Skip to main content

Advertisement

Log in

Distribution of the glucocorticoid receptor in the human amygdala; changes in mood disorder patients

Brain Structure and Function Aims and scope Submit manuscript

Abstract

Exposure to stress activates the hypothalamic–pituitary–adrenal (HPA) axis that stimulates glucocorticoid (GC) release from the adrenal. These hormones exert numerous effects in the body and brain and bind to a.o. glucocorticoid receptors (GR) expressed in the limbic system, including the hippocampus and amygdala. Hyperactivity of the HPA axis and disturbed stress feedback are common features in major depression. GR protein is present in the human hypothalamus and hippocampus, but little is known—neither in healthy subjects nor in depressed patients—about GR expression in the amygdala, a brain structure involved in fear and anxiety. Since chronic stress in rodents affects GR expression in the amygdala, altered GR protein level in depressed versus healthy controls can be expected. To test this, we investigated GR-α protein expression in the post-mortem human amygdala and assessed changes in ten major or bipolar depressed patients and eight non-depressed controls. Abundant GR immunoreactivity was observed in the human amygdala, both in neurons and astrocytes, with a similar pattern in its different anatomical subnuclei. In major depression, GR protein level as well as the percentage of GR-containing astrocytes was significantly higher than in bipolar depressed patients or in control subjects. Taken together, the prominent expression of GR protein in the human amygdala indicates that this region can form an important target for corticosteroids and stress, while the increased GR expression in major, but not bipolar, depression suggests possible involvement in the etiology of major depression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  • Alt SR, Turner JD, Klok MD, Meijer OC, Lakke EA, Derijk RH, Muller CP (2010) Differential expression of glucocorticoid receptor transcripts in major depressive disorder is not epigenetically programmed. Psychoneuroendocrinology 35(4):544–556. doi:10.1016/j.psyneuen.2009.09.001

    Article  CAS  PubMed  Google Scholar 

  • Altshuler LL, Abulseoud OA, Foland-Ross L, Bartzokis G, Chang S, Mintz J, Hellemann G, Vinters HV (2010) Amygdala astrocyte reduction in subjects with major depressive disorder but not bipolar disorder. Bipolar Disord 12(5):541–549. doi:10.1111/j.1399-5618.2010.00838.x

    Article  PubMed  Google Scholar 

  • Bao AM, Ruhe HG, Gao SF, Swaab DF (2012) Neurotransmitters and neuropeptides in depression. Handb Clin Neurol 106:107–136. doi:10.1016/B978-0-444-52002-9

    Article  PubMed  Google Scholar 

  • Bjartmar L, Johansson IM, Marcusson J, Ross SB, Seckl JR, Olsson T (2000) Selective effects on NGFI-A, MR, GR and NGFI-B hippocampal mRNA expression after chronic treatment with different subclasses of antidepressants in the rat. Psychopharmacology 151(1):7–12

    Article  CAS  PubMed  Google Scholar 

  • Bohn MC, Howard E, Vielkind U, Krozowski Z (1991) Glial cells express both mineralocorticoid and glucocorticoid receptors. J Steroid Biochem Mol Biol 40(1–3):105–111. doi:10.1016/0960-0760(91)90173-3

    Article  CAS  PubMed  Google Scholar 

  • Brady LS, Whitfield HJ Jr, Fox RJ, Gold PW, Herkenham M (1991) Long-term antidepressant administration alters corticotropin-releasing hormone, tyrosine hydroxylase, and mineralocorticoid receptor gene expression in rat brain. Therapeutic implications. J Clin Invest 87(3):831–837. doi:10.1172/JCI115086

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Brady LS, Gold PW, Herkenham M, Lynn AB, Whitfield HJ Jr (1992) The antidepressants fluoxetine, idazoxan and phenelzine alter corticotropin-releasing hormone and tyrosine hydroxylase mRNA levels in rat brain: therapeutic implications. Brain Res 572(1–2):117–125. doi:10.1016/0006-8993(92)90459-M

