Skip to main content
Log in

Role of Shh in the development of molecularly characterized tegmental nuclei in mouse rhombomere 1

  • Original Article
  • Published:
Brain Structure and Function Aims and scope Submit manuscript

Abstract

Hindbrain rhombomeres in general are differentially specified molecularly by unique combinations of Hox genes with other developmental genes. Rhombomere 1 displays special features, including absence of Hox gene expression. It lies within the hindbrain range of the Engrailed genes (En1, En2), controlled by the isthmic organizer via diffusion of FGF8. It is limited rostrally by the isthmus territory, and caudally by rhombomere 2. It is double the normal size of any other rhombomere. Its dorsal part generates the cerebellar hemispheres and its ventral part gives rise to several populations, such as some raphe nuclei, the interpeduncular nucleus, the rhabdoid nucleus, anterior, dorsal, ventral and posterodorsal tegmental nuclei, the cholinergic pedunculopontine and laterodorsal tegmental nuclei, rostral parts of the hindbrain reticular formation, the locus coeruleus, and part of the lateral lemniscal and paralemniscal nuclei, among other formations. Some of these populations migrate tangentially before reaching their final positions. The morphogen Sonic Hedgehog (Shh) is normally released from the local floor plate and underlying notochord. In the present report we explore, first, whether Shh is required in the specification of these r1 populations, and, second, its possible role in the guidance of tangentially migrating neurons that approach the midline. Our results indicate that when Shh function is altered selectively in a conditional mutant mouse strain, most populations normally generated in the medial basal plate of r1 are completely absent. Moreover, the relocation of some neurons that normally originate in the alar plate and migrate tangentially into the medial basal plate is variously altered. In contrast, neurons that migrate radially (or first tangentially and then radially) into the lateral basal plate were not significantly affected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

ATg:

Anterior tegmental nucleus

CA:

Caudal apical interpeduncular subnucleus

Cb:

Cerebellum

cDR:

Caudal dorsal raphe nucleus

Ch:

Choroid tela

CLi:

Caudal linear nucleus

DLL:

Dorsal nucleus of the lateral lemniscus

DR:

Dorsal raphe

DTg:

Dorsal tegmental nucleus

gV:

Trigeminal ganglion

III:

Oculomotor nucleus

IF:

Interfascicular nucleus

Inc:

Nucleus incertus

ILL:

Intermediate nucleus of the lateral leminscus

IOC:

Inferior olive complex

IP:

Interpeduncular nucleus

IPC:

Caudal part of the interpeduncular nucleus

IPL:

Intermediate paralemniscal nucleus

IPR:

Rostral part of the interpeduncular nucleus

Is:

Isthmus

isDR:

Isthmic dorsal raphe nucleus

IV:

Trochlear nucleus

IV ventr:

Fourth ventricle

LC:

Locus coeruleus

LDTg:

Laterodorsal tegmental nucleus

m (1–2):

Mesomere (1–2)

Mes:

Mesencephalon

MesV:

Mesencephalic trigeminal nucleus

MnR:

Median raphe nucleus

p (1–3):

Prosomere (1–3)

PAG:

Periaqueductal gray

PB:

Parabrachial nucleus

PDTg:

Posterodorsal tegmental nucleus

PPnR:

Prepontine raphe nucleus

PPTg:

Pedunculopontine tegmental nucleus

Pro:

Prodromal nucleus

r (1–11):

Rhombomeres (1–11)

r1SuLR:

Rhombomere 1 supralemniscal raphe complex

RA:

Rostral apical interpeduncular subnucleus

Rbd:

Rhabdoid nucleus

Ret:

Reticular formation

Rf:

Raphe formation

Rhomb:

Rhombencephalon

RN:

Red nucleus

SNc:

Substantia nigra compacta

sc:

Spinal cord

Sph:

Sphenoid nucleus

SVe:

Sensitive vestibular complex

Svp:

Principal sensitive trigeminal nucleus

v:

Ventricle

V:

Trigeminal nucleus

VI:

Abducens nucleus

VII:

Facial nucleus

VLL:

Ventral nucleus of the lateral leminscus

Vm:

Trigeminal motor nucleus

VTg:

Ventral tegmental nucleus

References

  • Alcántara S, Ruiz M, de Castro F, Soriano E, Sotelo C (2000) Netrin 1 acts as an attractive or as a repulsive cue for distinct migrating neurons during the development of the cerebellar system. Development 127:1359–1372

    PubMed  Google Scholar 

  • Alexander T, Nolte C, Krumlauf R (2009) Hox genes and segmentation of the hindbrain and axial skeleton. Annu Rev Cell Dev Biol 25:431–456

    Article  CAS  PubMed  Google Scholar 

  • Allen Developing Mouse Brain Atlas [Internet] (2009) Allen Institute for Brain Science, Seattle (WA). http://developingmouse.brain-map.org

  • Alonso A, Merchán P, Sandoval JE, Sánchez-Arrones L, Garcia-Cazorla A, Artuch R, Ferrán JL, Martínez-de-la-Torre M, Puelles L (2012) Development of the serotonergic cells in murine raphe nuclei and their relations with rhombomeric domains. Brain Struct Funct. doi:10.1007/s00429-012-0456-8

    PubMed Central  Google Scholar 

  • Alvarado-Mallart RM (2000) The chick/quail transplantation model to study central nervous system development. Prog Brain Res 127:67–98

    Article  CAS  PubMed  Google Scholar 

  • Aroca P, Puelles L (2005) Postulated boundaries and differential fate in the developing rostral hindbrain. Brain Res Brain Res Rev 49:179–190

    Article  PubMed  Google Scholar 

  • Aroca P, Lorente-Cánovas B, Mateos FR, Puelles L (2006) Locus coeruleus neurons originate in alar rhombomere 1 and migrate into the basal plate: studies in chick and mouse embryos. J Comp Neurol 496:802–818

    Article  PubMed  Google Scholar 

  • Barkovich AJ (2012) Developmental disorders of the midbrain and hindbrain. Front Neuroanat 6:7

    PubMed Central  PubMed  Google Scholar 

  • Bloch-Gallego E, Ezan F, Tessier-Lavigne M, Sotelo C (1999) Floor plate and netrin-1 are involved in the migration and survival of inferior olivary neurons. J Neurosci 19:4407–4420

    CAS  PubMed  Google Scholar 

  • Bloch-Gallego E, Causeret F, Ezan F, Backer S, Hidalgo-Sánchez M (2005) Development of precerebellar nuclei: instructive factors and intracellular mediators in neuronal migration, survival and axon pathfinding. Brain Res Brain Res Rev 49:253–266

    Article  CAS  PubMed  Google Scholar 

  • Briscoe J, Sussel L, Serup P, Hartigan-O’Connor D, Jessell TM, Rubenstein JL, Ericson J (1999) Homeobox gene Nkx2.2 and specification of neuronal identity by graded Sonic hedgehog signalling. Nature 398:622–627

    Article  CAS  PubMed  Google Scholar 

  • Briscoe J, Pierani A, Jessell TM, Ericson J (2000) A homeodomain protein code specifies progenitor cell identity and neuronal fate in the ventral neural tube. Cell 101:435–445

    Article  CAS  PubMed  Google Scholar 

  • Cambronero F, Puelles L (2000) Rostrocaudal nuclear relationships in the avian medulla oblongata: a fate map with quail chick chimeras. J Comp Neurol 427:522–545

    Article  CAS  PubMed  Google Scholar 

  • Cheng L, Chen C, Luo P, Tan M, Qiu M, Johnson R, Ma Q (2003) Lmx1b, Pet-1, and Nkx2.2 coordinately specify serotonergic neurotransmitter phenotype. J Neurosci 23:9961–9967

    CAS  PubMed  Google Scholar 

  • Chiang C, Litingtung Y, Lee E, Young KE, Corden JL, Westphal H, Beachy PA (1996) Cyclopia and defective axial patterning in mice lacking Sonic hedgehog gene function. Nature 383:407–413

    Article  CAS  PubMed  Google Scholar 

  • Dessaud E, Ribes V, Balaskas N, Yang LL, Pierani A, Kicheva A, Novitch BG, Briscoe J, Sasai N (2010) Dynamic assignment and maintenance of positional identity in the ventral neural tube by the morphogen sonic hedgehog. PLoS Biol 8:e1000382

    Article  PubMed Central  PubMed  Google Scholar 

  • Di Bonito M, Narita Y, Avallone B, Sequino L, Mancuso M, Andolfi G, Franzè AM, Puelles L, Rijli FM, Studer M (2013) Assembly of distinct auditory sub-circuits by a Hox genetic network in the mouse brainstem. PLoS Gen 9:e1003249

    Article  Google Scholar 

  • Doherty D (2009) Joubert syndrome: insights into brain development, cilium biology, and complex disease. Semin Pediatr Neurol 16:143–154

    Article  PubMed Central  PubMed  Google Scholar 

  • Domanitskaya E, Wacker A, