Skip to main content

Advertisement

Log in

Adolescent nicotine-induced dendrite remodeling in the nucleus accumbens is rapid, persistent, and D1-dopamine receptor dependent

  • Original Article
  • Published:
Brain Structure and Function Aims and scope Submit manuscript

Abstract

Chronic nicotine exposure during adolescence induces dendritic remodeling of medium spiny neurons (MSNs) in the nucleus accumbens (NAcc) shell. While nicotine-induced dendritic remodeling has frequently been described as persistent, the trajectory of dendrite remodeling is unknown. Specifically, no study to date has characterized the structural plasticity of dendrites in the NAcc immediately following chronic nicotine, leaving open the possibility that dendrite remodeling emerges gradually over time. Further, the neuropharmacological mechanisms through which nicotine induces dendrite remodeling are not well understood. To address these questions, rats were co-administered chronic nicotine (0.5 mg/kg) and the D1-dopamine receptor (D1DR) antagonist SCH-23390 (0.05 mg/kg) subcutaneously every other day during adolescence. Brains were then processed for Golgi–Cox staining either 1 day or 21 days following drug exposure and dendrites from MSNs in the NAcc shell digitally reconstructed in 3D. Spine density was also measured at both time points. Our morphometric results show (1) the formation of new dendritic branches and spines 1 day following nicotine exposure, (2) new dendritic branches, but not spine density, remains relatively stable for at least 21 days, (3) the co-administration of SCH-23390 completely blocked nicotine-induced dendritic remodeling of MSNs at both early and late time points, suggesting the formation of new dendritic branches in response to nicotine is D1DR-dependent, and (4) SCH-23390 failed to block nicotine-induced increases in spine density. Overall this study provides new insight into how nicotine influences the normal trajectory of adolescent brain development and demonstrates a persistent form of nicotine-induced neuroplasticity in the NAcc shell that develops rapidly and is D1DR dependent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Acquas E, Carboni E, Leone P, Di Chiara G (1989) SCH 23390 blocks drug-conditioned place-preference and place-aversion: anhedonia (lack of reward) or apathy (lack of motivation) after dopamine-receptor blockade? Psychopharmacology 99(2):151–155

    Article  CAS  PubMed  Google Scholar 

  • Arikkath J (2012) Molecular mechanisms of dendrite morphogenesis. Front Cell Neurosci 6:61

    Article  PubMed Central  PubMed  Google Scholar 

  • Aubert I, Ghorayeb I, Normand E, Bloch B (2000) Phenotypical characterization of the neurons expressing the D1 and D2 dopamine receptors in the monkey striatum. J Comp Neurol 418(1):22–32

    Article  CAS  PubMed  Google Scholar 

  • Baler RD, Volkow ND (2011) Addiction as a systems failure: focus on adolescence and smoking. J Am Acad Child Adolesc Psychiatry 50(4):329–339

    Article  PubMed Central  PubMed  Google Scholar 

  • Bergstrom HC, Smith RF, Mollinedo NS, McDonald CG (2010) Chronic nicotine exposure produces lateralized, age-dependent dendritic remodeling in the rodent basolateral amygdala. Synapse 64(10):754–764

    CAS  PubMed  Google Scholar 

  • Bracken AL, Chambers RA, Berg SA, Rodd ZA, McBride WJ (2011) Nicotine exposure during adolescence enhances behavioral sensitivity to nicotine during adulthood in Wistar rats. Pharmacol Biochem Behav 99(1):87–93

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Brielmaier JM, McDonald CG, Smith RF (2007) Immediate and long-term behavioral effects of a single nicotine injection in adolescent and adult rats. Neurotoxicol Teratol 29(1):74–80

    Article  CAS  PubMed  Google Scholar 

  • Brielmaier JM, McDonald CG, Smith RF (2008) Nicotine place preference in a biased conditioned place preference design. Pharmacol Biochem Behav 89(1):94–100

    Article  CAS  PubMed  Google Scholar 

  • Brown RW, Kolb B (2001) Nicotine sensitization increases dendritic length and spine density in the nucleus accumbens and cingulate cortex. Brain Res 899(1–2):94–100

    Article  CAS  PubMed  Google Scholar 

  • Chklovskii DB (2004) Synaptic connectivity and neuronal morphology: two sides of the same coin. Neuron 43(5):609–617

    CAS  PubMed  Google Scholar 

  • Corrigall WA, Coen KM (1991) Selective dopamine antagonists reduce nicotine self-administration. Psychopharmacology 104(2):171–176

    Article  CAS  PubMed  Google Scholar 

  • Di Chiara G (2000) Role of dopamine in the behavioural actions of nicotine related to addiction. Eur J Pharmacol 393(1–3):295–314

    Article  PubMed  Google Scholar 

  • Di Chiara G, Tanda G, Bassareo V, Pontieri F, Acquas E, Fenu S, Cadoni C, Carboni E (1999) Drug addiction as a disorder of associative learning. Role of nucleus accumbens shell/extended amygdala dopamine. Ann N Y Acad Sci 877:461–485

    Article  PubMed  Google Scholar 

  • Dillon C, Goda Y (2005) The actin cytoskeleton: integrating form and function at the synapse. Annu Rev Neurosci 28:25–55

    Article  CAS  PubMed  Google Scholar 

  • Ehlinger DG, Bergstrom HC, McDonald CG, Smith RF (2012) Nicotine-induced dendritic remodeling in the insular cortex. Neurosci Lett 516(1):89–93

    Article  CAS  PubMed  Google Scholar 

  • Feldman ML, Peters A (1979) A technique for estimating total spine numbers on Golgi-impregnated dendrites. J Comp Neurol 188(4):527–542

    Article  CAS  PubMed  Google Scholar 

  • Garske AK, Lawyer CR, Peterson BM, Illig KR (2013) Adolescent changes in dopamine D1 receptor expression in orbitofrontal cortex and piriform cortex accompany associative learning deficit. PLoS ONE 8(2):e56191

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Georges PC, Hadzimichalis NM, Sweet ES, Firestein BL (2008) The yin-yang of dendrite morphology: unity of actin and microtubules. Mol Neurobiol 38(3):270–284

    Article  CAS  PubMed  Google Scholar 

  • Gibb R, Kolb B (1998) A method for vibratome sectioning of Golgi–Cox stained whole rat brain. J Neurosci Methods 79(1):1–4

    Article  CAS  PubMed  Google Scholar 

  • Gipson CD, Reissner KJ, Kupchik YM, Smith AC, Stankeviciute N, Hensley-Simon ME, Kalivas PW (2013) Reinstatement of nicotine seeking is mediated by glutamatergic plasticity. Proc Natl Acad Sci USA 110(22):9124–9129

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Glaser EM, Van der Loos H (1981) Analysis of thick brain sections by obverse-reverse computer microscopy: application of a new, high clarity Golgi–Nissl stain. J Neurosci Methods 4(2):117–125

    Article  CAS  PubMed  Google Scholar 

  • Grueter BA, Robison AJ, Neve RL, Nestler EJ, Malenka RC (2013) ∆FosB differentially modulates nucleus accumbens direct and indirect pathway function. Proc Natl Acad Sci USA 110(5):1923–1928

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gulley JM, Juraska JM (2013) The effects of abused drugs on adolescent development of corticolimbic circuitry and behavior. Neuroscience 249:3–20

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Halpain S, Hipolito A, Saffer L (1998) Regulation of F-actin stability in dendritic spines by glutamate receptors and calcineurin. J Neurosci 18(23):9835–9844

    CAS  PubMed  Google Scholar 

  • Hamilton DA, Kolb B (2005) Differential effects of nicotine and complex housing on subsequent experience-dependent structural plasticity in the nucleus accumbens. Behav Neurosci 119(2):355–365

    Article  CAS  PubMed  Google Scholar 

  • Harris KM (1999) Structure, development, and plasticity of dendritic spines. Curr Opin Neurobiol 9(3):343–348

    Article  CAS  PubMed  Google Scholar 

  • Harris KM, Kater SB (1994) Dendritic spines: cellular specializations imparting both stability and flexibility to synaptic function. Annu Rev Neurosci 17:341–371