    Article  CAS  PubMed  Google Scholar 

  • Burke HM, Davis MC, Otte C, Mohr DC (2005) Depression and cortisol responses to psychological stress: a meta-analysis. Psychoneuroendocrinology 30(9):846–856. doi:10.1016/j.psyneuen.2005.02.010

    Article  CAS  PubMed  Google Scholar 

  • Cintra A, Bhatnagar M, Chadi G, Tinner B, Lindberg J, Gustafsson JA, Agnati LF, Fuxe K (1994) Glial and neuronal glucocorticoid receptor immunoreactive cell populations in developing, adult, and aging brain. Ann N Y Acad Sci 746:42–61

    Article  CAS  PubMed  Google Scholar 

  • Cornelisse S, van Stegeren AH, Joels M (2010) Implications of psychosocial stress on memory formation in a typical male versus female student sample. Psychoneuroendocrinology. doi:10.1016/j.psyneuen.2010.09.002

    PubMed  Google Scholar 

  • Czeh B, Lucassen PJ (2007) What causes the hippocampal volume decrease in depression? Are neurogenesis, glial changes and apoptosis implicated? Eur Arch Psychiatry Clin Neurosci 257(5):250–260. doi:10.1007/s00406-007-0728-0

    Article  PubMed  Google Scholar 

  • Czeh B, Simon M, Schmelting B, Hiemke C, Fuchs E (2006) Astroglial plasticity in the hippocampus is affected by chronic psychosocial stress and concomitant fluoxetine treatment. Neuropsychopharmacology 31(8):1616–1626. doi:10.1038/sj.npp.1300982

    Article  CAS  PubMed  Google Scholar 

  • DeRijk RH, Schaaf M, Stam FJ, de Jong IE, Swaab DF, Ravid R, Vreugdenhil E, Cidlowski JA, de Kloet ER, Lucassen PJ (2003) Very low levels of the glucocorticoid receptor beta isoform in the human hippocampus as shown by Taqman RT-PCR and immunocytochemistry. Brain Res Mol Brain Res 116(1–2):17–26 pii:S0169328X03002092

    Article  CAS  PubMed  Google Scholar 

  • DeRijk RH, de Kloet ER, Zitman FG, van Leeuwen N (2011) Mineralocorticoid receptor gene variants as determinants of HPA axis regulation and behavior. Endocr Dev 20:137–148. doi:10.1159/000321235000321235

    Article  CAS  PubMed  Google Scholar 

  • Drevets WC (2003) Neuroimaging abnormalities in the amygdala in mood disorders. Ann N Y Acad Sci 985:420–444

    Article  PubMed  Google Scholar 

  • Eagle AL, Knox D, Roberts MM, Mulo K, Liberzon I, Galloway MP, Perrine SA (2012) Single prolonged stress enhances hippocampal glucocorticoid receptor and phosphorylated protein kinase B levels. Neurosci Res 75(2):130–137. doi:10.1016/j.neures.2012.11.001

    Article  PubMed Central  PubMed  Google Scholar 

  • Erdmann G, Berger S, Schutz G (2008) Genetic dissection of glucocorticoid receptor function in the mouse brain. J Neuroendocrinol 20(6):655–659. doi:10.1111/j.1365-2826.2008.01717.x

    Article  CAS  PubMed  Google Scholar 

  • Flandreau EI, Bourke CH, Ressler KJ, Vale WW, Nemeroff CB, Owens MJ (2012) Escitalopram alters gene expression and HPA axis reactivity in rats following chronic overexpression of corticotropin-releasing factor from the central amygdala. Psychoneuroendocrinology. doi:10.1016/j.psyneuen.2012.11.020

    Google Scholar 

  • Furay AR, Bruestle AE, Herman JP (2008) The role of the forebrain glucocorticoid receptor in acute and chronic stress. Endocrinology 149(11):5482–5490. doi:10.1210/en.2008-0642

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gobert A, Brocco M, Dekeyne A, Di Cara B, Bouchez G, Lejeune F, Gannon RL, Millan MJ (2009) Neurokinin1 antagonists potentiate antidepressant properties of serotonin reuptake inhibitors, yet blunt their anxiogenic actions: a neurochemical, electrophysiological, and behavioral characterization. Neuropsychopharmacology 34(4):1039–1056. doi:10.1038/npp.2008.176npp2008176

