Skip to main content
Log in

Morphology and dendritic maturation of developing principal neurons in the rat basolateral amygdala

  • Original Article
  • Published:
Brain Structure and Function Aims and scope Submit manuscript

Abstract

The basolateral nucleus of the amygdala (BLA) assigns emotional valence to sensory stimuli, and many amygdala-dependent behaviors undergo marked development during postnatal life. We recently showed principal neurons in the rat BLA undergo dramatic changes to their electrophysiological properties during the first postnatal month, but no study to date has thoroughly characterized changes to morphology or gene expression that may underlie the functional development of this neuronal population. We addressed this knowledge gap with reconstructions of biocytin-filled principal neurons in the rat BLA at postnatal days 7 (P7), 14, 21, 28, and 60. BLA principal neurons underwent a number of morphological changes, including a twofold increase in soma volume from P7 to P21. Dendritic arbors expanded significantly during the first postnatal month and achieved a mature distribution around P28, in terms of total dendritic length and distance from soma. The number of primary dendrites and branch points were consistent with age, but branch points were found farther from the soma in older animals. Dendrites of BLA principal neurons at P7 had few spines, and spine density increased nearly fivefold by P21. Given the concurrent increase in dendritic material, P60 neurons had approximately 17 times as many total spines as P7 neurons. Together, these developmental transitions in BLA principal neuron morphology help explain a number of concomitant electrophysiological changes during a critical period in amygdala development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Reference

  • Adolphs R, Baron-Cohen S, Tranel D (2002) Impaired recognition of social emotions following amygdala damage. J Cogn Neurosci 14(8):1264–1274

    Article  PubMed  Google Scholar 

  • Baas PW, Lin S (2011) Hooks and comets: the story of microtubule polarity orientation in the neuron. Dev Neurobiol 71(6):403–418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ballesteros-Yáñez I, Benavides-Piccione R, Elston GN, Yuste R, DeFelipe J (2006) Density and morphology of dendritic spines in mouse neocortex. Neuroscience 138(2):403–409

    Article  PubMed  Google Scholar 

  • Barnet RC, Hunt PS (2005) Trace and long-delay fear conditioning in the developing rat. Learn Behav 33:437–443

    Article  PubMed  Google Scholar 

  • Barnet RC, Hunt PS (2006) The expression of fear-potentiated startle during development: integration of learning and response systems. Behav Neurosci 120:861–872

    Article  PubMed  Google Scholar 

  • Beckel-Mitchener A, Greenough WT (2004) Correlates across the structural, functional, and molecular phenotypes of fragile X syndrome. Ment Retard Dev D R 10(1):53–59

    Article  Google Scholar 

  • Berdel B, Moryś J (2000) Expression of calbindin-D28 k and parvalbumin during development of rat’s basolateral amygdaloid complex. Int J Dev Neurosci 18(6):501–513

    Article  CAS  PubMed  Google Scholar 

  • Bony G, Szczurkowska J, Tamagno I, Shelly M, Contestabile A, Cancedda L (2013) Non-hyperpolarizing GABAB receptor activation regulates neuronal migration and neurite growth and specification by cAMP/LKB1. Nat Commun 4:1800

    Article  PubMed  Google Scholar 

  • Bouwmeester H, Smits K, Van Ree JM (2002) Neonatal development of projections to the basolateral amygdala from prefrontal and thalamic structures in rat. J Comp Neurol 450(3):241–255

    Article  PubMed  Google Scholar 

  • Brummelte S, Teuchert-Noodt G (2006) Postnatal development of dopamine innervation in the amygdala and the entorhinal cortex of the gerbil (Meriones unguiculatus). Brain Res 1125(1):9–16

    Article  CAS  PubMed  Google Scholar 

  • Calabrese B, Wilson MS, Halpain S (2006) Development and regulation of dendritic spine synapses. Physiol (Bethesda) 21:38–47

