Skip to main content
Log in

Brain intracellular metabolites are freely diffusing along cell fibers in grey and white matter, as measured by diffusion-weighted MR spectroscopy in the human brain at 7 T

  • Original Article
  • Published:
Brain Structure and Function Aims and scope Submit manuscript

Abstract

Due to the specific compartmentation of brain metabolites, diffusion-weighted magnetic resonance spectroscopy opens unique insight into neuronal and astrocytic microstructures. The apparent diffusion coefficient (ADC) of brain metabolites depends on various intracellular parameters including cytosol viscosity and molecular crowding. When diffusion time (t d) is long enough, the size and geometry of the compartment in which the metabolites diffuse strongly influence metabolites ADC. In a previous study, performed in the macaque brain, we measured neuronal and astrocytic metabolites ADC at long t d (from 86 to 1,011 ms) in a large voxel enclosing an equal proportion of white and grey matter. We showed that metabolites apparently diffuse freely along the axis of dendrites, axons and astrocytic processes. To assess potential differences between these two tissue types, here we measured for the first time in the Human brain the t d-dependency of metabolites trace/3 ADC at 7 teslas using a localized diffusion-weighted STEAM sequence, in parietal and occipital voxels, respectively, containing mainly white and grey matter. We show that, in both tissues and over the observed timescale (t d varying from 92 to 712 ms) metabolite ADC reaches a non-zero plateau, suggesting that metabolites are not confined inside subcellular regions such as cell bodies, or inside subcellular compartments such as organelles, but are rather free to diffuse in the whole fiber-like structure of neurons and astrocytes. Beyond the fundamental insights into intracellular compartmentation of metabolites, this work also provides a new framework for interpreting results of neuroimaging techniques based on molecular diffusion, such as diffusion-weighted magnetic resonance spectroscopy and imaging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Arrasate M, Finkbeiner S (2012) Protein aggregates in Huntington’s disease. Exp Neurol 238:1–11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Assaf Y, Pasternak O (2008) Diffusion tensor imaging (DTI)-based white matter mapping in brain research: a review. J Mol Neurosci 34:51–61

    Article  CAS  PubMed  Google Scholar 

  • Balinov B, Jonsson B, Linse P, Söderman O (1993) The NMR self-diffusion method applied to restricted diffusion. Simulation of echo attenuation from molecules in spheres and between planes. J Magn Reson Series A 104:17–25

    Article  CAS  Google Scholar 

  • Basser PJ, Mattiello J, LeBihan D (1994) MR diffusion tensor spectroscopy and imaging. Biophys J 66:259–267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Branzoli F, Techawiboonwong A, Kan H, Webb A, Ronen I (2013) Functional diffusion-weighted magnetic resonance spectroscopy of the human primary visual cortex at 7 T. Magn Reson Med 69:303–309

    Article  PubMed  Google Scholar 

  • Branzoli F, Ercan E, Webb A, Ronen I (2014) The interaction between apparent diffusion coefficients and transverse relaxation rates of human brain metabolites and water studied by diffusion-weighted spectroscopy at 7 T. NMR Biomed. doi:10.1002/nbm.3085

    PubMed  Google Scholar 

  • Budde MD, Frank JA (2010) Neurite beading is sufficient to decrease the apparent diffusion coefficient after ischemic stroke. Proc Natl Acad Sci USA 107:14472–14477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Budde MD, Janes L, Gold E, Turtzo LC, Frank JA (2011) The contribution of gliosis to diffusion tensor anisotropy and tractography following traumatic brain injury: validation in the rat using Fourier analysis of stained tissue sections. Brain 134:2248–2260

    Article  PubMed  PubMed Central  Google Scholar 

  • Chklovskii DB, Schikorski T, Stevens CF (2002) Wiring optimization in cortical circuits. Neuron 34:341–347

    Article  CAS  PubMed  Google Scholar 

  • Choi JK, Dedeoglu A, Jenkins BG (2007) Application of MRS to mouse models of neurodegenerative illness. NMR Biomed 20:216–237

    Article  PubMed  Google Scholar 

  • Ellegood J, Hanstock CC, Beaulieu C (2005) Trace apparent diffusion coefficients of metabolites in human brain using diffusion weighted magnetic resonance spectroscopy. Magn Reson Med 53:1025–1032

    Article  CAS  PubMed  Google Scholar 

  • Ellegood J, Hanstock CC, Beaulieu C (2006) Diffusion tensor spectroscopy (DTS) of human brain. Magn Reson Med 55:1–8

    Article  CAS  PubMed  Google Scholar 

  • Ellegood J, Hanstock CC, Beaulieu C (2011) Considerations for measuring the fractional anisotropy of metabolites with diffusion tensor spectroscopy. NMR Biomed 24:270–280

    Article  CAS  PubMed  Google Scholar 

  • Ercan AE, Techawiboonwong A, Versluis MJ, Webb AG, Ronen I (2014) Diffusion-weighted chemical shift imaging of human brain metabolites at 7T. Magn Reson Med. doi:10.1002/mrm.25346

    PubMed  Google Scholar 

  • Filley CM (2010) White matter; organization and functional relevance. Neuropsycho Rev 20:158–173

    Article  Google Scholar 

  • Gudbjartsson H, Maier SE, Mulkern RV, Mórocz IA, Patz S, Jolesz FA (1996) Line scan diffusion imaging. Magn Reson Med 36:509–519

    Article  CAS  PubMed  Google Scholar 

  • Harada M, Uno M, Hong F, Hisaoka S, Nishitani H, Matsuda T (2002) Diffusion-weighted in vivo localized proton MR spectroscopy of human cerebral ischemia and tumor. NMR Biomed 15:69–74

    Article  CAS  PubMed  Google Scholar 

  • Jara H, Wehrli FW (1994) Determination of background gradients with diffusion MR imaging. J Magn Reson Imaging 4:787–797

    Article  CAS  PubMed  Google Scholar 

  • Jespersen SN, Kroenke CD, Østergaard L, Ackerman JJH, Yablonskiy DA (2007) Modeling dendrite density from magnetic resonance diffusion measurements. NeuroImage 34:1473–1486

    Article  PubMed  Google Scholar 

  • Kan HE, Techawiboonwong A, van Osch MJP, Versluis MJ, Deelchand DK, Henry P-G, Marjańska M, van Buchem MA, Webb AG, Ronen I (2012) Differences in apparent diffusion coefficients of brain metabolites between grey and white matter in the human brain measured at 7 T. Magn Reson Med 67:1203–1209

    Article  PubMed  Google Scholar 

  • Kroenke CD, Ackerman JJH, Yablonskiy DA (2004) On the nature of the NAA diffusion attenuated MR signal in the central nervous system. Magn Reson Med 52:1052–1059

    Article  CAS  PubMed  Google Scholar 

  • Linse P, Söderman O (1995) The validity of the short-gradient-pulse approximation in NMR studies of restricted diffusion. Simulations of molecules diffusing between planes, in cylinders and spheres. J. Magn. Reson. Series A 116:77–86

    Article  CAS  Google Scholar 

  • López-Muñoz F, Boya J, Alamo C (2006) Neuron theory, the cornerstone of neuroscience, on the centenary of the Nobel Prize award to Santiago Ramón y Cajal. Brain Res Bull 70:391–405

    Article  PubMed  Google Scholar 

  • Lundgaard I, Osório MJ, Kress B, Sanggaard S, Nedergaard M (2013) White matter astrocytes in health and disease. Neuroscience. doi:10.1016/j.neuroscience.2013.10.050

    PubMed  PubMed Central  Google Scholar 

  • Marchadour C, Brouillet E, Hantraye P, Lebon V, Valette J (2012) Anomalous diffusion of brain metabolites evidenced by diffusion-weighted magnetic resonance spectroscopy in vivo. J Cereb Blood Flow Metab 32:2153–2160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meraz-Rios MA, Toral-Rios D, Franco-Bocanegra D, Villeda-Hernandez J, Campos-Pena V (2013) Inflammatory process in Alzheimer’s disease. Front Integr Neurosci. doi:10.3389/fnint.2013.00059

    PubMed  PubMed Central  Google Scholar 

  • Najac C, Marchadour C, Guillermier M, Houitte D, Slavov V, Brouillet E, Hantraye P, Lebon V, Valette J (2014) Intracellular metabolites in the primate brain are primarily localized in long fibers rather than in cell bodies, as shown by diffusion-weighted magnetic resonance spectroscopy. NeuroImage 90:374–380

    Article  CAS  PubMed  Google Scholar 

  • Nedergaard M, Ransom B, Goldman SA (2003) New roles for astrocytes: redefining the functional architecture of the brain. Trends Neurosci 26:523–530

    Article  CAS  PubMed  Google Scholar 

  • Neeman M, Freyer JP, Sillerud LO (1990) Pulsed-gradient spin-echo diffusion studies in nmr imaging. Effects of the imaging gradients on the determination of diffusion coefficients. J Magn Reson Series 90:303–312 (1969)

    CAS  Google Scholar 

  • Neeman M, Freyer JP, Sillerud LO (1991) A simple method for obtaining cross-term-free images for diffusion anisotropy studies in NMR microimaging. Magn Reson Med 21:138–143

    Article  CAS  PubMed  Google Scholar 

  • Nicolay K, Braun KP, de Graaf RA, Dijkhuizen RM, Kruiskamp MJ (2001) Diffusion NMR spectroscopy. NMR Biomed 14:94–111