    Article  CAS  PubMed  Google Scholar 

  • Gosselin RD, Gibney S, O’Malley D, Dinan TG, Cryan JF (2009) Region specific decrease in glial fibrillary acidic protein immunoreactivity in the brain of a rat model of depression. Neuroscience 159(2):915–925. doi:10.1016/j.neuroscience.2008.10.018

    Article  CAS  PubMed  Google Scholar 

  • Hamidi M, Drevets WC, Price JL (2004) Glial reduction in amygdala in major depressive disorder is due to oligodendrocytes. Biol Psychiatry 55(6):563–569. doi:10.1016/j.biopsych.2003.11.006

    Article  PubMed  Google Scholar 

  • Henckens MJ, Hermans EJ, Pu Z, Joels M, Fernandez G (2009) Stressed memories: how acute stress affects memory formation in humans. J Neurosci 29(32):10111–10119. doi:10.1523/JNEUROSCI.1184-09.2009

    Article  CAS  PubMed  Google Scholar 

  • Herman JP, Spencer R (1998) Regulation of hippocampal glucocorticoid receptor gene transcription and protein expression in vivo. J Neurosci 18(18):7462–7473

    CAS  PubMed  Google Scholar 

  • Herman JP, Schafer MK, Young EA, Thompson R, Douglass J, Akil H, Watson SJ (1989) Evidence for hippocampal regulation of neuroendocrine neurons of the hypothalamo–pituitary–adrenocortical axis. J Neurosci 9(9):3072–3082

    CAS  PubMed  Google Scholar 

  • Heydendael W, Jacobson L (2008) Differential effects of imipramine and phenelzine on corticosteroid receptor gene expression in mouse brain: potential relevance to antidepressant response. Brain Res 1238:93–107. doi:10.1016/j.brainres.2008.08.018

    Article  CAS  PubMed  Google Scholar 

  • Heydendael W, Jacobson L (2010) Widespread hypothalamic–pituitary–adrenocortical axis-relevant and mood-relevant effects of chronic fluoxetine treatment on glucocorticoid receptor gene expression in mice. Eur J Neurosci 31(5):892–902. doi:10.1111/j.1460-9568.2010.07131.x

    Article  PubMed  Google Scholar 

  • Holsboer F, Muller OA, Doerr HG, Sippell WG, Stalla GK, Gerken A, Steiger A, Boll E, Benkert O (1984) ACTH and multisteroid responses to corticotropin-releasing factor in depressive illness: relationship to multisteroid responses after ACTH stimulation and dexamethasone suppression. Psychoneuroendocrinology 9(2):147–160

    Article  CAS  PubMed  Google Scholar 

  • Ishunina TA, Fischer DF, Swaab DF (2007) Estrogen receptor alpha and its splice variants in the hippocampus in aging and Alzheimer’s disease. Neurobiol Aging 28(11):1670–1681. doi:10.1016/j.neurobiolaging.2006.07.024

    Article  CAS  PubMed  Google Scholar 

  • Joels M, Baram TZ (2009) The neuro-symphony of stress. Nat Rev Neurosci 10(6):459–466. doi:10.1038/nrn2632

    CAS  PubMed Central  PubMed  Google Scholar 

  • Khalili-Mahani N, Dedovic K, Engert V, Pruessner M, Pruessner JC (2010) Hippocampal activation during a cognitive task is associated with subsequent neuroendocrine and cognitive responses to psychological stress. Hippocampus 20(2):323–334. doi:10.1002/hipo.20623

    Article  PubMed  Google Scholar 

  • Klok MD, Alt SR, Irurzun Lafitte AJ, Turner JD, Lakke EA, Huitinga I, Muller CP, Zitman FG, Ronald de Kloet E, Derijk RH (2011) Decreased expression of mineralocorticoid receptor mRNA and its splice variants in postmortem brain regions of patients with major depressive disorder. J Psychiatr Res 45(7):871–878. doi:10.1016/j.jpsychires.2010.12.002

