Skip to main content

Advertisement

Log in

Antagomirs targeting microRNA-134 increase hippocampal pyramidal neuron spine volume in vivo and protect against pilocarpine-induced status epilepticus

  • Original Article
  • Published:
Brain Structure and Function Aims and scope Submit manuscript

Abstract

Emerging data support roles for microRNA (miRNA) in the pathogenesis of various neurologic disorders including epilepsy. MicroRNA-134 (miR-134) is enriched in dendrites of hippocampal neurons, where it negatively regulates spine volume. Recent work identified upregulation of miR-134 in experimental and human epilepsy. Targeting miR-134 in vivo using antagomirs had potent anticonvulsant effects against kainic acid-induced seizures and was associated with a reduction in dendritic spine number. In the present study, we measured dendritic spine volume in mice injected with miR-134-targeting antagomirs and tested effects of the antagomirs on status epilepticus triggered by the cholinergic agonist pilocarpine. Morphometric analysis of over 6,400 dendritic spines in Lucifer yellow-injected CA3 pyramidal neurons revealed increased spine volume in mice given antagomirs compared to controls that received a scrambled sequence. Treatment of mice with miR-134 antagomirs did not alter performance in a behavioral test (novel object location). Status epilepticus induced by pilocarpine was associated with upregulation of miR-134 within the hippocampus of mice. Pretreatment of mice with miR-134 antagomirs reduced the proportion of animals that developed status epilepticus following pilocarpine and increased animal survival. In antagomir-treated mice that did develop status epilepticus, seizure onset was delayed and total seizure power was reduced. These studies provide in vivo evidence that miR-134 regulates spine volume in the hippocampus and validation of the seizure-suppressive effects of miR-134 antagomirs in a model with a different triggering mechanism, indicating broad conservation of anticonvulsant effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ambros V (2004) The functions of animal microRNAs. Nature 431:350–355

    Article  CAS  PubMed  Google Scholar 

  • Arellano JI, Benavides-Piccione R, Defelipe J, Yuste R (2007a) Ultrastructure of dendritic spines: correlation between synaptic and spine morphologies. Front Neurosci 1:131–143

    Article  PubMed  PubMed Central  Google Scholar 

  • Arellano JI, Espinosa A, Fairen A, Yuste R, DeFelipe J (2007b) Non-synaptic dendritic spines in neocortex. Neuroscience 145:464–469

    Article  CAS  PubMed  Google Scholar 

  • Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297

    Article  CAS  PubMed  Google Scholar 

  • Ben-Ari Y (1985) Limbic seizure and brain damage produced by kainic acid: mechanisms and relevance to human temporal lobe epilepsy. Neuroscience 14:375–403

    Article  CAS  PubMed  Google Scholar 

  • Blumcke I, Zuschratter W, Schewe JC, Suter B, Lie AA, Riederer BM, Meyer B, Schramm J, Elger CE, Wiestler OD (1999) Cellular pathology of hilar neurons in Ammon’s horn sclerosis. J Comp Neurol 414:437–453

    Article  CAS  PubMed  Google Scholar 

  • Borges K, Gearing M, McDermott DL, Smith AB, Almonte AG, Wainer BH, Dingledine R (2003) Neuronal and glial pathological changes during epileptogenesis in the mouse pilocarpine model. Exp Neurol 182:21–34

    Article  CAS  PubMed  Google Scholar 

  • Bramham CR (2008) Local protein synthesis, actin dynamics, and LTP consolidation. Curr Opin Neurobiol 18:524–531

    Article  CAS  PubMed  Google Scholar 

  • Curia G, Longo D, Biagini G, Jones RS, Avoli M (2008) The pilocarpine model of temporal lobe epilepsy. J Neurosci Methods 172:143–157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dogini DB, Avansini SH, Vieira AS, Lopes-Cendes I (2013) MicroRNA regulation and dysregulation in epilepsy. Front Cell Neurosci 7:172

    Article  PubMed  PubMed Central  Google Scholar 

  • Engel T, Sanz-Rodgriguez A, Jimenez-Mateos EM, Concannon CG, Jimenez-Pacheco A, Moran C, Mesuret G, Petit E, Delanty N, Farrell MA, O’Brien DF, Prehn JH, Lucas JJ, Henshall DC (2013) CHOP regulates the p53-MDM2 axis and is required for neuronal survival after seizures. Brain 136:577–592

    Article  PubMed  Google Scholar 

  • Fabian MR, Sonenberg N, Filipowicz W (2010) Regulation of mRNA translation and stability by microRNAs. Annu Rev Biochem 79:351–379

    Article  CAS  PubMed  Google Scholar 

  • Gao J, Wang WY, Mao YW, Graff J, Guan JS, Pan L, Mak G, Kim D, Su SC, Tsai LH (2010) A novel pathway regulates memory and plasticity via SIRT1 and miR-134. Nature 466:1105–1109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gaughwin P, Ciesla M, Yang H, Lim B, Brundin P (2011) Stage-specific modulation of cortical neuronal development by Mmu-miR-134. Cereb Cortex 21:1857–1869

    Article  PubMed  Google Scholar 

  • Guo D, Arnspiger S, Rensing NR, Wong M (2012) Brief seizures cause dendritic injury. Neurobiol Dis 45:348–355

    Article  PubMed  PubMed Central  Google Scholar 

  • Hering H, Sheng M (2001) Dendritic spines: structure, dynamics and regulation. Nat Rev Neurosci 2:880–888

    Article  CAS  PubMed  Google Scholar 

  • Hu K, Zhang C, Long L, Long X, Feng L, Li Y, Xiao B (2011) Expression profile of microRNAs in rat hippocampus following lithium-pilocarpine-induced status epilepticus. Neurosci Lett 488:252–257

    Article  CAS  PubMed  Google Scholar 

  • Im HI, Kenny PJ (2012) MicroRNAs in neuronal function and dysfunction. Trends Neurosci 35:325–334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Isokawa M, Levesque MF (1991) Increased NMDA responses and dendritic degeneration in human epileptic hippocampal neurons in slices. Neurosci Lett 132:212–216

    Article  CAS  PubMed  Google Scholar 

  • Jimenez-Mateos EM, Henshall DC (2013) Epilepsy and microRNA. Neuroscience 238:218–229

    Article  CAS  PubMed  Google Scholar 

  • Jimenez-Mateos EM, Bray I, Sanz-Rodriguez A, Engel T, McKiernan RC, Mouri G, Tanaka K, Sano T, Saugstad JA, Simon RP, Stallings RL, Henshall DC (2011) miRNA expression profile after status epilepticus and hippocampal neuroprotection by targeting miR-132. Am J Pathol 179:2519–2532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jimenez-Mateos EM, Engel T, Merino-Serrais P, McKiernan RC, Tanaka K, Mouri G, Sano T, O’Tuathaigh C, Waddington JL, Prenter S, Delanty N, Farrell MA, O’Brien DF, Conroy RM, Stallings RL, Defelipe J, Henshall DC (2012) Silencing microRNA-134 produces neuroprotective and prolonged seizure-suppressive effects. Nat Med 18:1087–1094

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jimenez-Pacheco A, Mesuret G, Sanz-Rodriguez A, Tanaka K, Mooney C, Conroy R, Miras-Portugal MT, Diaz-Hernandez M, Henshall DC, Engel T (2013) Increased neocortical expression of the P2X7 receptor after status epilepticus and anticonvulsant effect of P2X7 receptor antagonist A-438079. Epilepsia 54:1551–1561

    Article  CAS  PubMed  Google Scholar 

  • Kasai H, Fukuda M, Watanabe S, Hayashi-Takagi A, Noguchi J (2010) Structural dynamics of dendritic spines in memory and cognition. Trends Neurosci 33:121–129

    Article  CAS  PubMed  Google Scholar 

  • Kosik KS (2006) The neuronal microRNA system. Nat Rev Neurosci 7:911–920

    Article  CAS  PubMed  Google Scholar 

  • Koval ED, Shaner C, Zhang P, du Maine X, Fischer K, Tay J, Chau BN, Wu GF, Miller TM (2013) Method for widespread microRNA-155 inhibition prolongs survival in ALS-model mice. Hum Mol Genet 22:4127–4135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu DZ, Tian Y, Ander BP, Xu H, Stamova BS, Zhan X, Turner RJ, Jickling G, Sharp FR (2010) Brain and blood microRNA expression profiling of ischemic stroke, intracerebral hemorrhage, and kainate seizures. J Cereb Blood Flow Metab 30:92–101

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu G, Gu B, He XP, Joshi RB, Wackerle HD, Rodriguiz RM, Wetsel WC, McNamara JO (2013) Transient inhibition of TrkB kinase after status epilepticus prevents development of temporal lobe epilepsy. Neuron 79:31–38

