Skip to main content
Log in

MMP-2 mediates Purkinje cell morphogenesis and spine development in the mouse cerebellum

Brain Structure and Function Aims and scope Submit manuscript

Abstract

Matrix metalloproteinase-2 (MMP-2) is a highly studied proteolytic enzyme, involved in many detrimental and beneficial functions throughout the body, and also active in the central nervous system (CNS). MMP-2 is profoundly expressed in the developing cerebellum and was recently reported to modulate granule cell proliferation by affecting cell cycle kinetics in cerebella of postnatal day 3 mouse pups. In this report, a two-dimensional difference gel electrophoresis proteomics study was implemented at this postnatal stage and revealed 16 differentially expressed proteins between MMP-2-deficient (MMP-2−/−) and wild-type cerebella. Among those, collapsin response mediator protein 1 (CRMP1) could be identified as the most significant differential protein between the two genotypes. Western blot experiments confirmed this finding and further disclosed a significant increase in phosphorylated CRMP1 expression in MMP-2−/− cerebella. Strikingly, subsequent immunohistochemical and microscopic analyses revealed an aberrant Purkinje cell (PC) dendritogenesis, possibly related to upregulated (phospho-) CRMP1 levels in these neonatal MMP-2−/− animals. Further, detailed morphometric analyses showed persistent PC morphological changes in MMP-2−/− mice, from the neonatal stage until adulthood. These were characterized by a reduced growth of PC somata, reduced dendritic tree sizes, and a decreased dendritic arborization. During development, the observed defects were accompanied by a temporarily disturbed parallel fiber and climbing fiber synaptic input on the PCs, while in adult MMP-2−/− animals, an increased PC spine density and reduced spine lengths were noted. The observed PC abnormalities might contribute to the mild defects in motor performance, i.e. balance and coordination, detected in adult MMP-2−/− mice. Overall, these findings indicate the importance of MMP-2 in CNS development and dendritogenesis, and highlight the importance of a correct developmental wiring for adult brain morphology and function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  • Ali MA, Chow AK, Kandasamy AD, Fan X, West LJ, Crawford BD, Simmen T, Schulz R (2012) Mechanisms of cytosolic targeting of matrix metalloproteinase-2. J Cell Physiol 227(10):3397–3404. doi:10.1002/jcp.24040

    Article  CAS  PubMed  Google Scholar 

  • Arimura N, Menager C, Kawano Y, Yoshimura T, Kawabata S, Hattori A, Fukata Y, Amano M, Goshima Y, Inagaki M, Morone N, Usukura J, Kaibuchi K (2005) Phosphorylation by Rho kinase regulates CRMP-2 activity in growth cones. Mol Cell Biol 25(22):9973–9984. doi:10.1128/MCB.25.22.9973-9984.2005

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ayoub AE, Cai TQ, Kaplan RA, Luo J (2005) Developmental expression of matrix metalloproteinases 2 and 9 and their potential role in the histogenesis of the cerebellar cortex. J Comp Neurol 481(4):403–415. doi:10.1002/cne.20375

    Article  CAS  PubMed  Google Scholar 

  • Bosman LW, Konnerth A (2009) Activity-dependent plasticity of developing climbing fiber-Purkinje cell synapses. Neuroscience 162(3):612–623. doi:10.1016/j.neuroscience.2009.01.032

    Article  CAS  PubMed  Google Scholar 

  • Bretin S, Reibel S, Charrier E, Maus-Moatti M, Auvergnon N, Thevenoux A, Glowinski J, Rogemond V, Premont J, Honnorat J, Gauchy C (2005) Differential expression of CRMP1, CRMP2A, CRMP2B, and CRMP5 in axons or dendrites of distinct neurons in the mouse brain. J Comp Neurol 486(1):1–17. doi:10.1002/cne.20465

    Article  CAS  PubMed  Google Scholar 

  • Brown LM, Fox HL, Hazen SA, LaNoue KF, Rannels SR, Lynch CJ (1997) Role of the matrixin MMP-2 in multicellular organization of adipocytes cultured in basement membrane components. Am J Physiol 272(3 Pt 1):C937–C949

    CAS  PubMed  Google Scholar 

  • Carletti B, Rossi F (2008) Neurogenesis in the cerebellum. Neuroscientist 14(1):91–100. doi:10.1177/1073858407304629