    Article  PubMed  Google Scholar 

  • Kretz O, Reichardt HM, Schutz G, Bock R (1999) Corticotropin-releasing hormone expression is the major target for glucocorticoid feedback-control at the hypothalamic level. Brain Res 818(2):488–491 pii:S0006-8993(98)01277-3

    Article  CAS  PubMed  Google Scholar 

  • Kumsta R, Entringer S, Koper JW, van Rossum EF, Hellhammer DH, Wust S (2010) Working memory performance is associated with common glucocorticoid receptor gene polymorphisms. Neuropsychobiology 61(1):49–56. doi:10.1159/000262180

    Article  CAS  PubMed  Google Scholar 

  • Landgraf R (2006) The involvement of the vasopressin system in stress-related disorders. CNS Neurol Disord Drug Targets 5(2):167–179

    Article  CAS  PubMed  Google Scholar 

  • Leventopoulos M, Ruedi-Bettschen D, Knuesel I, Feldon J, Pryce CR, Opacka-Juffry J (2007) Long-term effects of early life deprivation on brain glia in Fischer rats. Brain Res 1142:119–126. doi:10.1016/j.brainres.2007.01.039

    Article  CAS  PubMed  Google Scholar 

  • Lovallo WR, Robinson JL, Glahn DC, Fox PT (2010) Acute effects of hydrocortisone on the human brain: an fMRI study. Psychoneuroendocrinology 35(1):15–20. doi:10.1016/j.psyneuen.2009.09.010

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lucassen PJ, Muller MB, Holsboer F, Bauer J, Holtrop A, Wouda J, Hoogendijk WJ, De Kloet ER, Swaab DF (2001) Hippocampal apoptosis in major depression is a minor event and absent from subareas at risk for glucocorticoid overexposure. Am J Pathol 158(2):453–468. doi:10.1016/S0002-9440(10)63988-0

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lupien SJ, Maheu F, Tu M, Fiocco A, Schramek TE (2007) The effects of stress and stress hormones on human cognition: implications for the field of brain and cognition. Brain Cogn 65(3):209–237. doi:10.1016/j.bandc.2007.02.007

    Article  CAS  PubMed  Google Scholar 

  • Lupien SJ, Parent S, Evans AC, Tremblay RE, Zelazo PD, Corbo V, Pruessner JC, Seguin JR (2011) Larger amygdala but no change in hippocampal volume in 10-year-old children exposed to maternal depressive symptomatology since birth. Proc Natl Acad Sci USA 108(34):14324–14329. doi:10.1073/pnas.11053711081105371108

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mai JK, Paxinos G, Assheuer JK (2004) Atlas of the Human Brain. Elsevier Academic Press, San Diego

  • Matsubara T, Funato H, Kobayashi A, Nobumoto M, Watanabe Y (2006) Reduced glucocorticoid receptor alpha expression in mood disorder patients and first-degree relatives. Biol Psychiatry 59(8):689–695. doi:10.1016/j.biopsych.2005.09.026

    Article  CAS  PubMed  Google Scholar 

  • McGaugh JL, Roozendaal B (2002) Role of adrenal stress hormones in forming lasting memories in the brain. Curr Opin Neurobiol 12(2):205–210 pii:S0959438802003069

    Article  CAS  PubMed  Google Scholar 

  • Meyer U, Kruhoffer M, Flugge G, Fuchs E (1998) Cloning of glucocorticoid receptor and mineralocorticoid receptor cDNA and gene expression in the central nervous system of the tree shrew (Tupaia belangeri). Brain Res Mol Brain Res 55(2):243–253 pii:S0169328X98000047

    Article  CAS  PubMed  Google Scholar 

  • Meyer U, van Kampen M, Isovich E, Flugge G, Fuchs E (2001) Chronic psychosocial stress regulates the expression of both GR and MR mRNA in the hippocampal formation of tree shrews. Hippocampus 11(3):329–336. doi:10.1002/hipo.1047

    Article  CAS  PubMed  Google Scholar 

  • Meynen G, Unmehopa UA, van Heerikhuize JJ, Hofman MA, Swaab DF, Hoogendijk WJ (2006) Increased arginine vasopressin mRNA expression in the human hypothalamus in depression: a preliminary report. Biol Psychiatry 60(8):892–895. doi:10.1016/j.biopsych.2005.12.010