    Article  CAS  PubMed  Google Scholar 

  • Oberheim NA, Takano T, Han X, He W, Lin JH, Wang F, Xu Q, Wyatt JD, Pilcher W, Ojemann JG, Ransom BR, Goldman SA, Nedergaard M (2009) Uniquely hominid features of adult human astrocytes. J Neurosci 29:3276–3287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oberheim NA, Goldman SA, Nedergaard M (2012) Heterogeneity of astrocytic form and function. Methods Mol Biol 814:23–45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Posse S, Cuenod CA, Le Bihan D (1993) Human brain: proton diffusion MR spectroscopy. Radiology 188:719–725

    Article  CAS  PubMed  Google Scholar 

  • Provencher SW (1993) Estimation of metabolite concentrations from localized in vivo proton NMR spectra. Magn Reson Med 30:672–679

    Article  CAS  PubMed  Google Scholar 

  • Purves D, Augustine GJ, Fitzpatrick D, Hall William C, LaMantia AS, McNamara JO, Williams SM (2004) Neuroscience, 3rd edn. Sinauer Asociates Inc, Sunderland

    Google Scholar 

  • Ribeiro PFM, Ventura-Antunes L, Gabi M, Mota B, Grinberg LT, Farfel JM, Ferretti-Rebustini REL, Leite REP, Filho WJ, Herculano-Houzel S (2013) The human cerebral cortex is neither one nor many: neuronal distribution reveals two quantitatively different zones in the gray matter, three in the white matter, and explains local variations in cortical folding. Front Neuroanat. doi:10.3389/fnana.2013.00028

    PubMed  PubMed Central  Google Scholar 

  • Ronen I, Ercan E, Webb A (2013) Axonal and glial microstructural information obtained with diffusion-weighted magnetic resonance spectroscopy at 7T. Front Integr Neurosci. 13:7–13

    Google Scholar 

  • Ronen I, Budde M, Ercan E, Annese J, Techawiboonwong A, Webb A (2014) Microstructural organization of axons in the human corpus callosum quantified by diffusion-weighted magnetic resonance spectroscopy of N-acetylaspartate and post-mortem histology. Brain Struct Funct 219:1773–1785

    Article  CAS  PubMed  Google Scholar 

  • Smith SM (2002) Fast robust automated brain extraction. Hum Brain Mapp 17:143–155

    Article  PubMed  Google Scholar 

  • Upadhyay J, Hallock K, Erb K, Kim DS, Ronen I (2007) Diffusion properties of NAA in human corpus callosum as studied with diffusion tensor spectroscopy. Magn Reson Med 58:1045–1053

    Article  CAS  PubMed  Google Scholar 

  • Upadhyay J, Hallock K, Ducros M, Kim DS, Ronen I (2008) Diffusion tensor spectroscopy and imaging of the arcuate fasciculus. NeuroImage 39:1–9

    Article  PubMed  PubMed Central  Google Scholar 

  • Urenjak J, Williams SR, Gadian DG, Noble M (1993) Proton nuclear magnetic resonance spectroscopy unambiguously identifies different neural cell types. J Neurosci 13:981–989

    CAS  PubMed  Google Scholar 

  • Valette J, Chaumeil M, Guillermier M, Bloch G, Hantraye P, Lebon V (2008) Diffusion-weighted NMR spectroscopy allows probing of 13C labeling of glutamate inside distinct metabolic compartments in the brain. Magn Reson Med 60:306–311

    Article  CAS  PubMed  Google Scholar 

  • Wood ET, Ronen I, Techawiboonwong A, Jones CK, Barker PB, Calabresi P, Harrison D, Reich DS (2012) Investigating axonal damage in multiple sclerosis by diffusion tensor spectroscopy. J Neurosci 32:6665–6669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang K, Sejnowski TJ (2000) A universal scaling law between gray matter and white matter of cerebral cortex. PNAS 97:5621–5626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Brady M, Smith S (2001) Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm. IEEE Trans Med Imaging 20:45–57

    Article  CAS  PubMed  Google Scholar 

  • Zheng DD, Liu ZH, Fang J, Wang XY, Zhang J (2012) The effect of age and cerebral ischemia on diffusion-weighted proton MR spectroscopy of the human brain. AJNR Am J Neuroradiol 33:563–568

    Article  CAS  PubMed  Google Scholar 

  • Zhong J, Kennan RP, Gore JC (1991) Effects of susceptibility variations on NMR measurements of diffusion. J Magn Reson 95:267–280

    CAS  Google Scholar 

Download references

Acknowledgments

J. Valette acknowledges support from the European Research Council (ERC-336331-INCELL). Current affiliation for F. Branzoli is: Centre de Neuro-imagerie de Recherche (CENIR) de l’Institut du Cerveau et de la Moelle Epiniere (ICM), Paris, France.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julien Valette.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Najac, C., Branzoli, F., Ronen, I. et al. Brain intracellular metabolites are freely diffusing along cell fibers in grey and white matter, as measured by diffusion-weighted MR spectroscopy in the human brain at 7 T. Brain Struct Funct 221, 1245–1254 (2016). https://doi.org/10.1007/s00429-014-0968-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-014-0968-5

Keywords

Navigation