    Article  PubMed  Google Scholar 

  • Cauwe B, Opdenakker G (2010) Intracellular substrate cleavage: a novel dimension in the biochemistry, biology and pathology of matrix metalloproteinases. Crit Rev Biochem Mol Biol 45(5):351–423. doi:10.3109/10409238.2010.501783

    Article  CAS  PubMed  Google Scholar 

  • Chedotal A (2010) Should I stay or should I go? Becoming a granule cell. Trends Neurosci 33(4):163–172. doi:10.1016/j.tins.2010.01.004

    Article  CAS  PubMed  Google Scholar 

  • Cioni JM, Telley L, Saywell V, Cadilhac C, Jourdan C, Huber AB, Huang JZ, Jahannault-Talignani C, Ango F (2013) SEMA3A signaling controls layer-specific interneuron branching in the cerebellum. Curr Biol 23(10):850–861. doi:10.1016/j.cub.2013.04.007

    Article  CAS  PubMed  Google Scholar 

  • Cole AR, Causeret F, Yadirgi G, Hastie CJ, McLauchlan H, McManus EJ, Hernandez F, Eickholt BJ, Nikolic M, Sutherland C (2006) Distinct priming kinases contribute to differential regulation of collapsin response mediator proteins by glycogen synthase kinase-3 in vivo. J Biol Chem 281(24):16591–16598. doi:10.1074/jbc.M513344200

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Deo RC, Schmidt EF, Elhabazi A, Togashi H, Burley SK, Strittmatter SM (2004) Structural bases for CRMP function in plexin-dependent semaphorin3A signaling. EMBO J 23(1):9–22. doi:10.1038/sj.emboj.7600021

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Eastwood SL, Law AJ, Everall IP, Harrison PJ (2003) The axonal chemorepellant semaphorin 3A is increased in the cerebellum in schizophrenia and may contribute to its synaptic pathology. Mol Psychiatry 8(2):148–155. doi:10.1038/sj.mp.4001233

    Article  CAS  PubMed  Google Scholar 

  • Fukata Y, Itoh TJ, Kimura T, Menager C, Nishimura T, Shiromizu T, Watanabe H, Inagaki N, Iwamatsu A, Hotani H, Kaibuchi K (2002) CRMP-2 binds to tubulin heterodimers to promote microtubule assembly. Nat Cell Biol 4(8):583–591. doi:10.1038/ncb825

    CAS  PubMed  Google Scholar 

  • Garcia-Lopez P, Garcia-Marin V, Freire M (2010) Dendritic spines and development: towards a unifying model of spinogenesis—a present day review of Cajal’s histological slides and drawings. Neural Plast 2010:769207. doi:10.1155/2010/769207

    PubMed Central  PubMed  Google Scholar 

  • Gonthier B, Koncina E, Satkauskas S, Perraut M, Roussel G, Aunis D, Kapfhammer JP, Bagnard D (2009) A PKC-dependent recruitment of MMP-2 controls semaphorin-3A growth-promoting effect in cortical dendrites. PLoS One 4(4):e5099. doi:10.1371/journal.pone.0005099

    Article  PubMed Central  PubMed  Google Scholar 

  • Harvey RJ, Morando L, Rasetti R, Strata P (2005) Spontaneous electrical activity and dendritic spine size in mature cerebellar Purkinje cells. Eur J Neurosci 21(7):1777–1784. doi:10.1111/j.1460-9568.2005.04010.x

    Article  PubMed  Google Scholar 

  • Hashimoto K, Yoshida T, Sakimura K, Mishina M, Watanabe M, Kano M (2009) Influence of parallel fiber-Purkinje cell synapse formation on postnatal development of climbing fiber-Purkinje cell synapses in the cerebellum. Neuroscience 162(3):601–611. doi:10.1016/j.neuroscience.2008.12.037

    Article  CAS  PubMed  Google Scholar 

  • Hisanaga S, Saito T (2003) The regulation of cyclin-dependent kinase 5 activity through the metabolism of p35 or p39 Cdk5 activator. Neurosignals 12(4–5):221–229. doi:10.1159/000074624

    Article  CAS  PubMed  Google Scholar 

  • Hu TT, Van den Bergh G, Thorrez L, Heylen K, Eysel UT, Arckens L (2011) Recovery from retinal lesions: molecular plasticity mechanisms in visual cortex far beyond the deprived zone. Cereb Cortex 21(12):2883–2892. doi:10.1093/cercor/bhr079