    Article  CAS  PubMed  Google Scholar 

  • Mifsud KR, Gutierrez-Mecinas M, Trollope AF, Collins A, Saunderson EA, Reul JM (2011) Epigenetic mechanisms in stress and adaptation. Brain Behav Immun 25(7):1305–1315. doi:10.1016/j.bbi.2011.06.005

    Google Scholar 

  • Miguel-Hidalgo JJ, Overholser JC, Jurjus GJ, Meltzer HY, Dieter L, Konick L, Stockmeier CA, Rajkowska G (2011) Vascular and extravascular immunoreactivity for intercellular adhesion molecule 1 in the orbitofrontal cortex of subjects with major depression: age-dependent changes. J Affect Disord 132(3):422–431. doi:10.1016/j.jad.2011.03.052

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Morey RA, Gold AL, LaBar KS, Beall SK, Brown VM, Haswell CC, Nasser JD, Wagner HR, McCarthy G (2012) Amygdala volume changes in posttraumatic stress disorder in a large case-controlled veterans group. Arch Gen Psychiatry 69(11):1169–1178. doi:10.1001/archgenpsychiatry.2012

    Article  PubMed Central  PubMed  Google Scholar 

  • Morimoto M, Morita N, Ozawa H, Yokoyama K, Kawata M (1996) Distribution of glucocorticoid receptor immunoreactivity and mRNA in the rat brain: an immunohistochemical and in situ hybridization study. Neurosci Res 26(3):235–269 pii:S0168-0102(96)01105-4

    Article  CAS  PubMed  Google Scholar 

  • Nadel L, Hupbach A, Gomez R, Newman-Smith K (2012) Memory formation, consolidation and transformation. Neurosci Biobehav Rev 36(7):1640–1645. doi:10.1016/j.neubiorev.2012.03.001

    Article  CAS  PubMed  Google Scholar 

  • Patel PD, Lopez JF, Lyons DM, Burke S, Wallace M, Schatzberg AF (2000) Glucocorticoid and mineralocorticoid receptor mRNA expression in squirrel monkey brain. J Psychiatr Res 34(6):383–392 pii:S0022395600000352

    Article  CAS  PubMed  Google Scholar 

  • Patel PD, Katz M, Karssen AM, Lyons DM (2008) Stress-induced changes in corticosteroid receptor expression in primate hippocampus and prefrontal cortex. Psychoneuroendocrinology 33(3):360–367. doi:10.1016/j.psyneuen.2007.12.003

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Peiffer A, Veilleux S, Barden N (1991) Antidepressant and other centrally acting drugs regulate glucocorticoid receptor messenger RNA levels in rat brain. Psychoneuroendocrinology 16(6):505–515

    Article  CAS  PubMed  Google Scholar 

  • Pepin MC, Beaulieu S, Barden N (1989) Antidepressants regulate glucocorticoid receptor messenger RNA concentrations in primary neuronal cultures. Brain Res Mol Brain Res 6(1):77–83

    Article  CAS  PubMed  Google Scholar 

  • Perez-Ortiz JM, Garcia-Gutierrez MS, Navarrete F, Giner S, Manzanares J (2012) Gene and protein alterations of FKBP5 and glucocorticoid receptor in the amygdala of suicide victims. Psychoneuroendocrinology. doi:10.1016/j.psyneuen.2012.11.008

    PubMed  Google Scholar 

  • Perlman WR, Webster MJ, Kleinman JE, Weickert CS (2004) Reduced glucocorticoid and estrogen receptor alpha messenger ribonucleic acid levels in the amygdala of patients with major mental illness. Biol Psychiatry 56(11):844–852. doi:10.1016/j.biopsych.2004.09.006

    Article  CAS  PubMed  Google Scholar 

  • Perlman WR, Webster MJ, Herman MM, Kleinman JE, Weickert CS (2007) Age-related differences in glucocorticoid receptor mRNA levels in the human brain. Neurobiol Aging 28(3):447–458. doi:10.1016/j.neurobiolaging.2006.01.010