    Article  CAS  PubMed  Google Scholar 

  • Hering H, Sheng M (2003) Activity-dependent redistribution and essential role of cortactin in dendritic spine morphogenesis. J Neurosci 23(37):11759–11769

    CAS  PubMed  Google Scholar 

  • Hersch SM, Ciliax BJ, Gutekunst CA, Rees HD, Heilman CJ, Yung KK, Bolam JP, Ince E, Yi H, Levey AI (1995) Electron microscopic analysis of D1 and D2 dopamine receptor proteins in the dorsal striatum and their synaptic relationships with motor corticostriatal afferents. J Neurosci 15(7 Pt 2):5222–5237

    CAS  PubMed  Google Scholar 

  • Huppé-Gourgues F, O’donnell P (2012) D1-NMDA receptor interactions in the rat nucleus accumbens change during adolescence. Synapse 66(7):584–591

    Article  PubMed  Google Scholar 

  • Kasai H, Matsuzaki M, Noguchi J, Yasumatsu N, Nakahara H (2003) Structure–stability–function relationships of dendritic spines. Trends Neurosci 26(7):360–368

    Article  CAS  PubMed  Google Scholar 

  • Koleske AJ (2013) Molecular mechanisms of dendrite stability. Nat Rev Neurosci 14(8):536–550

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Koss WA, Belden CE, Hristov AD, Juraska JM (2014) Dendritic remodeling in the adolescent medial prefrontal cortex and basolateral amygdala of male and female rats. Synapse 68(2):61–72

    Article  CAS  PubMed  Google Scholar 

  • Lachowicz JE, Sibley DR (1997) Molecular characteristics of mammalian dopamine receptors. Pharmacol Toxicol 81(3):105–113

    Article  CAS  PubMed  Google Scholar 

  • Lee KW, Kim Y, Kim AM, Helmin K, Nairn AC, Greengard P (2006) Cocaine-induced dendritic spine formation in D1 and D2 dopamine receptor-containing medium spiny neurons in nucleus accumbens. Proc Natl Acad Sci USA 103(9):3399–3404

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Li J, Liu N, Lu K, Zhang L, Gu J, Guo F, An S, Zhang L, Zhang L (2012) Cocaine-induced dendritic remodeling occurs in both D1 and D2 dopamine receptor-expressing neurons in the nucleus accumbens. Neurosci Lett 517(2):118–122

    Article  CAS  PubMed  Google Scholar 

  • Lobo MK, Nestler EJ (2011) The striatal balancing act in drug addiction: distinct roles of direct and indirect pathway medium spiny neurons. Front Neuroanat 5:41

    PubMed Central  PubMed  Google Scholar 

  • Lobo MK, Zaman S, Damez-Werno DM, Koo JW, Bagot RC, DiNieri JA, Nugent A, Finkel E, Chaudhury D, Chandra R, Riberio E, Rabkin J, Mouzon E, Cachope R, Cheer JF, Han MH, Dietz DM, Self DW, Hurd YL, Vialou V, Nestler EJ (2013) ΔFosB induction in striatal medium spiny neuron subtypes in response to chronic pharmacological, emotional, and optogenetic stimuli. J Neurosci 33(47):18381–18395

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lu XY, Ghasemzadeh MB, Kalivas PW (1998) Expression of D1 receptor, D2 receptor, substance P and enkephalin messenger RNAs in the neurons projecting from the nucleus accumbens. Neuroscience 82(3):767–780

    Article  CAS  PubMed  Google Scholar 

  • Marttila K, Raattamaa H, Ahtee L (2006) Effects of chronic nicotine administration and its withdrawal on striatal FosB/DeltaFosB and c-Fos expression in rats and mice. Neuropharmacology 51(1):44–51

    Article  CAS  PubMed  Google Scholar 

  • Maze I, Russo SJ (2010) Transcriptional mechanisms: underlying addiction-related structural plasticity. Mol Interv 10(4):219–230

    Article  CAS  PubMed  Google Scholar 

  • McCarthy MJ, Duchemin AM, Neff NH, Hadjiconstantinou M (2012) CREB involvement in the regulation of striatal prodynorphin by nicotine. Psychopharmacology 221(1):143–153