    Article  PubMed  Google Scholar 

  • Irwin SA, Idupulapati M, Gilbert ME, Harris JB, Chakravarti AB, Rogers EJ, Crisostomo RA, Larsen BP, Mehta A, Alcantara CJ, Patel B, Swain RA, Weiler IJ, Oostra BA, Greenough WT (2002) Dendritic spine and dendritic field characteristics of layer V pyramidal neurons in the visual cortex of fragile-X knockout mice. Am J Med Genet 111(2):140–146. doi:10.1002/ajmg.10500

    Article  PubMed  Google Scholar 

  • Ito M (2002) Historical review of the significance of the cerebellum and the role of Purkinje cells in motor learning. Ann N Y Acad Sci 978:273–288

    Article  PubMed  Google Scholar 

  • Itoh T, Ikeda T, Gomi H, Nakao S, Suzuki T, Itohara S (1997) Unaltered secretion of beta-amyloid precursor protein in gelatinase A (matrix metalloproteinase 2)-deficient mice. J Biol Chem 272(36):22389–22392

    Article  CAS  PubMed  Google Scholar 

  • Kawaji K, Umeshima H, Eiraku M, Hirano T, Kengaku M (2004) Dual phases of migration of cerebellar granule cells guided by axonal and dendritic leading processes. Mol Cell Neurosci 25(2):228–240. doi:10.1016/j.mcn.2003.10.006

    Article  CAS  PubMed  Google Scholar 

  • Lalonde R, Bensoula AN, Filali M (1995) Rotorod sensorimotor learning in cerebellar mutant mice. Neurosci Res 22(4):423–426

    Article  CAS  PubMed  Google Scholar 

  • Lee KJ, Kim H, Kim TS, Park SH, Rhyu IJ (2004) Morphological analysis of spine shapes of Purkinje cell dendrites in the rat cerebellum using high-voltage electron microscopy. Neurosci Lett 359(1–2):21–24. doi:10.1016/j.neulet.2004.01.071

    Article  CAS  PubMed  Google Scholar 

  • Lee KJ, Jung JG, Arii T, Imoto K, Rhyu IJ (2007) Morphological changes in dendritic spines of Purkinje cells associated with motor learning. Neurobiol Learn Mem 88(4):445–450. doi:10.1016/j.nlm.2007.06.001

    Article  PubMed  Google Scholar 

  • Lengqvist J, Eriksson H, Gry M, Uhlen K, Bjorklund C, Bjellqvist B, Jakobsson PJ, Lehtio J (2011) Observed peptide pI and retention time shifts as a result of post-translational modifications in multidimensional separations using narrow-range IPG-IEF. Amino Acids 40(2):697–711. doi:10.1007/s00726-010-0704-2

    Article  CAS  PubMed  Google Scholar 

  • Letellier M, Bailly Y, Demais V, Sherrard RM, Mariani J, Lohof AM (2007) Reinnervation of late postnatal Purkinje cells by climbing fibers: neosynaptogenesis without transient multi-innervation. J Neurosci 27(20):5373–5383. doi:10.1523/JNEUROSCI.0452-07.2007

    Article  CAS  PubMed  Google Scholar 

  • Li BS, Zhang L, Gu J, Amin ND, Pant HC (2000) Integrin alpha(1) beta(1)-mediated activation of cyclin-dependent kinase 5 activity is involved in neurite outgrowth and human neurofilament protein H Lys-Ser-Pro tail domain phosphorylation. J Neurosci 20(16):6055–6062

    CAS  PubMed  Google Scholar 

  • Lin PC, Chan PM, Hall C, Manser E (2011) Collapsin response mediator proteins (CRMPs) are a new class of microtubule-associated protein (MAP) that selectively interacts with assembled microtubules via a taxol-sensitive binding interaction. J Biol Chem 286(48):41466–41478. doi:10.1074/jbc.M111.283580

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • McKay BE, Turner RW (2005) Physiological and morphological development of the rat cerebellar Purkinje cell. J Physiol 567(Pt 3):829–850. doi:10.1113/jphysiol.2005.089383

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Miralles F, Battelino T, Czernichow P, Scharfmann R (1998) TGF-beta plays a key role in morphogenesis of the pancreatic islets of Langerhans by controlling the activity of the matrix metalloproteinase MMP-2. J Cell Biol 143(3):827–836