    Article  CAS  PubMed  Google Scholar 

  • Pfleiderer B, Zinkirciran S, Arolt V, Heindel W, Deckert J, Domschke K (2007) fMRI amygdala activation during a spontaneous panic attack in a patient with panic disorder. World J Biol Psychiatry 8(4):269–272. doi:10.1080/15622970701216673

    Article  PubMed  Google Scholar 

  • Plotsky PM, Owens MJ, Nemeroff CB (1998) Psychoneuroendocrinology of depression. Hypothalamic–pituitary–adrenal axis. Psychiatr Clin North Am 21(2):293–307

    Article  CAS  PubMed  Google Scholar 

  • Pryce CR, Feldon J, Fuchs E, Knuesel I, Oertle T, Sengstag C, Spengler M, Weber E, Weston A, Jongen-Relo A (2005) Postnatal ontogeny of hippocampal expression of the mineralocorticoid and glucocorticoid receptors in the common marmoset monkey. Eur J Neurosci 21(6):1521–1535. doi:10.1111/j.1460-9568.2005.04003.x

    Article  PubMed  Google Scholar 

  • Qi XR, Kamphuis W, Wang S, Wang Q, Lucassen PJ, Zhou JN, Swaab DF (2012) Aberrant stress hormone receptor balance in the human prefrontal cortex and hypothalamic paraventricular nucleus of depressed patients. Psychoneuroendocrinology. doi:10.1016/j.psyneuen.2012.09.014

    Google Scholar 

  • Raadsheer FC, Hoogendijk WJ, Stam FC, Tilders FJ, Swaab DF (1994) Increased numbers of corticotropin-releasing hormone expressing neurons in the hypothalamic paraventricular nucleus of depressed patients. Neuroendocrinology 60(4):436–444

    Article  CAS  PubMed  Google Scholar 

  • Raadsheer FC, van Heerikhuize JJ, Lucassen PJ, Hoogendijk WJ, Tilders FJ, Swaab DF (1995) Corticotropin-releasing hormone mRNA levels in the paraventricular nucleus of patients with Alzheimer’s disease and depression. Am J Psychiatry 152(9):1372–1376

    CAS  PubMed  Google Scholar 

  • Rajkowska G, Miguel-Hidalgo JJ (2007) Gliogenesis and glial pathology in depression. CNS Neurol Disord Drug Targets 6(3):219–233

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rajkowska G, Hughes J, Stockmeier CA, Javier Miguel-Hidalgo J, Maciag D (2012) Coverage of blood vessels by astrocytic endfeet is reduced in major depressive disorder. Biol Psychiatry 73(7):613–621. doi:10.1016/j.biopsych.2012.09.024

    Article  PubMed Central  PubMed  Google Scholar 

  • Rauch SL, Shin LM, Segal E, Pitman RK, Carson MA, McMullin K, Whalen PJ, Makris N (2003) Selectively reduced regional cortical volumes in post-traumatic stress disorder. NeuroReport 14(7):913–916. doi:10.1097/01.wnr.0000071767.24455.10

    PubMed  Google Scholar 

  • Reul JM, Stec I, Soder M, Holsboer F (1993) Chronic treatment of rats with the antidepressant amitriptyline attenuates the activity of the hypothalamic–pituitary–adrenocortical system. Endocrinology 133(1):312–320

    CAS  PubMed  Google Scholar 

  • Reul JM, Labeur MS, Grigoriadis DE, De Souza EB, Holsboer F (1994) Hypothalamic–pituitary–adrenocortical axis changes in the rat after long-term treatment with the reversible monoamine oxidase-A inhibitor moclobemide. Neuroendocrinology 60(5):509–519

    Article  CAS  PubMed  Google Scholar 

  • Rossby SP, Nalepa I, Huang M, Perrin C, Burt AM, Schmidt DE, Gillespie DD, Sulser F (1995) Norepinephrine-independent regulation of GRII mRNA in vivo by a tricyclic antidepressant. Brain Res 687(1–2):79–82

