biol Rep 31:67–84

    Article  CAS  PubMed  Google Scholar 

  • Contestabile A (2002) Cerebellar granule cells as a model to study mechanisms of neuronal apoptosis or survival in vivo and in vitro. Cerebellum 1:41–55

    Article  CAS  PubMed  Google Scholar 

  • Crane FL, Sun IL, Crowe RA, Alcain FJ, Low H (1994) Coenzyme Q10, plasma membrane oxidase and growth control. Mol Aspects Med 15(Suppl):s1–11

    Article  CAS  PubMed  Google Scholar 

  • Dikranian K, Qin YQ, Labruyere J, Nemmers B, Olney JW (2005) Ethanol-induced neuroapoptosis in the developing rodent cerebellum and related brain stem structures. Brain Res Dev Brain Res 155:1–13

    Article  CAS  PubMed  Google Scholar 

  • Dougherty SE, Reeves JL, Lucas EK, Gamble KL, Lesort M, Cowell RM (2012) Disruption of Purkinje cell function prior to huntingtin accumulation and cell loss in an animal model of Huntington Disease. Exp Neurol 236:171–178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dusart I, Airaksinen MS, Sotelo C (1997) Purkinje cell survival and axonal regeneration are age dependent: an in vitro study. J Neurosci 17:3710–3726

    CAS  PubMed  Google Scholar 

  • Elrick MJ, Pacheco CD, Yu T, Dadga N, Shakkottai VG, Ware C, Paulson HL, Lieberman AP (2010) Conditional Niemann-Pick C mice demonstrate cell autonomous Purkinje cell neurodegeneration. Hum Mol Genet 19:837–847

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ewenczyk C, Leroux A, Roubergue A, Laugel V, Afenjar A, Saudubray JM, Beauvais P, Billette de Villemeur T, Vidailhet M, Roze E (2008) Recessive hereditary methaemoglobinaemia, type II: delineation of the clinical spectrum. Brain 131:760–761

    Article  CAS  PubMed  Google Scholar 

  • Fujita M, Kadota T, Sato T (1996) Developmental profiles of synaptophysin in granule cells of rat cerebellum: an immunohistocytochemical study. J Electron Microsc 45:185–194

    Article  CAS  Google Scholar 

  • Girard M, Larivière R, Parfitt DA, Deane EC, Gaudet R, Nossova N, Blondeau F, Prenosil G, Vermeulen EG, Duchen MR, Richter A, Shoubridge EA, Gehring K, McKinney RA, Brais B, Chapple JP, McPherson PS (2012) Mitochondrial dysfunction and Purkinje cell loss in autosomal recessive spastic ataxia of Charlevoix-Saguenay (ARSACS). Proc Natl Acad Sci USA 109:1661–1666

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harrison FE, May JM (2009) Vitamin C function in the brain: vital role of the ascorbate transporter SVCT2. Free Radic Biol Med 46:719–730

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Higley MJ (2014) Localized GABAergic inhibition of dendritic Ca(2+) signalling. Nat Rev Neurosci 15:567–572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hildebrandt A, Estabrook RW (1971) Evidence for the participation of cytochrome b5 in hepatic microsomal mixed-function oxidation reactions. Arch Biochem Biophys 143:66–79

    Article  CAS  PubMed  Google Scholar 

  • Hourez R, Servais L, Orduz D, Gall D, Millard I, de Kerchove d’Exaerde A, Cheron G, Orr Orr, Pandolfo M, Schiffmann SF (2011) Aminopyridines correct early dysfunction and delay neurodegeneration in a mouse model of spinocerebellar ataxia type 1. J Neurosci 31:11795–11807

    Article  CAS  PubMed  Google Scholar 

  • Huang Y, Tai C, Lu Y, Wu TJ, Chen H, Niu D (2012) Recessive congenital methemoglobinemia caused by a rare mechanism: maternal uniparental heterodisomy with segmental isodisomy of a chromosome 22. Blood Cells Mol Dis 49:114–117

    Article  CAS  PubMed  Google Scholar 

  • Hultquist DE, Passon PG (1971) Catalysis of methaemoglobin reduction by erythrocyte cytochrome b 5 and cytochrome b 5 reductase. Nat New Biol 229:252–254

    Article  CAS  PubMed  Google Scholar 

  • Janes PW, Ley SC, Magee AI (1999) Aggregation of lipid rafts accompanies signalling via the T cell antigen receptor. J Cell Biol 147:447–461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jeffcoat R, Brawn PR, Safford R, James AT (1977) Properties of rat liver microsomal stearoyl-coenzyme A desaturase. Biochem J 161:431–437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kasumu A, Bezprozvanny I (2012) Deranged calcium signaling in purkinje cells and pathogenesis in spinocerebellar ataxia 2 (SCA2) and OTHER ataxias. Cerebellum 11:630–639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kawata S, Trzaskos JM, Gaylor JL (1985) Microsomal enzymes of cholesterol biosynthesis from lanosterol. Purification and characterization of delta 7-sterol 5-desaturase of rat liver microsomes. J Biol Chem 260:6609–6617

