Skip to main content
Log in

Postnatal development of dendritic structure of layer III pyramidal neurons in the medial prefrontal cortex of marmoset

  • Original Article
  • Published:
Brain Structure and Function Aims and scope Submit manuscript

Abstract

In the primate cerebral cortex, dendritic spines rapidly increase in number after birth up to infancy or mid-childhood, and then decrease towards adulthood. Abnormalities in these processes accompany several psychiatric disorders. In this study, we examined developmental changes of basal dendrites and spines of layer III pyramidal cells in the medial prefrontal cortex (mPFC) of the common marmoset. The mPFC consists of several areas with distinct features in layer organization, histochemistry, connections, and, in humans, vulnerability to psychiatric disorders. We selected three areas for examination: granular dorsomedial prefrontal (area 8B/9), dysgranular ventromedial prefrontal (area 14r), and agranular anterior cingulate (area 24) cortices. Dendritic field areas, lengths, number of branching points, and total spine number reached a peak at 2–3 postnatal months in all three areas. However, the profiles of spine formation and pruning differed across the three areas with different degrees of granularity; the amount of spine loss from the peak to adulthood was less in areas 24 (33 %) and 14r (29 %) than in area 8B/9 (43 %). Disturbance of this modest spine pruning in the less granular cortical areas may lead to an excessive loss of spines reported for areas 24 and 14r of schizophrenic patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Amodio DM, Frith CD (2006) Meeting of minds: the medial frontal cortex and social cognition. Nat Rev Neurosci 7(4):268–277

    Article  CAS  PubMed  Google Scholar 

  • Barbas H (1995) Two prefrontal limbic systems: their common and unique features. In: Sakata H, Fuster JM (eds) Association cortex: structure and function. CRC Press, Boca Raton

    Google Scholar 

  • Barbas H, Blatt GJ (1995) Topographically specific hippocampal projections target functionally distinct prefrontal areas in the rhesus monkey. Hippocampus 5(6):511–533

    Article  CAS  PubMed  Google Scholar 

  • Barbas H, Pandya DN (1989) Architecture and intrinsic connections of the prefrontal cortex in the rhesus monkey. J Comp Neurol 286(3):353–375

    Article  CAS  PubMed  Google Scholar 

  • Barbas H, Rempel-Clower N (1997) Cortical structure predicts the pattern of corticocortical connections. Cereb Cortex 7(7):635–646

    Article  CAS  PubMed  Google Scholar 

  • Barbas H, Ghashghaei H, Dombrowski SM, Rempel-Clower NL (1999) Medial prefrontal cortices are unified by common connections with superior temporal cortices and distinguished by input from memory-related areas in the rhesus monkey. J Comp Neurol 410(3):343–367

    Article  CAS  PubMed  Google Scholar 

  • Barros M, Tomaz C (2002) Non-human primate models for investigating fear and anxiety. Neurosci Biobehav Rev 26(2):187–201

    Article  PubMed  Google Scholar 

  • Bennett MR (2011) Schizophrenia: susceptibility genes, dendritic-spine pathology and gray matter loss. Prog Neurobiol 95(3):275–300

    Article  CAS  PubMed  Google Scholar 

  • Bianchi S, Stimpson CD, Duka T, Larsen MD, Janssen WG, Collins Z, Bauernfeind AL, Schapiro SJ, Baze WB, McArthur MJ, Hopkins WD, Wildman DE, Lipovich L, Kuzawa CW, Jacobs B, Hof PR, Sherwood CC (2013) Synaptogenesis and development of pyramidal neuron dendritic morphology in the chimpanzee neocortex resembles humans. Proc Natl Acad Sci USA 110(2):10395–10401

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Broadbelt K, Byne W, Jones LB (2002) Evidence for a decrease in basilar dendrites of pyramidal cells in schizophrenic medial prefrontal cortex. Schizophr Res 58(1):75–81

    Article  PubMed  Google Scholar 

  • Brodmann K (1909) Vergleichende Lokalisationslehre der Großhirnrinde. Barth, Leipzig

    Google Scholar 

  • Buhl EH, Schlote W (1987) Intracellular lucifer yellow staining and electron microscopy of neurones in slices of fixed epitumourous human cortical tissue. Acta Neuropathol 75(2):140–146

    Article  CAS  PubMed  Google Scholar 

  • Burkart JM, Fehr E, Efferson C, van Schaik CP (2007) Other-regarding preferences in a non-human primate: common marmosets provision food altruistically. Proc Natl Acad Sci USA 104(50):19762–19766

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Burman KJ, Rosa MG (2009) Architectural subdivisions of medial and orbital frontal cortices in the marmoset monkey (Callithrix jacchus). J Comp Neurol 514(1):11–29

    Article  PubMed  Google Scholar 

  • Cauda F, Geda E, Sacco K, D’Agata F, Duca S, Geminiani G, Keller R (2011) Grey matter abnormality in autism spectrum disorder: an activation likelihood estimation meta-analysis study. J Neurol Neurosurg Psychiatry 82(12):1304–1313

    Article  PubMed  Google Scholar 

  • Chandolia RK, Luetjens CM, Wistuba J, Yeung CH, Nieschlag E, Simoni M (2006) Changes in endocrine profile and reproductive organs during puberty in the male marmoset monkey (Callithrix jacchus). Reproduction 132(2):355–363

    Article  CAS  PubMed  Google Scholar 

  • Conel J (1939) The postnatal development of the human cerebral cortex, the cortex of the newborn, vol 1. Harvard University Press, Cambridge

    Google Scholar 

  • Conel J (1941) The postnatal development of the human cerebral cortex, the cortex of the one-month infant, vol 2. Harvard University Press, Cambridge

    Book  Google Scholar 

  • Conel J (1947) The postnatal development of the human cerebral cortex, the cortex of the three-month infant, vol 3. Harvard University Press, Cambridge

    Book  Google Scholar 

  • Conel J (1951) The postnatal development of the human cerebral cortex, the cortex of the six-month infant, vol 4. Harvard University Press, Cambridge

    Google Scholar 

  • Conel J (1955) The postnatal development of the human cerebral cortex, the cortex of the fifteen-month infant, vol 5. Harvard University Press, Cambridge

    Google Scholar 

  • Conel J (1959) The postnatal development of the human cerebral cortex, the cortex of the twenty-four-month infant, vol 6. Harvard University Press, Cambridge

    Google Scholar 

  • Conel J (1963) The postnatal development of the human cerebral cortex, the cortex of the four-year child, vol 7. Harvard University Press, Cambridge

    Book  Google Scholar 

  • Conel J (1967) The postnatal development of the human cerebral cortex, the cortex of the six-year child, vol 8. Harvard University Press, Cambridge

    Book  Google Scholar 

  • Dombrowski SM, Barbas H (1996) Differential expression of NADPH diaphorase in functionally distinct prefrontal cortices in the rhesus monkey. Neuroscience 72:49–62

    Article  CAS  PubMed  Google Scholar 

  • Dombrowski SM, Hilgetag CC, Barbas H (2001) Quantitative architecture distinguishes prefrontal cortical systems in the rhesus monkey. Cereb Cortex 11:975–988

    Article  CAS  PubMed  Google Scholar 

  • Eayrs JT, Goodhead B (1959) Postnatal development of the cerebral cortex in the rat. J Anat 93:385–402

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ebert DH, Greenberg ME (2013) Activity-dependent neuronal signaling and autism spectrum disorder. Nature 493(7432):327–337

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Elston GN (2001) Interlaminar differences in the pyramidal cell phenotype in cortical areas 7 m and STP (the superior temporal polysensory area) of the macaque monkey. Exp Brain Res 138(2):141–152

    Article  CAS  PubMed  Google Scholar 

  • Elston GN, Fujita I (2014) Pyramidal cell development: postnatal spinogenesis, dendritic growth, axon growth, and electrophysiology. Front Neuroanat (in press)

  • Elston GN, Rosa MGP (1997) The occipitoparietal pathway of the macaque monkey: comparison of pyramidal cell morphology in the layer III of functionally related cortical visual areas. Cereb Cortex 7(5):432–452

    Article  CAS  PubMed  Google Scholar 

  • Elston GN, Benavides-Piccione R, DeFelipe J (2005a) A study of pyramidal cell structure in the cingulate cortex of the macaque monkey with comparative notes on inferotemporal and primary visual cortex. Cereb Cortex 15(1):64–73