    Article  CAS  PubMed  Google Scholar 

  • Sanchez MM, Young LJ, Plotsky PM, Insel TR (2000) Distribution of corticosteroid receptors in the rhesus brain: relative absence of glucocorticoid receptors in the hippocampal formation. J Neurosci 20(12):4657–4668. doi:http://www.ncbi.nlm.nih.gov/pubmed/10844035

    CAS  PubMed  Google Scholar 

  • Sapolsky RM, Krey LC, McEwen BS (1984) Glucocorticoid-sensitive hippocampal neurons are involved in terminating the adrenocortical stress response. Proc Natl Acad Sci USA 81(19):6174–6177

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sartorius N (2003) Physical symptoms of depression as a public health concern. J Clin Psychiatry 64(Suppl 7):3–4

    PubMed  Google Scholar 

  • Schwabe L, Joels M, Roozendaal B, Wolf OT, Oitzl MS (2012) Stress effects on memory: an update and integration. Neurosci Biobehav Rev 36(7):1740–1749. doi:10.1016/j.neubiorev.2011.07.002

    Article  PubMed  Google Scholar 

  • Seckl JR, Fink G (1992) Antidepressants increase glucocorticoid and mineralocorticoid receptor mRNA expression in rat hippocampus in vivo. Neuroendocrinology 55(6):621–626

    Article  CAS  PubMed  Google Scholar 

  • Seckl JR, Dickson KL, Yates C, Fink G (1991) Distribution of glucocorticoid and mineralocorticoid receptor messenger RNA expression in human postmortem hippocampus. Brain Res 561(2):332–337. doi:10.1016/0006-8993(91)91612-5

    Article  CAS  PubMed  Google Scholar 

  • Sinclair D, Webster MJ, Wong J, Weickert CS (2010) Dynamic molecular and anatomical changes in the glucocorticoid receptor in human cortical development. Mol Psychiatry. doi:10.1038/mp.2010.28

    PubMed  Google Scholar 

  • Sinclair D, Tsai SY, Woon HG, Weickert CS (2011) Abnormal glucocorticoid receptor mRNA and protein isoform expression in the prefrontal cortex in psychiatric illness. Neuropsychopharmacology 36(13):2698–2709. doi:10.1038/npp.2011.160

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sinclair D, Webster MJ, Fullerton JM, Weickert CS (2012) Glucocorticoid receptor mRNA and protein isoform alterations in the orbitofrontal cortex in schizophrenia and bipolar disorder. BMC Psychiatry 12:84. doi:10.1186/1471-244X-12-84

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Stockmeier CA, Mahajan GJ, Konick LC, Overholser JC, Jurjus GJ, Meltzer HY, Uylings HB, Friedman L, Rajkowska G (2004) Cellular changes in the postmortem hippocampus in major depression. Biol Psychiatry 56(9):640–650. doi:10.1016/j.biopsych.2004.08.022

    Article  PubMed Central  PubMed  Google Scholar 

  • Swaab DF, Bao AM, Lucassen PJ (2005) The stress system in the human brain in depression and neurodegeneration. Ageing Res Rev 4(2):141–194. doi:10.1016/j.arr.2005.03.003

    Article  CAS  PubMed  Google Scholar 

  • Tham MW, Woon PS, Sum MY, Lee TS, Sim K (2011) White matter abnormalities in major depression: evidence from post-mortem, neuroimaging and genetic studies. J Affect Disord 132(1–2):26–36. doi:10.1016/j.jad.2010.09.013

    Article  PubMed  Google Scholar 

  • Turner JD, Muller CP (2005) Structure of the glucocorticoid receptor (NR3C1) gene 5′ untranslated region: identification, and tissue distribution of multiple new human exon 1. J Mol Endocrinol 35(2):283–292. doi:10.1677/jme.1.01822

    Article  CAS  PubMed  Google Scholar 

  • van de Nes JA, Kamphorst W, Ravid R, Swaab DF (1998) Comparison of beta-protein/A4 deposits and Alz-50-stained cytoskeletal changes in the hypothalamus and adjoining areas of Alzheimer's disease patients: amorphic plaques and cytoskeletal changes occur independently. Acta Neuropathologica 96(2):129–138