    CAS  PubMed  Google Scholar 

  • Lagoa R, López-Sánchez C, Samhan-Arias AK, Gañán CM, García-Martínez V, Gutierrez-Merino C (2009) Kaempferol protects against rat striatal degeneration induced by 3-nitropropionic acid. J Neurochem 111:473–487

    Article  CAS  PubMed  Google Scholar 

  • Leroux A, Junien C, Kaplan J, Bambenger J (1975) Generalised deficiency of cytochrome b 5 reductase in congenital methaemoglobinaemia with mental retardation. Nature 258:619–620

    Article  CAS  PubMed  Google Scholar 

  • López-Sánchez C, Martín-Romero FJ, Sun F, Luis L, Samhan-Arias AK, García-Martínez V, Gutierrez-Merino C (2007) Blood micromolar concentrations of kaempferol afford protection against ischemia/reperfusion-induced damage in rat brain. Brain Res 1182:123–137

    Article  PubMed  Google Scholar 

  • Marques-da-Silva D, Gutierrez-Merino C (2012) L-type voltage-operated calcium channels, N-methyl-D-aspartate receptors and neuronal nitric oxide synthase form a calcium/redox nano-transducer within lipid rafts. Biochem Biophys Res Commun 420:257–262

    Article  CAS  PubMed  Google Scholar 

  • Marques-da-Silva D, Gutierrez-Merino C (2014) Caveolin-rich lipid rafts of the plasma membrane of mature cerebellar granule neurons are microcompartments for calcium/reactive oxygen and nitrogen species cross-talk signaling. Cell Calcium 56:108–123

    Article  CAS  PubMed  Google Scholar 

  • Marques-da-Silva D, Samhan-Arias AK, Tiago T, Gutierrez-Merino C (2010) L-type calcium channels and cytochrome b 5 reductase are components of protein complexes tightly associated with lipid rafts microdomains of the neuronal plasma membrane. J Proteomics 73:1502–1510

    Article  CAS  PubMed  Google Scholar 

  • Martin-Romero FJ, Garcia-Martin E, Gutierrez-Merino C (2002) Inhibition of oxidative stress produced by plasma membrane NADH oxidase delays low-potassium-induced apoptosis of cerebellar granule cells. J Neurochem 82:705–715

    Article  CAS  PubMed  Google Scholar 

  • May JM (1999) Is ascorbic acid an antioxidant for the plasma membrane? FASEB J 13:995–1006

    CAS  PubMed  Google Scholar 

  • Nakamura A, Uchihara T (2004) Dual enhancement of triple immunofluorescence using two antibodies from the same species. J Neurosci Methods 135:67–70

    Article  CAS  PubMed  Google Scholar 

  • ÓCallagan JP (1988) Neurotypic and gliotypic proteins and biochemical markers of neurotoxicity. Neurotoxicol Teratol 10:445–452

    Article  Google Scholar 

  • ÓConnell KMM, Martens JR, Tamkun MM (2004) Localization of ion channels to lipid raft domains within the cardiovascular system. Trends Cardiovasc Med 14:37–42

    Article  Google Scholar 

  • Paine MG, Che G, Li M, Neumar RW (2012) Cerebellar Purkinje cell neurodegeneration after cardiac arrest: effect of therapeutic hypothermia. Resuscitation 83:1511–1516

    Article  PubMed  Google Scholar 

  • Percy MJ, Lappin TR (2008) Recessive congenital methaemoglobinaemia: cytochrome b5 reductase deficiency. Br J Haematol 141:298–308

    CAS  PubMed  Google Scholar 

  • Pilati N, Barker M, Panteleimonitis S, Donga R, Hamann M (2008) A rapid method combining Golgi and Nissl staining to study neuronal morphology and cytoarchitecture. J Histochem Cytochem 56:539–550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Represa A, Deloulme JC, Sensenbrenner M, Ben-Ari Y, Baudier J (1990) Neurogranin: immunocytochemical localization of a brain-specific protein kinase C substrate. J Neurosci 10:3782–3792

    CAS  PubMed  Google Scholar 

  • Rioux V, Pédrono F, Legrand P (2011) Regulation of mammalian desaturases by myristic acid: n-terminal myristoylation and other modulations. Biochim Biophys Acta 1811:1–8