    Article  PubMed  Google Scholar 

  • Elston GN, Benavides-Piccione R, Elston A, DeFelipe J, Manger P (2005b) Specialization in pyramidal cell structure in the cingulate cortex of the Chacma baboon (Papio ursinus): an intracellular injection study of the posterior and anterior cingulate gyrus with comparative notes on the macaque and vervet monkeys. Neurosci Lett 387(3):130–135

    Article  CAS  PubMed  Google Scholar 

  • Elston GN, Benavides-Piccione R, Elston A, Manger P, DeFelipe J (2005c) Regional specialization in pyramidal cell structure in the limbic cortex of the vervet monkey (Cercopithecus pygerythrus): an intracellular injection study of the anterior and posterior cingulate gyrus. Exp Brain Res 167(3):315–323

    Article  PubMed  Google Scholar 

  • Elston GN, Oga T, Fujita I (2009) Spinogenesis and pruning scales across functional hierarchies. J Neurosci 29(10):3271–3275

    Article  CAS  PubMed  Google Scholar 

  • Elston GN, Oga T, Okamoto T, Fujita I (2010a) Spinogenesis and pruning from early visual onset to adulthood: an intracellular injection study of layer III pyramidal cells in the ventral visual cortical pathway of the macaque monkey. Cereb Cortex 20(6):1398–1408

    Article  PubMed  Google Scholar 

  • Elston GN, Oga T, Okamoto T, Fujita I (2010b) Spinogenesis and pruning in the primary auditory cortex of the macaque monkey (Macaca fascicularis): an intracellular injection study of layer III pyramidal cells. Brain Res 1316:36–42

    Article  Google Scholar 

  • Elston GN, Oga T, Okamoto T, Fujita I (2011) Spinogenesis and pruning in the anterior ventral inferotemporal cortex of the macaque monkey: an intracellular injection study of layer III pyramidal cells. Front Neuroanat 5:42

    PubMed Central  PubMed  Google Scholar 

  • Fukuoka T, Sumida K, Yamada T, Higuchi C, Nakagaki K, Nakamura K, Kohsaka S, Saito K, Oeda K (2010) Gene expression profiles in the common marmoset brain determined using a newly developed common marmoset-specific DNA microarray. Neurosci Res 66(1):62–85

    Article  CAS  PubMed  Google Scholar 

  • Giguere M, Goldman-Rakic PS (1988) Mediodorsal nucleus: areal, laminar, and tangential distribution of afferents and efferents in the frontal lobe of rhesus monkeys. J Comp Neurol 277(2):195–213

    Article  CAS  PubMed  Google Scholar 

  • Glantz LA, Lewis DA (2000) Decreased dendritic spine density on prefrontal cortical pyramidal neurons in schizophrenia. Arch Gen Psychiatry 57(1):65–73

    Article  CAS  PubMed  Google Scholar 

  • Glausier JR, Lewis DA (2013) Dendritic spine pathology in schizophrenia. Neuroscience 22(251):90–107

    Article  Google Scholar 

  • Gray EG (1959) Electron microscopy of synaptic contacts on dendritic spines of the cerebral cortex. Nature 183(4675):1592–1594

    Article  CAS  PubMed  Google Scholar 

  • Hustler JJ, Zhang H (2010) Increased dendritic spine densities on cortical projection neurons in autism spectrum disorders. Brain Res 1309:83–94

    Article  Google Scholar 

  • Huttenlocher PR (1990) Morphometric study of human cerebral cortex development. Neuropsychologia 28(6):517–527

    Article  CAS  PubMed  Google Scholar 

  • Huttenlocher PR, Dabholkar AS (1997) Regional differences in synaptogenesis in human cerebral cortex. J Comp Neurol 387(2):167–178

    Article  CAS  PubMed  Google Scholar 

  • Jacobs B, Scheibel AB (2002) Regional dendritic variation in primate cortical pyramidal cells. In: Schüz A, Miller R (eds) Cortical areas: unity and diversity. Taylor and Francis, London

    Google Scholar 

  • Jacobs B, Driscoll L, Schall M (1997) Life-span dendritic and spine changes in areas 10 and 18 of human cortex: a quantitative Golgi study. J Comp Neurol 386:661–680