    Article  CAS  PubMed  Google Scholar 

  • McDonald CG, Dailey VK, Bergstrom HC, Wheeler TL, Eppolito AK, Smith LN, Smith RF (2005) Periadolescent nicotine administration produces enduring changes in dendritic morphology of medium spiny neurons from nucleus accumbens. Neurosci Lett 385(2):163–167

    Article  CAS  PubMed  Google Scholar 

  • McDonald CG, Eppolito AK, Brielmaier JM, Smith LN, Bergstrom HC, Lawhead MR, Smith RF (2007) Evidence for elevated nicotine-induced structural plasticity in nucleus accumbens of adolescent rats. Brain Res 1151:211–218

    Article  CAS  PubMed  Google Scholar 

  • National Institute on Drug Abuse (2012) Research report series: tobacco addiction. Department of Health and Human Services (US), Washington (NIH publication no. 12-4342)

  • Nestler EJ (2001) Molecular neurobiology of addiction. Am J Addict 10(3):201–217

    Article  CAS  PubMed  Google Scholar 

  • Nestler EJ (2004) Molecular mechanisms of drug addiction. Neuropharmacology 47(Suppl 1):24–32

    Article  CAS  PubMed  Google Scholar 

  • Nestler EJ (2013) Cellular basis of memory for addiction. Dialogues Clin Neurosci 15(4):431–443

    PubMed Central  PubMed  Google Scholar 

  • Newey SE, Velamoor V, Govek EE, Van Aelst L (2005) Rho GTPases, dendritic structure, and mental retardation. J Neurobiol 64(1):58–74

    Article  CAS  PubMed  Google Scholar 

  • O’Dell LE (2009) A psychobiological framework of the substrates that mediate nicotine use during adolescence. Neuropharmacology 56(Suppl 1):263–278

    Article  PubMed Central  PubMed  Google Scholar 

  • Odell WD (1990) Sexual maturation in the rat. In: Grumbach MM, Sizonenko PC, Aubert ML (eds) Control of the onset of puberty. Williams and Wilkins, Baltimore, pp 183–210

    Google Scholar 

  • Ojeda SR, Urbanski HF (1994) Puberty in the rat. In: Knobil E, Neill JD (eds) The physiology of reproduction, 2nd edn. Raven Press, New York, pp 363–409

    Google Scholar 

  • Passafaro M, Nakagawa T, Sala C, Sheng M (2003) Induction of dendritic spines by an extracellular domain of AMPA receptor subunit GluR2. Nature 424(6949):677–681

    Article  CAS  PubMed  Google Scholar 

  • Paxinos G, Watson C (2007) The rat brain in stereotaxic coordinates, 6th edn. Academic Press/Elsevier, Amsterdam/Boston

    Google Scholar 

  • Penzes P, Srivastava DP, Woolfrey KM (2009) Not just actin? A role for dynamic microtubules in dendritic spines. Neuron 61(1):3–5

    Article  CAS  PubMed  Google Scholar 

  • Perna MK, Brown RW (2013) Adolescent nicotine sensitization and effects of nicotine on accumbal dopamine release in a rodent model of increased dopamine D2 receptor sensitivity. Behav Brain Res 242:102–109

    Article  CAS  PubMed  Google Scholar 

  • Picciotto MR (2003) Nicotine as a modulator of behavior: beyond the inverted U. Trends Pharmacol Sci 24(9):493–499

    Article  CAS  PubMed  Google Scholar 

  • Picciotto MR, Zoli M, Rimondini R, Lena C, Marubio LM, Pich EM, Fuxe K, Changeux JM (1998) Acetylcholine receptors containing the beta2 subunit are involved in the reinforcing properties of nicotine. Nature 391(6663):173–177

    Article  CAS  PubMed  Google Scholar 

  • Pierce RC, Kumaresan V (2006) The mesolimbic dopamine system: the final common pathway for the reinforcing effect of drugs of abuse? Neurosci Biobehav Rev 30(2):215–238

    Article  CAS  PubMed  Google Scholar 

  • Pitchers KK, Vialou V, Nestler EJ, Laviolette SR, Lehman MN, Coolen LM (2013) Natural and drug rewards act on common neural plasticity mechanisms with ΔFosB as a key mediator. J Neurosci 33(8):3434–3442