    Article  CAS  Google Scholar 

  • Camp LL, Rudy JW (1988) Changes in the categorization of appetitive and aversive events during postnatal development of the rat. Dev Psychobiol 21:25–42

    Article  CAS  PubMed  Google Scholar 

  • Campbell BA, Ampuero MX (1985) Dissociation of autonomic and behavioral components of conditioned fear during development in the rat. Behav Neurosci 99:1089–1102

    Article  CAS  PubMed  Google Scholar 

  • Cancedda L, Fiumelli H, Chen K, Poo M (2007) Excitatory GABA action is essential for morphological maturation of cortical neurons in vivo. J Neurosci 27(19):5224

    Article  CAS  PubMed  Google Scholar 

  • Chareyron LJ, Banta Lavenex P, Amaral DG, Lavenex P (2011) Stereological analysis of the rat and monkey amygdala. J Comp Neurol 519(16):3218–3239

    Article  PubMed  PubMed Central  Google Scholar 

  • Chareyron LJ, Banta Lavenex P, Lavenex P (2012) Postnatal development of the amygdala: a stereological study in rats. J Comp Neurol 520(16):3745–3763

    Article  PubMed  Google Scholar 

  • Cressman VL, Balaban J, Steinfeld S, Shemyakin A, Graham P, Parisot N, Moore H (2010) Prefrontal cortical inputs to the basal amygdala undergo pruning during late adolescence in the rat. J Comp Neurol 518(14):2693–2709

    CAS  PubMed  PubMed Central  Google Scholar 

  • Davis M, Walker DL, Myers KM (2003) Role of the amygdala in fear extinction measured with potentiated startle. Ann NY Acad Sci 985:218–232

    Article  CAS  PubMed  Google Scholar 

  • Ehrlich DE, Ryan SJ, Rainnie DG (2012) Postnatal development of electrophysiological properties of principal neurons in the rat basolateral amygdala. J Physiol 590(19):4819–4838

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ehrlich DE, Ryan SJ, Hazra R, Guo JD, Rainnie DG (2013) Postnatal maturation of GABAergic transmission in the rat basolateral amygdala. J Neurophysiol 110(4):926–941

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Elston GN, DeFelipe J (2002) Spine distribution in cortical pyramidal cells: a common organizational principle across species. Prog Brain Res 136:109–133

    Article  PubMed  Google Scholar 

  • Escobar C, Salas M (1993) Neonatal undernutrition and amygdaloid nuclear complex development: an experimental study in the rat. Exp Neurol 122(2):311–318

    Article  CAS  PubMed  Google Scholar 

  • Gleich O, Strutz J (2002) Age dependent changes in the medial nucleus of the trapezoid body in gerbils. Hearing Res 164(1–2):166–178

    Article  Google Scholar 

  • Hubbard DT, Blanchard DC, Yang M, Markham CM, Gervacio A, Chun-I L, Blanchard RJ (2004) Development of defensive behavior and conditioning to cat odor in the rat. Physiol Behav 80(4):525–530

    Article  CAS  PubMed  Google Scholar 

  • Hunt PS (1999) A further investigation of the developmental emergence of fear-potentiated startle in rats. Devel Psychobiol 34:281–291

    Article  CAS  Google Scholar 

  • Hunt PS, Richardson R, Campbell BA (1994) Delayed development of fear-potentiated startle in rats. Behav Neurosci 108(1):69–80

    Article  CAS  PubMed  Google Scholar 

  • Hunt PS, Hess MF, Campbell BA (1998) Inhibition of the expression of conditioned cardiac responses in the developing rat. Devel Psychobiol 33(3):221–233

    Article  CAS  Google Scholar 

  • Ito W, Pan BX, Yang C, Thakur S, Morozov A (2009) Enhanced generalization of auditory conditioned fear in juvenile mice. Learn Mem 16(3):187–192

    Article  PubMed  PubMed Central  Google Scholar 

  • Johnson SA, Wang JF, Sun X, McEwen BS, Chattarji S, Young LT (2009) Lithium treatment prevents stress-induced dendritic remodeling in the rodent amygdala. Neuroscience 163(1):34–39

    Article  CAS  PubMed  Google Scholar 

  • Kaufmann WE, Moser HW (2000) Dendritic anomalies in disorders associated with mental retardation. Cereb Cortex 10(10):981–991

    Article  CAS  PubMed  Google Scholar 

  • Kim JH, Richardson R (2007) A developmental dissociation in reinstatement of an extinguished fear response in rats. Neurobiol Learn Mem 88(1):48–57

    Article  CAS  PubMed  Google Scholar 

  • Kim JH, Richardson R (2008) The effect of temporary amygdala inactivation on extinction and reextinction of fear in the developing rat: unlearning as a potential mechanism for extinction early in development. J Neurosci 28(6):1282–1290

    Article  CAS  PubMed  Google Scholar 

  • Kim-Cohen J, Caspi A, Moffitt TE, Harrington HL, Milne BJ, Poulton R (2003) Prior juvenile diagnoses in adults with mental disorder: developmental follow-back of a prospective-longitudinal cohort. Arch Gen Psych 60(7):709–717

    Article  Google Scholar 

  • King EC, Pattwell SS, Glatt CE, Lee FS (2013) Sensitive periods in fear learning and memory. Stress 17(1):13–21

    Article  PubMed  PubMed Central  Google Scholar 

  • Koob GF, Volkow ND (2010) Neurocircuitry of addiction. Neuropsychopharm 35(1):217–238

    Article  Google Scholar 

  • Langton JM, Kim JH, Nicholas J, Richardson R (2007) The effect of the NMDA receptor antagonist MK-801 on the acquisition and extinction of learned fear in the developing rat. Learn Mem 14:665–668

    Article  CAS  PubMed  Google Scholar 

  • LeDoux JE (2007) The amygdala. Curr Biol 17(20):R868–R874

    Article  CAS  PubMed  Google Scholar 

  • Lee KF, Soares C, Béïque JC (2012) Examining form and function of dendritic spines. Neural Plast 2012:704103

    PubMed  PubMed Central  Google Scholar 

  • Li C, Dabrowska J, Hazra R, Rainnie DG (2011) Synergistic activation of dopamine D1 and TrkB receptors mediate gain control of synaptic plasticity in the basolateral amygdala. PLoS ONE 6(10):e26065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liao CC, Lee LJ (2012) Evidence for structural and functional changes of subplate neurons in developing rat barrel cortex. Brain Struct Funct 217(2):275–292

    Article  PubMed  Google Scholar 

  • Mainen ZF, Sejnowski TJ (1996) Influence of dendritic structure on firing pattern in model neocortical neurons. Nature 382(6589):363–366

    Article  CAS  PubMed  Google Scholar 

  • Maren S (2005) Synaptic mechanisms of associative memory in the amygdala. Neuron 47(6):783–786

    Article  CAS  PubMed  Google Scholar 

  • McDonald AJ (1998) Cortical pathways to the mammalian amygdala. Prog Neurobiol 55(3):257–332

    Article  CAS  PubMed  Google Scholar 

  • McEwen BS (2003) Early life influences on life-long patterns of behavior and health. Ment Retard Dev D R 9(3):149–154

    Article  Google Scholar 

  • Mizukawa K, Tseng IM, Otsuka N (1989) Quantitative electron microscopic analysis of postnatal development of zinc-positive nerve endings in the rat amygdala using timm’s sulphide silver technique. Brain Res Dev Brain Res 50(2):197–203

    Article  CAS  PubMed  Google Scholar 

  • Monteiro RA, Henrique RM, Rocha E, Marini-Abreu MM, Oliveira MH, Silva MW (1998) Age-related changes in the volume of somata and organelles of cerebellar granule cells. Neurobiol Aging 19(4):325–332