    Article  CAS  PubMed  Google Scholar 

  • Jacobs B, Schall M, Prather M, Kapler E, Driscoll L, Baca S, Jacobs J, Ford K, Wainwright M, Treml M (2001) Regional dendritic and spine variation in human cerebral cortex: a quantitative study. Cereb Cortex 11:558–571

    Article  CAS  PubMed  Google Scholar 

  • Kalus P, Muller TJ, Zuschratter W, Seniz D (2000) The dendritic architecture of prefrontal pyramidal neurons in schizophrenic patients. NeuroReport 11(16):3621–3625

    Article  CAS  PubMed  Google Scholar 

  • Kaufmann WE, Moser HW (2000) Dendritic anomalies in disorders associated with mental retardation. Cereb Cortex 10(10):981–991

    Article  CAS  PubMed  Google Scholar 

  • Larsen M, Bjarkam CR, Stoltenberg M, Sørensen JC, Danscher G (2003) An autometallographic technique for myelin staining in formaldehyde-fixed tissue. Histol Histopathol 18(4):1125–1130

    CAS  PubMed  Google Scholar 

  • Levenga J, Willemsen R (2012) Perturbation of dendritic protrusions in intellectual disability. Prog Brain Res 197:153–168

    Article  CAS  PubMed  Google Scholar 

  • Malach R (1994) Cortical columns as devices for maximizing neuronal diversity. Trends Neurosci 17:101–104

    Article  CAS  PubMed  Google Scholar 

  • McKinnell C, Saunders PT, Fraser HM, Kelnar CJ, Kivlin C, Morris KD, Sharpe RM (2001) Comparison of androgen receptor and estrogen receptor beta immunoexpression in the testes of the common marmoset (Callithrix jacchus) from birth to adulthood: low androgen receptor immunoexpression in Sertoli cells during the neonatal increase in testosterone concentrations. Reproduction 122(3):419–429

    Article  CAS  PubMed  Google Scholar 

  • Missler M, Wolff A, Merker HJ, Wolff JR (1993) Pre- and postnatal development of the primary visual cortex of the common marmoset. II. Formation, remodelling, and elimination of synapses as overlapping processes. J Comp Neurol 333(1993):53–67

    Article  CAS  PubMed  Google Scholar 

  • Nestor MW, Hoffman DA (2012) Aberrant dendritic excitability: a common pathophysiology in CNS disorders affecting memory? Mol Neurobiol 45(3):478–487

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Oga T, Aoi T, Sasaki T, Fujita I, Ichinohe N (2013) Postnatal development of layer III pyramidal cells in the primary visual, inferior temporal, and prefrontal cortices of the marmoset. Front Neural Circuits 7:31

    Article  PubMed Central  PubMed  Google Scholar 

  • Ongür D, Price JL (2000) The organization of networks within the orbital and medial prefrontal cortex of rats, monkeys and humans. Cereb Cortex 10(3):206–219

    Article  PubMed  Google Scholar 

  • Paxinos G, Watson C, Petrides M, Rosa MGP, Tokuno H (2011) The marmoset brain in stereotaxic coordinates. Academic Press, New York

    Google Scholar 

  • Penzes P, Cahill ME, Jones KA, VanLeeuwen JE, Woolfrey KM (2011) Dendritic spine pathology in neuropsychiatric disorders. Nat Neurosci 14(3):285–293

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Petanjek Z, Judas M, Kostović I, Uylings HB (2008) Lifespan alterations of basal dendritic trees of pyramidal neurons in the human prefrontal cortex: a layer-specific pattern. Cereb Cortex 18(4):915–929

    Article  PubMed  Google Scholar 

  • Petanjek Z, Judaš M, Šimic G, Rasin MR, Uylings HB, Rakic P, Kostovic I (2011) Extraordinary neoteny of synaptic spines in the human prefrontal cortex. Proc Natl Acad Sci USA 108(32):13281–13286

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Poirazi P, Mel BW (2001) Impact of active dendrites and structural plasticity on the memory capacity of neural tissue. Neuron 29(3):779–796

    Article  CAS  PubMed  Google Scholar 

  • Saleem KS, Suzuki W, Tanaka K, Hashikawa T (2000) Connections between anterior inferotemporal cortex and superior temporal sulcus regions in the macaque monkey. J Neurosci 20(13):5083–5101

    CAS  PubMed  Google Scholar 

  • Sasaki T, Oga T, Nakagaki K, Sakai K, Sumida K, Hoshino K, Miyawaki I, Saito K, Suto F, Ichinohe N (2014a) Developmental expression profiles of axon guidance signaling and the immune system in the marmoset cortex: potential molecular mechanisms of pruning of dendritic spines during primate synapse formation in late infancy and prepuberty (I). Biochem Biophys Res Commun 444(3):302–306

    Article  CAS  PubMed  Google Scholar 

  • Sasaki T, Oga T, Nakagaki K, Sakai K, Sumida K, Hoshino K, Miyawaki I, Saito K, Suto F, Ichinohe N (2014b) Developmental genetic profiles of glutamate receptor system, neuromodulator system, protector of normal tissue and mitochondria, and reelin in marmoset cortex: potential molecular mechanisms of pruning phase of spines in primate synaptic formation process during the end of infancy and prepuberty (II). Biochem Biophys Res Commun 444(3):307–310

    Article  CAS  PubMed  Google Scholar 

  • Sholl DA (1953) Dendritic organization in the neurons of the visual and motor cortices of the cat. J Anat 87(4):387–406

    PubMed Central  CAS  PubMed  Google Scholar 

  • Stuart G, Spruston N, Hausser M (2008) Dendrites, 2nd edn. Oxford University Press, Oxford

    Google Scholar 

  • Suzuki WA, Amaral DG (2003) Where are the perirhinal and parahippocampal cortices? A historical overview of the nomenclature and the boundaries applied to the primate medial temporal lobe. Neuroscience 120(4):893–906

    Article  CAS  PubMed  Google Scholar 

  • Travis K, Ford K, Jacobs B (2005) Regional dendritic variation in neonatal human cortex: a quantitative Golgi study. Dev Neurosci 27(5):277–287

    Article  CAS  PubMed  Google Scholar 

  • Valverde F (1967) Apical dendritic spines of the visual cortex and light deprivation in the mouse. Exp Brain Res 3(4):337–352

    Article  CAS  PubMed  Google Scholar 

  • van Spronsen M, Hoogenraad CC (2010) Synapse pathology in psychiatric and neurologic disease. Curr Neurol Neurosci Rep 10(3):207–214

    Article  PubMed Central  PubMed  Google Scholar 

  • Yuste R (2010) Dendritic spines. MIT Press, Cambridge

    Book  Google Scholar 

Download references

Acknowledgments

This work was supported by an Intramural Research Grant (grant number 23-7) for Neurological and Psychiatric Disorders from the National Center of Neurology and Psychiatry, by a Funding Program for World-Leading Innovative R&D on Science and Technology (FIRST Program), by the Strategic Research Program for Brain Science, by a Grant-in-Aid for Scientific Research on Innovative Areas “Shitsukan” (No. 22135007), “Foundation of Synapse Neurocircuit Pathology” (No. 25110740), “Glia-Assembly” (No. 25117001), and “Seishun-no” (No. 26118717) from the Ministry of Education, Culture, Sports, Science, and Technology (MEXT), Japan (to N.I.), and by grants (Nos. 23240047 and 23135522) from MEXT, Japan (to I.F). T.O. was supported by a Grant-in-Aid for Scientific Research on Innovative Areas (Comprehensive Brain Science Network) from MEXT, Japan. We thank Takako Suzuki, Tomoko Manabe, and Dr. Taku Banno of the National Center of Neurology and Psychiatry for their technical assistance. We also thank Dr. Keiko Nakagaki of the National Center of Neurology and Psychiatry and Yu Nabeshima and Ryoichi Saito of CLEA Japan, Inc. for their support in the conduct of experiments.

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationship that could be construed as a potential conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Noritaka Ichinohe.

Additional information

T. Sasaki and H. Aoi contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 259 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sasaki, T., Aoi, H., Oga, T. et al. Postnatal development of dendritic structure of layer III pyramidal neurons in the medial prefrontal cortex of marmoset. Brain Struct Funct 220, 3245–3258 (2015). https://doi.org/10.1007/s00429-014-0853-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-014-0853-2

Keywords

Navigation