    Article  CAS  PubMed  Google Scholar 

  • Roda E, Coccini T, Acerbi D, Castoldi A, Bernocchi G, Manzo L (2008) Cerebellum cholinergic muscarinic receptor (subtype-2 and -3) and cytoarchitecture after developmental exposure to methylmercury: an immunohistochemical study in rat. J Chem Neuroanat 35:285–294

    Article  CAS  PubMed  Google Scholar 

  • Saab AS, Neumeyer A, Jahn HM, Cupido A, Šimek AA, Boele HJ, Scheller A, Le Meur K, Götz M, Monyer H, Sprengel R, Rubio ME, Deitmer JW, De Zeeuw CI, Kirchhoff F (2012) Bergmann glial AMPA receptors are required for fine motor coordination. Science 337:749–753

    Article  CAS  PubMed  Google Scholar 

  • Samhan-Arias AK, Gutierrez-Merino C (2014a) Purified NADH-cytochrome b 5 reductase is a novel superoxide anion source inhibited by apocynin: sensitivity to nitric oxide and peroxynitrite. Free Radic Biol Med 73:174–189

    Article  CAS  PubMed  Google Scholar 

  • Samhan-Arias AK, Gutierrez-Merino C (2014) Cytochrome b 5 as a pleiotropic metabolic modulator in mammalian cells. In: Rurik Thom (ed) Cytochromes b and c: Biochemical properties, biological functions and electrochemical analysis, Chapter 2, Nova Science Publishers, Hauppauge, pp. 39–80

  • Samhan-Arias AK, Martin-Romero FJ, Gutierrez-Merino C (2004) Kaempferol blocks oxidative stress in cerebellar granule cells and reveals a key role for reactive oxygen species production at the plasma membrane in the commitment to apoptosis. Free Radical Biol Med 37:48–61

    Article  CAS  Google Scholar 

  • Samhan-Arias AK, Duarte RO, Martín-Romero FJ, Moura JJ, Gutierrez-Merino C (2008) Reduction of ascorbate free radical by the plasma membrane of synaptic terminals from rat brain. Arch Biochem Biophys 469:243–254

    Article  CAS  PubMed  Google Scholar 

  • Samhan-Arias AK, Garcia-Bereguiain MA, Martin-Romero FJ, Gutierrez-Merino C (2009) Clustering of plasma membrane-bound cytochrome b5 reductase within ‘lipid raft’ microdomains of the neuronal plasma membrane. Mol Cell Neurosci 40:14–26

    Article  CAS  PubMed  Google Scholar 

  • Samhan-Arias AK, Marques-da-Silva D, Yanamala N, Gutierrez-Merino C (2012) Stimulation and clustering of cytochrome b 5 reductase in caveolin-rich lipid microdomains is an early event in oxidative stress-mediated apoptosis of cerebellar granule neurons. J Proteomics 75:2934–2949

    Article  CAS  PubMed  Google Scholar 

  • Sasaki S, Yoshimura K, Naito K (2004) The neural control of orienting: role of multiple-branching reticulospinal neurons. Prog Brain Res 143:383–389

    Article  PubMed  Google Scholar 

  • Schenkman JB, Jansson I (2003) The many roles of cytochrome b 5 . Pharmacol Ther 97:139–152

    Article  CAS  PubMed  Google Scholar 

  • Stephenson DT, Kushner PD (1988) An atlas of a rare neuronal surface antigen in the rat central nervous system. J Neurosci 8:3035–3056

    CAS  PubMed  Google Scholar 

  • Storbeck KH, Swart AC, Lombard N, Adriaanse CV, Swart P (2012) Cytochrome b 5 forms homomeric complexes in living cells. J Steroid Biochem Mol Biol 132:311–321

    Article  CAS  PubMed  Google Scholar 

  • Taft JR, Vertes RP, Perry GW (2005) Distribution of GFAP+ astrocytes in adult and neonatal rat brain. Int J Neurosci 115:1333–1343

    Article  CAS  PubMed  Google Scholar 

  • Toelle SP, Boltshauser E, Mossner E et al (2004) Severe neurological impairment in hereditary methaemoglobinaemia type 2. Eur J Pediatr 163:207–209

    Article  PubMed  Google Scholar 

  • Valencia A, Moran J (2001) Role of oxidative stress in the apoptotic cell death of cultured cerebellar granule neurons. J Neurosci Res 64:284–297

    Article  CAS  PubMed  Google Scholar 

  • Vieira LM, Kaplan JC, Kahn A, Leroux A (1995) Four new mutations in the NADH-cytochrome b5 reductase gene from patients with recessive congenital methemoglobinemia type II. Blood 85:2254–2262