    Article  CAS  PubMed  Google Scholar 

  • Monteiro RA, Henrique RM, Oliveira MH, Silva MW, Rocha E (2005) Postnatal cerebellar granule cells of the white rat (rattus norvegicus): a quantitative study, using design-based stereology. Ann Anat 187(2):161–173

    Article  CAS  PubMed  Google Scholar 

  • Moriceau S, Roth TL, Okotoghaide T, Sullivan RM (2004) Corticosterone controls the developmental emergence of fear and amygdala function to predator odors in infant rat pups. Int J Dev Neurosci 22:415–422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moryś J, Berdel B, Kowiański P, Dziewiatkowski J (1998) The pattern of synaptophysin changes during the maturation of the amygdaloid body and hippocampal hilus in the rat. Folia Neuropathol 36(1):15–23

    PubMed  Google Scholar 

  • Moye TB, Rudy JW (1987) Ontogenesis of trace conditioning in young rats: dissociation of associative and memory processes. Dev Psychobiol 20(4):405–414

    Article  CAS  PubMed  Google Scholar 

  • Muller JF, Mascagni F, McDonald AJ (2009) Dopaminergic innervation of pyramidal cells in the rat basolateral amygdala. Brain Struct Funct 213(3):275–288

    Article  PubMed  Google Scholar 

  • Muly EC, Senyuz M, Khan ZU, Guo JD, Hazra R, Rainnie DG (2009) Distribution of D1 and D5 dopamine receptors in the primate and rat basolateral amygdala. Brain Struct Funct 213(4–5):375–393

    Article  PubMed  PubMed Central  Google Scholar 

  • Padival MA, Blume SR, Rosenkranz JA (2013) Repeated restraint stress exerts different impact on structure of neurons in the lateral and basal nuclei of the amygdala. Neurosci 246:230–242

    Article  CAS  Google Scholar 

  • Pape HC, Pare D (2010) Plastic synaptic networks of the amygdala for the acquisition, expression, and extinction of conditioned fear. Physiol Rev 90(2):419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pattwell SS, Bath KG, Casey BJ, Ninan I, Lee FS (2011) Selective early-acquired fear memories undergo temporary suppression during adolescence. Proc Natl Acad Sci USA 108(3):1182–1187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pattwell SS, Duhoux S, Hartley CA, Johnson DC, Jing D, Elliott MD, Ruberry EJ, Powers A, Mehta N, Yang RR, Soliman F, Glatt CE, Casey BJ, Ninan I, Lee FS (2012) Altered fear learning across development in both mouse and human. Proc Natl Acad Sci USA 109(40):16318–16323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paxinos G, Watson C (1997) The rat brain in stereotaxic coordinates, 3rd edn. Academic Press, San Diego

    Google Scholar 

  • Pillai AG, de Jong D, Kanatsou S, Krugers H, Knapman A, Heinzmann JM, Holsboer F, Landgraf R, Joëls M, Touma C (2012) Dendritic morphology of hippocampal and amygdalar neurons in adolescent mice is resilient to genetic differences in stress reactivity. PLoS ONE 7(6):e38971

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pine DS, Cohen P, Gurley D, Brook J, Ma Y (1998) The risk for early-adulthood anxiety and depressive disorders in adolescents with anxiety and depressive disorders. Arch Gen Psychiatry 55(1):56–64

    Article  CAS  PubMed  Google Scholar 

  • Puram SV, Kim AH, Ikeuchi Y, Wilson-Grady JT, Merdes A, Gygi SP, Bonni A (2011) A CaMKIIβ signaling pathway at the centrosome regulates dendrite patterning in the brain. Nat Neurosci 14(8):973–983

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Quinn R (2005) Comparing rat’s to human’s age: How old is my rat in people years? Nutrition 21(6):775–777