    Google Scholar 

  • Virgin CE Jr, Ha TP, Packan DR, Tombaugh GC, Yang SH, Horner HC, Sapolsky RM (1991) Glucocorticoids inhibit glucose transport and glutamate uptake in hippocampal astrocytes: implications for glucocorticoid neurotoxicity. J Neurochem 57(4):1422–1428

    Article  CAS  PubMed  Google Scholar 

  • Wang SS, Kamphuis W, Huitinga I, Zhou JN, Swaab DF (2008) Gene expression analysis in the human hypothalamus in depression by laser microdissection and real-time PCR: the presence of multiple receptor imbalances. Mol Psychiatry 13(8):786–799, 741. doi:10.1038/mp.2008.38

    Google Scholar 

  • Wang Q, Joels M, Swaab DF, Lucassen PJ (2012) Hippocampal GR expression is increased in elderly depressed females. Neuropharmacology 62(1):527–533. doi:10.1016/j.neuropharm.2011.09.014

    Article  CAS  PubMed  Google Scholar 

  • Wang Q, Van Heerikhuize J, Aronica E, Kawata M, Seress L, Joels M, Swaab DF, Lucassen PJ (2013) Glucocorticoid receptor protein expression in human hippocampus; stability with age. Neurobiol Aging. doi:10.1016/j.neurobiolaging.2012.11.019

    Google Scholar 

  • Welberg LA, Seckl JR, Holmes MC (2000) Inhibition of 11beta-hydroxysteroid dehydrogenase, the foeto-placental barrier to maternal glucocorticoids, permanently programs amygdala GR mRNA expression and anxiety-like behaviour in the offspring. Eur J Neurosci 12(3):1047–1054

    Article  CAS  PubMed  Google Scholar 

  • Wickert L, Selbig J, Watzka M, Stoffel-Wagner B, Schramm J, Bidlingmaier F, Ludwig M (2000) Differential mRNA expression of the two mineralocorticoid receptor splice variants within the human brain: structure analysis of their different DNA binding domains. J Neuroendocrinol 12(9):867–873 pii:jne535

    Article  CAS  PubMed  Google Scholar 

  • Xing GQ, Russell S, Webster MJ, Post RM (2004) Decreased expression of mineralocorticoid receptor mRNA in the prefrontal cortex in schizophrenia and bipolar disorder. Int J Neuropsychopharmacol 7(2):143–153. doi:10.1017/S1461145703004000

    Article  CAS  PubMed  Google Scholar 

  • Yi SJ, Masters JN, Baram TZ (1994) Glucocorticoid receptor mRNA ontogeny in the fetal and postnatal rat forebrain. Mol Cell Neurosci 5(5):385–393. doi:10.1006/mcne.1994.1048

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Young EA, Altemus M, Lopez JF, Kocsis JH, Schatzberg AF, DeBattista C, Zubieta JK (2004) HPA axis activation in major depression and response to fluoxetine: a pilot study. Psychoneuroendocrinology 29(9):1198–1204. doi:10.1016/j.psyneuen.2004.02.002

    Article  CAS  PubMed  Google Scholar 

  • Zobel A, Jessen F, von Widdern O, Schuhmacher A, Hofels S, Metten M, Rietschel M, Scheef L, Block W, Becker T, Schild HH, Maier W, Schwab SG (2008) Unipolar depression and hippocampal volume: impact of DNA sequence variants of the glucocorticoid receptor gene. Am J Med Genet B Neuropsychiatr Genet 147B(6):836–843. doi:10.1002/ajmg.b.30709

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr I. Huitinga and Mr M. Kooreman from the Netherlands brain Bank (NBB) for provision of, and assistance with, the human brain material. QW and PJL are supported by the China Exchange program of the Royal Dutch Academy of Sciences (KNAW). P.J.L. is supported by the Nederlandse HersenStichting and ISAO.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. J. Lucassen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Q., Verweij, E.W.E., Krugers, H.J. et al. Distribution of the glucocorticoid receptor in the human amygdala; changes in mood disorder patients. Brain Struct Funct 219, 1615–1626 (2014). https://doi.org/10.1007/s00429-013-0589-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-013-0589-4

Keywords

Navigation