    CAS  PubMed  Google Scholar 

  • Villalba JM, Navarro F, Gómez-Díaz C, Arroyo A, Bello RI, Navas P (1997) Role of cytochrome b5 reductase on the antioxidant function of coenzyme Q in the plasma membrane. Mol Aspects Med 18(Suppl):S7–S13

    Article  CAS  PubMed  Google Scholar 

  • Wang F, Xu Q, Wang W, Takano T, Nedergaard M (2012) Bergmann glia modulate cerebellar Purkinje cell bistability via Ca2+-dependent K+ uptake. Proc Natl Acad Sci USA 109:7911–7916

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

AKSA was recipient of a post-doctoral fellowship of the Junta de Extremadura and DMS was recipient of a pre-doctoral fellowship of the Spanish Ministerios de Ciencia e Innovación y Economía y Competitividad. The technical help of Dr. José Antonio Tapia with confocal microscopy images acquisition is gratefully acknowledged. This work has been financed with research project BFU2011-30178 of the Spanish Ministerio de Economía y Competitividad and grants to research groups CCV008/BBB008 and CTS005 of the Plan Regional de I + D+I of the Junta/Gobierno de Extremadura (Spain). These fellowships and grants have been co-financed with the European Fund for Economic and Regional Development (FEDER).

Conflict of interest

The authors declare that they have not conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Gutierrez-Merino.

Additional information

A. K. Samhan-Arias and C. López-Sánchez equally contributed to this work and should be considered first authors.

Electronic supplementary material

Below is the link to the electronic supplementary material.

429_2015_1036_MOESM1_ESM.ppt

Figure S1. Western blotting of adult rat brain lysates (2.5 μg of protein per lane) with rabbit anti-C b 5 R isoform 3 (anti-DIA1; Protein Tech Group: 10894-1-AP, dilution 1:100) and with anti-C b 5 (Santa Cruz Biotechnology: sc 33174, dilution 1:100). Details of the experimental protocol are given in the section II.A of Materials and Methods (PPT 151 kb)

429_2015_1036_MOESM2_ESM.ppt

Figure S2 (I) Control for Figure 1: The primary antibodies were replaced with rabbit IgG and slices were later treated with the secondary antibody used for the immunohistochemistry images (biotinylated goat anti-rabbit IgG). Raw light micrographs images of coronal sections at cerebellar and brain stem level showed lack of significant staining with biotinylated goat anti-rabbit IgG (A-C) when compared with the staining observed after immunohistochemistry with anti-Cb 5R isoform 3 (A-C images shown in the Figure 1) and anti-Cb 5 (D-F images shown in the Figure 1). Scale bars: I-A (1 mm), I-B (200 μm) and I-C (100 μm). Similar images were obtained using the secondary antibody alone. (II) Control for Figure 3: The primary antibodies were replaced with rabbit IgG and slices were later treated with the secondary antibody used for the immunohistochemistry images (biotinylated goat anti-rabbit IgG). Raw light micrographs images of coronal sections at cerebellar and brain stem level showed lack of significant staining with biotinylated goat anti-rabbit IgG (A,B) when compared with the staining observed after immunohistochemistry with anti-Cb 5R isoform 3 and anti-Cb 5 (images shown in the Figure 3). Scale bars: II-A (1 mm) and II-B (100 μm). Similar images were obtained using the secondary antibody alone. (III) Control for Figures 10 and 11. “Biotinylated goat anti-rabbit IgG” are raw images of controls done with the secondary antibody used for the immunohistochemistry images (biotinylated goat anti-rabbit IgG) alone, and these images showed lack of significant staining with biotinylated goat anti-rabbit IgG when compared with the staining observed after immunohistochemistry with anti-Cb 5R isoform 3 and anti-Cb 5 (images shown in Figures 10 and 11). (A) somatomotor areas of cerebral cortex (Mo) and hippocampal formation (Hip) shown with higher magnification in (B) and (C). Image B shows the somatomotor areas of cerebral cortex with higher magnification. Image C shows the Ammon´s horn of hippocampal formation with higher magnification. Inserted abbreviations in image (C): pyramidal layer (p) of Ammon´s horn of hippocampal formation (CA1, CA2 and CA3: Pyramidal fields). Scale bars: IIIA (0.75 mm), IIIB (100 μm) and IIIC (100 μm) (PPT 651 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Samhan-Arias, A.K., López-Sánchez, C., Marques-da-Silva, D. et al. High expression of cytochrome b 5 reductase isoform 3/cytochrome b 5 system in the cerebellum and pyramidal neurons of adult rat brain. Brain Struct Funct 221, 2147–2162 (2016). https://doi.org/10.1007/s00429-015-1036-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-015-1036-5

Keywords

Navigation