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Miyazaki T, Fukaya M, Shimizu H, Watanabe M (2003) Subtype switching of vesicular glutamate transporters at parallel fibre-Purkinje cell synapses in developing mouse cerebellum. Eur J Neurosci 17(12):2563–2572

    Article  PubMed  Google Scholar 

  • Mizoguchi H, Ibi D, Takuma K, Toth E, Sato J, Itohara S, Nabeshima T, Yamada K (2010) Alterations of emotional and cognitive behaviors in matrix metalloproteinase-2 and -9 deficient mice. Open Behav Sci J 4:19–25

    Article  Google Scholar 

  • Morrison ME, Mason CA (1998) Granule neuron regulation of Purkinje cell development: striking a balance between neurotrophin and glutamate signaling. J Neurosci 18(10):3563–3573

    CAS  PubMed  Google Scholar 

  • Mosig RA, Dowling O, DiFeo A, Ramirez MC, Parker IC, Abe E, Diouri J, Aqeel AA, Wylie JD, Oblander SA, Madri J, Bianco P, Apte SS, Zaidi M, Doty SB, Majeska RJ, Schaffler MB, Martignetti JA (2007) Loss of MMP-2 disrupts skeletal and craniofacial development and results in decreased bone mineralization, joint erosion and defects in osteoblast and osteoclast growth. Hum Mol Genet 16(9):1113–1123. doi:10.1093/hmg/ddm060

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nishiyama J, Miura E, Mizushima N, Watanabe M, Yuzaki M (2007) Aberrant membranes and double-membrane structures accumulate in the axons of Atg5-null Purkinje cells before neuronal death. Autophagy 3(6):591–596

    Article  CAS  PubMed  Google Scholar 

  • Polleux F, Morrow T, Ghosh A (2000) Semaphorin 3A is a chemoattractant for cortical apical dendrites. Nature 404(6778):567–573. doi:10.1038/35007001

    Article  CAS  PubMed  Google Scholar 

  • Schmidt EF, Strittmatter SM (2007) The CRMP family of proteins and their role in Sema3A signaling. Adv Exp Med Biol 600:1–11. doi:10.1007/978-0-387-70956-7_1

    Article  PubMed Central  PubMed  Google Scholar 

  • Sholl DA (1953) Dendritic organization in the neurons of the visual and motor cortices of the cat. J Anat 87(4):387–406

    PubMed Central  CAS  PubMed  Google Scholar 

  • Sotelo C (2004) Cellular and genetic regulation of the development of the cerebellar system. Prog Neurobiol 72(5):295–339. doi:10.1016/j.pneurobio.2004.03.004

    Article  CAS  PubMed  Google Scholar 

  • Sotelo C, Dusart I (2009) Intrinsic versus extrinsic determinants during the development of Purkinje cell dendrites. Neuroscience 162(3):589–600. doi:10.1016/j.neuroscience.2008.12.035

    Article  CAS  PubMed  Google Scholar 

  • Su KY, Chien WL, Fu WM, Yu IS, Huang HP, Huang PH, Lin SR, Shih JY, Lin YL, Hsueh YP, Yang PC, Lin SW (2007) Mice deficient in collapsin response mediator protein-1 exhibit impaired long-term potentiation and impaired spatial learning and memory. J Neurosci 27(10):2513–2524. doi:10.1523/JNEUROSCI.4497-06.2007

    Article  CAS  PubMed  Google Scholar 

  • Takacs J, Hamori J (1994) Developmental dynamics of Purkinje cells and dendritic spines in rat cerebellar cortex. J Neurosci Res 38(5):515–530. doi:10.1002/jnr.490380505

    Article  CAS  PubMed  Google Scholar 

  • Tian L, Nyman H, Kilgannon P, Yoshihara Y, Mori K, Andersson LC, Kaukinen S, Rauvala H, Gallatin WM, Gahmberg CG (2000) Intercellular adhesion molecule-5 induces dendritic outgrowth by homophilic adhesion. J Cell Biol 150(1):243–252

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Vaillant C, Didier-Bazes M, Hutter A, Belin MF, Thomasset N (1999) Spatiotemporal expression patterns of metalloproteinases and their inhibitors in the postnatal developing rat cerebellum. J Neurosci 19(12):4994–5004