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Redmond L, Kashani AH, Ghosh A (2002) Calcium regulation of dendritic growth via CaM kinase IV and CREB-mediated transcription. Neuron 34(6):999–1010

    Article  CAS  PubMed  Google Scholar 

  • Reinoso BS, Undie AS, Levitt P (1996) Dopamine receptors mediate differential morphological effects on cerebral cortical neurons in vitro. J Neurosci Res 43(4):439–453

    Article  CAS  PubMed  Google Scholar 

  • Ren Z, Sun WL, Jiao H, Zhang D, Kong H, Wang X, Xu M (2010) Dopamine D1 and N-methyl-d-aspartate receptors and extracellular signal-regulated kinase mediate neuronal morphological changes induced by repeated cocaine administration. Neuroscience 168(1):48–60

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Robinson TE, Kolb B (1999) Alterations in the morphology of dendrites and dendritic spines in the nucleus accumbens and prefrontal cortex following repeated treatment with amphetamine or cocaine. Eur J Neurosci 11(5):1598–1604

    Article  CAS  PubMed  Google Scholar 

  • Robinson TE, Kolb B (2004) Structural plasticity associated with exposure to drugs of abuse. Neuropharmacology 47 Suppl 1:33–46

    Article  PubMed  Google Scholar 

  • Sánchez C, Díaz-Nido J, Avila J (2000) Phosphorylation of microtubule-associated protein 2 (MAP2) and its relevance for the regulation of the neuronal cytoskeleton function. Prog Neurobiol 61(2):133–168

    Article  PubMed  Google Scholar 

  • Schiltz CA, Kelley AE, Landry CF (2005) Contextual cues associated with nicotine administration increase arc mRNA expression in corticolimbic areas of the rat brain. Eur J Neurosci 21(6):1703–1711

    Article  PubMed Central  PubMed  Google Scholar 

  • Schochet TL, Kelley AE, Landry CF (2005) Differential expression of arc mRNA and other plasticity-related genes induced by nicotine in adolescent rat forebrain. Neuroscience 135(1):285–297

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Schubert V, Dotti CG (2007) Transmitting on actin: synaptic control of dendritic architecture. J Cell Sci 120(Pt 2):205–212

    Article  CAS  PubMed  Google Scholar 

  • Self DW (2004) Regulation of drug-taking and -seeking behaviors by neuroadaptations in the mesolimbic dopamine system. Neuropharmacology 47(Suppl 1):242–255

    Article  CAS  PubMed  Google Scholar 

  • Shram MJ, Funk D, Li Z, Lê AD (2007) Acute nicotine enhances c-fos mRNA expression differentially in reward-related substrates of adolescent and adult rat brain. Neurosci Lett 418(3):286–291

    Article  CAS  PubMed  Google Scholar 

  • Smith RF (2003) Animal models of periadolescent substance abuse. Neurotoxicol Teratol 25(3):291–301

    Article  CAS  PubMed  Google Scholar 

  • Smith Y, Bevan MD, Shink E, Bolam JP (1998) Microcircuitry of the direct and indirect pathways of the basal ganglia. Neuroscience 86(2):353–387

    Article  CAS  PubMed  Google Scholar 

  • Soderstrom K, Qin W, Williams H, Taylor DA, McMillen BA (2007) Nicotine increases FosB expression within a subset of reward- and memory-related brain regions during both peri- and post-adolescence. Psychopharmacology 191(4):891–897

    Article  CAS  PubMed  Google Scholar 

  • Song ZM, Undie AS, Koh PO, Fang YY, Zhang L, Dracheva S, Sealfon SC, Lidow MS (2002) D1 dopamine receptor regulation of microtubule-associated protein-2 phosphorylation in developing cerebral cortical neurons. J Neurosci 22(14):6092–6105

    CAS  PubMed  Google Scholar 

  • Spear LP (2000) The adolescent brain and age-related behavioral manifestations. Neurosci Biobehav Rev 24(4):417–463