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Loscher W, Brandt C (2010) Prevention or modification of epileptogenesis after brain insults: experimental approaches and translational research. Pharmacol Rev 62:668–700

    Article  PubMed  PubMed Central  Google Scholar 

  • Marchi N, Oby E, Batra A, Uva L, De Curtis M, Hernandez N, Van Boxel-Dezaire A, Najm I, Janigro D (2007) In vivo and in vitro effects of pilocarpine: relevance to ictogenesis. Epilepsia 48:1934–1946

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marchi N, Johnson AJ, Puvenna V, Johnson HL, Tierney W, Ghosh C, Cucullo L, Fabene PF, Janigro D (2011) Modulation of peripheral cytotoxic cells and ictogenesis in a model of seizures. Epilepsia 52:1627–1634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McNeill E, Van Vactor D (2012) MicroRNAs shape the neuronal landscape. Neuron 75:363–379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meller R, Thompson SJ, Lusardi TA, Ordonez AN, Ashley MD, Jessick V, Wang W, Torrey DJ, Henshall DC, Gafken PR, Saugstad JA, Xiong ZG, Simon RP (2008) Ubiquitin proteasome-mediated synaptic reorganization: a novel mechanism underlying rapid ischemic tolerance. J Neurosci 28:50–59

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meng Y, Zhang Y, Tregoubov V, Falls DL, Jia Z (2003) Regulation of spine morphology and synaptic function by LIMK and the actin cytoskeleton. Rev Neurosci 14:233–240

    Article  CAS  PubMed  Google Scholar 

  • Merino-Serrais P, Knafo S, Alonso-Nanclares L, Fernaud-Espinosa I, Defelipe J (2011) Layer-specific alterations to CA1 dendritic spines in a mouse model of Alzheimer’s disease. Hippocampus 21:1037–1044

    Article  CAS  PubMed  Google Scholar 

  • Mizrahi A, Crowley JC, Shtoyerman E, Katz LC (2004) High-resolution in vivo imaging of hippocampal dendrites and spines. J Neurosci 24:3147–3151

    Article  CAS  PubMed  Google Scholar 

  • Morimoto K, Fahnestock M, Racine RJ (2004) Kindling and status epilepticus models of epilepsy: rewiring the brain. Prog Neurobiol 73:1–60

    Article  CAS  PubMed  Google Scholar 

  • Mouri G, Jimenez-Mateos E, Engel T, Dunleavy M, Hatazaki S, Paucard A, Matsushima S, Taki W, Henshall DC (2008) Unilateral hippocampal CA3-predominant damage and short latency epileptogenesis after intra-amygdala microinjection of kainic acid in mice. Brain Res 1213:140–151

    Article  CAS  PubMed  Google Scholar 

  • Muller M, Gahwiler BH, Rietschin L, Thompson SM (1993) Reversible loss of dendritic spines and altered excitability after chronic epilepsy in hippocampal slice cultures. Proc Natl Acad Sci USA 90:257–261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Olney JW, Fuller T, de Gubareff T (1979) Acute dendrotoxic changes in the hippocampus of kainate treated rats. Brain Res 176:91–100

    Article  CAS  PubMed  Google Scholar 

  • Paul LA, Fried I, Watanabe K, Forsythe AB, Scheibel AB (1981) Structural correlates of seizure behavior in the mongolian gerbil. Science 213:924–926

    Article  CAS  PubMed  Google Scholar 

  • Peng J, Omran A, Ashhab MU, Kong H, Gan N, He F, Yin F (2013) Expression patterns of miR-124, miR-134, miR-132, and miR-21 in an immature rat model and children with mesial temporal lobe epilepsy. J Mol Neurosci 50:291–297

    Article  CAS  PubMed  Google Scholar 

  • Peters A, Kaiserman-Abramof IR (1970) The small pyramidal neuron of the rat cerebral cortex. The perikaryon, dendrites and spines. Am J Anat 127:321–355

    Article  CAS  PubMed  Google Scholar 

  • Rensing N, Ouyang Y, Yang XF, Yamada KA, Rothman SM, Wong M (2005) In vivo imaging of dendritic spines during electrographic seizures. Ann Neurol 58:888–898