    CAS  PubMed  Google Scholar 

  • Van Hove I, Verslegers M, Buyens T, Delorme N, Lemmens K, Stroobants S, Gantois I, D’Hooge R, Moons L (2012) An aberrant cerebellar development in mice lacking matrix metalloproteinase-3. Mol Neurobiol 45(1):17–29. doi:10.1007/s12035-011-8215-z

    Article  PubMed  Google Scholar 

  • Verslegers M, Lemmens K, Van Hove I, Moons L (2013a) Matrix metalloproteinase-2 and -9 as promising benefactors in development, plasticity and repair of the nervous system. Prog Neurobiol. doi:10.1016/j.pneurobio.2013.03.004

  • Verslegers M, Van Hove I, Buyens T, Dekeyster E, Knevels E, Moons L (2013b) Identification of MMP-2 as a novel enhancer of cerebellar granule cell proliferation. Mol Cell Neurosci. doi:10.1016/j.mcn.2013.10.001

  • Wang LH, Strittmatter SM (1996) A family of rat CRMP genes is differentially expressed in the nervous system. J Neurosci 16(19):6197–6207

    CAS  PubMed  Google Scholar 

  • Yamashita N, Morita A, Uchida Y, Nakamura F, Usui H, Ohshima T, Taniguchi M, Honnorat J, Thomasset N, Takei K, Takahashi T, Kolattukudy P, Goshima Y (2007) Regulation of spine development by semaphorin3A through cyclin-dependent kinase 5 phosphorylation of collapsin response mediator protein 1. J Neurosci 27(46):12546–12554. doi:10.1523/JNEUROSCI.3463-07.2007

    Article  CAS  PubMed  Google Scholar 

  • Yamashita N, Mosinger B, Roy A, Miyazaki M, Ugajin K, Nakamura F, Sasaki Y, Yamaguchi K, Kolattukudy P, Goshima Y (2011) CRMP5 (collapsin response mediator protein 5) regulates dendritic development and synaptic plasticity in the cerebellar Purkinje cells. J Neurosci 31(5):1773–1779. doi:10.1523/JNEUROSCI.5337-10.2011

    Article  CAS  PubMed  Google Scholar 

  • Yang H (2012) Structure, expression, and function of ICAM-5. Comp Funct Genomics 2012:368938. doi:10.1155/2012/368938

    PubMed Central  PubMed  Google Scholar 

  • Yoshimura T, Kawano Y, Arimura N, Kawabata S, Kikuchi A, Kaibuchi K (2005) GSK-3beta regulates phosphorylation of CRMP-2 and neuronal polarity. Cell 120(1):137–149. doi:10.1016/j.cell.2004.11.012

    Article  CAS  PubMed  Google Scholar 

  • Yuasa-Kawada J, Suzuki R, Kano F, Ohkawara T, Murata M, Noda M (2003) Axonal morphogenesis controlled by antagonistic roles of two CRMP subtypes in microtubule organization. Euro J Neurosci 17(11):2329–2343

    Article  Google Scholar 

  • Zhou Y, Bhatia I, Cai Z, He QY, Cheung PT, Chiu JF (2008) Proteomic analysis of neonatal mouse brain: evidence for hypoxia- and ischemia-induced dephosphorylation of collapsin response mediator proteins. J Proteome Res 7(6):2507–2515. doi:10.1021/pr800108k

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Lut Noterdaeme, Ingrid Proven, Willy Van Ham, David Demedts, Lieve Geenen, and Ria Van Laer for their technical assistance, and also thank Prof. C. Sutherland (University of Dundee, Scotland) for providing the phospho-CRMP1 antibody. This study was supported by the Hercules Grant [AKUL/09/038] and national Grants from the Research Council of KU Leuven [KU Leuven BOF-OT/10/033], the Research Foundation Flanders (FWO) [FWO G053.10; G0335.09; G0054.12], and the Flemish Institute for the promotion of scientific research (IWT).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lieve Moons.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Verslegers, M., Van Hove, I., Dekeyster, E. et al. MMP-2 mediates Purkinje cell morphogenesis and spine development in the mouse cerebellum. Brain Struct Funct 220, 1601–1617 (2015). https://doi.org/10.1007/s00429-014-0747-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-014-0747-3

Keywords

Navigation