    Article  CAS  PubMed  Google Scholar 

  • Spear LP, Brake SC (1983) Periadolescence: age-dependent behavior and psychopharmacological responsivity in rats. Dev Psychobiol 16(2):83–109

    Article  CAS  PubMed  Google Scholar 

  • Spina L, Fenu S, Longoni R, Rivas E, Di Chiara G (2006) Nicotine-conditioned single-trial place preference: selective role of nucleus accumbens shell dopamine D1 receptors in acquisition. Psychopharmacology 184(3–4):447–455

    Article  CAS  PubMed  Google Scholar 

  • Stepanyants A, Hof PR, Chklovskii DB (2002) Geometry and structural plasticity of synaptic connectivity. Neuron 34(2):275–288

    Article  CAS  PubMed  Google Scholar 

  • Szebenyi G, Bollati F, Bisbal M, Sheridan S, Faas L, Wray R, Haferkamp S, Nguyen S, Caceres A, Brady ST (2005) Activity-driven dendritic remodeling requires microtubule-associated protein 1A. Curr Biol 15(20):1820–1826

    Article  CAS  PubMed  Google Scholar 

  • Tada T, Sheng M (2006) Molecular mechanisms of dendritic spine morphogenesis. Curr Opin Neurobiol 16(1):95–101

    Article  CAS  PubMed  Google Scholar 

  • Tarazi FI, Baldessarini RJ (2000) Comparative postnatal development of dopamine D(1), D(2) and D(4) receptors in rat forebrain. Int J Dev Neurosci 18(1):29–37

    Article  CAS  PubMed  Google Scholar 

  • Ultanir SK, Kim JE, Hall BJ, Deerinck T, Ellisman M, Ghosh A (2007) Regulation of spine morphology and spine density by NMDA receptor signaling in vivo. Proc Natl Acad Sci USA 104(49):19553–19558

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Urbanska M, Blazejczyk M, Jaworski J (2008) Molecular basis of dendritic arborization. Acta Neurobiol Exp (Wars) 68(2):264–288

    Google Scholar 

  • Urbanska M, Swiech L, Jaworski J (2012) Developmental plasticity of the dendritic compartment: focus on the cytoskeleton. Adv Exp Med Biol 970:265–284

    Article  PubMed  Google Scholar 

  • Valjent E, Pascoli V, Svenningsson P, Paul S, Enslen H, Corvol JC, Stipanovich A, Caboche J, Lombroso PJ, Nairn AC, Greengard P, Hervé D, Girault JA (2005) Regulation of a protein phosphatase cascade allows convergent dopamine and glutamate signals to activate ERK in the striatum. Proc Natl Acad Sci USA 102(2):491–496

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wahlstrom D, White T, Luciana M (2010) Neurobehavioral evidence for changes in dopamine system activity during adolescence. Neurosci Biobehav Rev 34(5):631–648

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wayman GA, Impey S, Marks D, Saneyoshi T, Grant WF, Derkach V, Soderling TR (2006) Activity-dependent dendritic arborization mediated by CaM-kinase I activation and enhanced CREB-dependent transcription of Wnt-2. Neuron 50(6):897–909

    Article  CAS  PubMed  Google Scholar 

  • Yuste R (2011) Dendritic spines and distributed circuits. Neuron 71(5):772–781

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zarrindast MR, Sadegh M, Shafaghi B (1996) Effects of nicotine on memory retrieval in mice. Eur J Pharmacol 295(1):1–6

    Article  CAS  PubMed  Google Scholar 

  • Zhou FM, Liang Y, Dani JA (2001) Endogenous nicotinic cholinergic activity regulates dopamine release in the striatum. Nat Neurosci 4(12):1224–1229

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank David Meyers and Ebube Utomi for animal care. The work was supported by a grant from the Virginia Foundation for Healthy Youth.

Conflict of interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. G. Ehlinger.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ehlinger, D.G., Bergstrom, H.C., Burke, J.C. et al. Adolescent nicotine-induced dendrite remodeling in the nucleus accumbens is rapid, persistent, and D1-dopamine receptor dependent. Brain Struct Funct 221, 133–145 (2016). https://doi.org/10.1007/s00429-014-0897-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-014-0897-3

Keywords

Navigation