    Article  PubMed  Google Scholar 

  • Raineki C, De Souza MA, Szawka RE, Lutz ML, De Vasconcellos LF, Sanvitto GL, Izquierdo I, Bevilaqua LR, Cammarota M, Lucion AB (2009) Neonatal handling and the maternal odor preference in rat pups: involvement of monoamines and cyclic AMP response element-binding protein pathway in the olfactory bulb. Neuroscience 159(1):31–38

    Article  CAS  PubMed  Google Scholar 

  • Rainnie DG (1999) Serotonergic modulation of neurotransmission in the rat basolateral amygdala. J Neurophysiol 82(1):69-85  Rainnie DG, Bergeron R, Sajdyk TJ, Patil M, Gehlert DR, Shekhar A (2004) Corticotrophin releasing factor-induced synaptic plasticity in the amygdala translates stress into emotional disorders. J Neurosci 24(14):3471–3479

    Article  CAS  PubMed  Google Scholar 

  • Rainnie DG, Mania I, Mascagni F, McDonald AJ (2006) Physiological and morphological characterization of parvalbumin-containing interneurons in the rat basolateral amygdala. J Comp Neurol 498(1):142–161

    Article  PubMed  Google Scholar 

  • Richardson R, Paxinos G, Lee J (2000) The ontogeny of conditioned odor potentiation of startle. Behav Neurosci 114(6):1167–1173

    Article  CAS  PubMed  Google Scholar 

  • Rodrigues SM, Schafe GE, LeDoux JE (2004) Molecular mechanisms underlying emotional learning and memory in the lateral amygdala. Neuron 44(1):75–91

    Article  CAS  PubMed  Google Scholar 

  • Romand S, Wang Y, Toledo-Rodriguez M, Markram H (2011) Morphological development of thick-tufted layer v pyramidal cells in the rat somatosensory cortex. Front Neuroanat 5:5

    Article  PubMed  PubMed Central  Google Scholar 

  • Roozendaal B, McEwen BS, Chattarji S (2009) Stress, memory and the amygdala. Nat Rev Neurosci 10(6):423–433

    Article  CAS  PubMed  Google Scholar 

  • Rubinow MJ, Drogos LL, Juraska JM (2009) Age-related dendritic hypertrophy and sexual dimorphism in rat basolateral amygdala. Neurobiol Aging 30(1):137–146

    Article  PubMed  PubMed Central  Google Scholar 

  • Rudy JW (1993) Contextual conditioning and auditory cue conditioning dissociate during development. Behav Neurosci 107(5):887–891

    Article  CAS  PubMed  Google Scholar 

  • Ryan SJ, Ehrlich DE, Jasnow AM, Daftary S, Madsen TE, Rainnie DG (2012) Spike-timing precision and neuronal synchrony are enhanced by an interaction between synaptic inhibition and membrane oscillations in the amygdala. PLoS ONE 7(4):e35320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shekhar A, Truitt W, Rainnie DG, Sajdyk T (2005) Role of stress, corticotrophin releasing factor (CRF) and amygdala plasticity in chronic anxiety. Stress 8(4):209–219

    Article  CAS  PubMed  Google Scholar 

  • Shepherd GM (1996) The dendritic spine: a multifunctional integrative unit. J Neurophysiol 75(6):2197–2210

    CAS  PubMed  Google Scholar 

  • Steinberg L (2005) Cognitive and affective development in adolescence. Trends Cogn Sci 9(2):69–74

    Article  PubMed  Google Scholar 

  • Stuber GD, Sparta DR, Stamatakis AM, van Leeuwen WA, Hardjoprajitno JE, Cho S, Tye KM, Kempadoo KA, Zhang F, Deisseroth K, Bonci A (2011) Excitatory transmission from the amygdala to nucleus accumbens facilitates reward seeking. Nature 475(7356):377–380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sullivan RM, Landers M, Yeaman B, Wilson DA (2000) Good memories of bad events in infancy. Nature 407(6800):38–39

    Article  CAS  PubMed  Google Scholar 

  • Takahashi LK (1992) Ontogeny of behavioral inhibition induced by unfamiliar adult male conspecifics in preweanling rats. Physiol Behav 52:493–498

    Article  CAS  PubMed  Google Scholar 

  • Thomas CG, Tian H, Diamond JS (2011) The relative roles of diffusion and uptake in clearing synaptically released glutamate change during early postnatal development. J Neurosci 31(12):4743–4754

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thompson JV, Sullivan RM, Wilson DA (2008) Developmental emergence of fear learning corresponds with changes in amygdala synaptic plasticity. Neuroscience 1200:58–65

    CAS  Google Scholar 

  • Torres-García ME, Solis O, Patricio A, Rodríguez-Moreno A, Camacho-Abrego I, Limón ID, Flores G (2012) Dendritic morphology changes in neurons from the prefrontal cortex, hippocampus and nucleus accumbens in rats after lesion of the thalamic reticular nucleus. Neuroscience 223:429–438

    Article  PubMed  Google Scholar 

  • Tosevski J, Malikovic A, Mojsilovic-Petrovic J, Lackovic V, Peulic M, Sazdanovic P, Alexopulos C (2002) Types of neurons and some dendritic patterns of basolateral amygdala in humans: a golgi study. Ann Anat 184(1):93–103

    Article  PubMed  Google Scholar 

  • Truitt WA, Sajdyk TJ, Dietrich AD, Oberlin B, McDougle CJ, Shekhar A (2007) From anxiety to autism : spectrum of abnormal social behaviors modeled by progressive disruption of inhibitory neuronal function in the basolateral amygdala in Wistar rats. Psychopharmacology 191(1):107–118

    Article  CAS  PubMed  Google Scholar 

  • Vidal L, Ruíz C, Villena A, Díaz F, Pérez de Vargas I (2004) Quantitative age-related changes in dorsal lateral geniculate nucleus relay neurons of the rat. Neurosci Res 48(4):387–396

    Article  PubMed  Google Scholar 

  • Wiedenmayer CP, Barr GA (2001) Developmental changes in responsivity to threat are stimulus-specific in rats. Dev Psychobiol 39(1):1–7

    Article  CAS  PubMed  Google Scholar 

  • Yajeya J, de la Fuente Juan A, Merchan MA, Riolobos AS, Heredia M, Criado JM (1997) Cholinergic responses of morphologically and electrophysiologically characterized neurons of the basolateral complex in rat amygdala slices. Neuroscience 78(3):731–743

    Article  CAS  PubMed  Google Scholar 

  • Zhang ZW (2004) Maturation of layer V pyramidal neurons in the rat prefrontal cortex: intrinsic properties and synaptic function. J Neurophysiol 91(3):1171–1182

    Article  PubMed  Google Scholar 

  • Zhang J, Muller JF, McDonald AJ (2013) Noradrenergic innervation of pyramidal cells in the rat basolateral amygdala. Neuroscience 228:395–408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Prof. Todd Preuss for resources for the analysis of neuron morphology and the Emory University Institute for Quantitative Theory and Methods for assistance with statistical analyses. This work was funded by the following grants from the National Institutes of Health: MH 069852 to D.G.R., base grant RR 00165 to the Yerkes National Primate Research center, and MH 090729 to D.E.E.

Conflict of interest

The authors would like to declare no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Donald G. Rainnie.

Additional information

S. J. Ryan and D. E Ehrlich contributed equally.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ryan, S.J., Ehrlich, D.E. & Rainnie, D.G. Morphology and dendritic maturation of developing principal neurons in the rat basolateral amygdala. Brain Struct Funct 221, 839–854 (2016). https://doi.org/10.1007/s00429-014-0939-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-014-0939-x

Keywords

Navigation