    Article  PubMed  Google Scholar 

  • Risbud RM, Porter BE (2013) Changes in microRNA expression in the whole hippocampus and hippocampal synaptoneurosome fraction following pilocarpine induced status epilepticus. PLoS ONE 8:e53464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rochefort NL, Konnerth A (2012) Dendritic spines: from structure to in vivo function. EMBO Rep 13:699–708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saneyoshi T, Fortin DA, Soderling TR (2010) Regulation of spine and synapse formation by activity-dependent intracellular signaling pathways. Curr Opin Neurobiol 20:108–115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sano T, Reynolds JP, Jimenez-Mateos EM, Matsushima S, Taki W, Henshall DC (2012) MicroRNA-34a upregulation during seizure-induced neuronal death. Cell Death Dis 3:e287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schikorski T, Stevens CF (2001) Morphological correlates of functionally defined synaptic vesicle populations. Nat Neurosci 4:391–395

    Article  CAS  PubMed  Google Scholar 

  • Schmittgen TD, Livak KJ (2008) Analyzing real-time PCR data by the comparative C(T) method. Nat Prot 3:1101–1108

    Article  CAS  Google Scholar 

  • Schratt G (2009) microRNAs at the synapse. Nat Rev Neurosci 10:842–849

    Article  CAS  PubMed  Google Scholar 

  • Schratt GM, Tuebing F, Nigh EA, Kane CG, Sabatini ME, Kiebler M, Greenberg ME (2006) A brain-specific microRNA regulates dendritic spine development. Nature 439:283–289

    Article  CAS  PubMed  Google Scholar 

  • Segal M (2010) Dendritic spines, synaptic plasticity and neuronal survival: activity shapes dendritic spines to enhance neuronal viability. Eur J Neurosci 31:2178–2184

    Article  PubMed  Google Scholar 

  • Shorvon S, Ferlisi M (2011) The treatment of super-refractory status epilepticus: a critical review of available therapies and a clinical treatment protocol. Brain 134:2802–2818

    Article  PubMed  Google Scholar 

  • Sierra-Paredes G, Oreiro-Garcia T, Nunez-Rodriguez A, Vazquez-Lopez A, Sierra-Marcuno G (2006) Seizures induced by in vivo latrunculin a and jasplakinolide microperfusion in the rat hippocampus. J Mol Neurosci 28:151–160

    Article  CAS  PubMed  Google Scholar 

  • Wilcox KS, Dixon-Salazar T, Sills GJ, Ben-Menachem E, White HS, Porter RJ, Dichter MA, Moshe SL, Noebels JL, Privitera MD, Rogawski MA (2013) Issues related to development of new antiseizure treatments. Epilepsia 54(Suppl 4):24–34

    Article  PubMed  PubMed Central  Google Scholar 

  • Willmore LJ, Ballinger WE Jr, Boggs W, Sypert GW, Rubin JJ (1980) Dendritic alterations in rat isocortex within an iron-induced chronic epileptic focus. Neurosurgery 7:142–146

    Article  CAS  PubMed  Google Scholar 

  • Wimmer ME, Hernandez PJ, Blackwell J, Abel T (2012) Aging impairs hippocampus-dependent long-term memory for object location in mice. Neurobiol Aging 33:2220–2224

    Article  PubMed  PubMed Central  Google Scholar 

  • Wong M, Guo D (2012) Dendritic spine pathology in epilepsy: cause or consequence? Neuroscience 251:141–150

    Article  PubMed  Google Scholar 

  • Zeng LH, Xu L, Rensing NR, Sinatra PM, Rothman SM, Wong M (2007) Kainate seizures cause acute dendritic injury and actin depolymerization in vivo. J Neurosci 27:11604–11613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou Q, Homma KJ, Poo MM (2004) Shrinkage of dendritic spines associated with long-term depression of hippocampal synapses. Neuron 44:749–757

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Julika Pitsch and Albert Becker for advice on the pilocarpine model and Emilie Petit and John L. Waddington for advice on behavior testing. This work was supported by funding awards from Science Foundation Ireland (11/TIDA/B1988), Health Research Board (HRA-POR-2013-325), US National Institute of Neurological Disorders and Stroke award R56 073714 and the Spanish Ministerio de Economía y Competitividad grants BFU2012-34963 and CIBERNED (CB06/05/0066) (JD).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David C. Henshall.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jimenez-Mateos, E.M., Engel, T., Merino-Serrais, P. et al. Antagomirs targeting microRNA-134 increase hippocampal pyramidal neuron spine volume in vivo and protect against pilocarpine-induced status epilepticus. Brain Struct Funct 220, 2387–2399 (2015). https://doi.org/10.1007/s00429-014-0798-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-014-0798-5

Keywords

Navigation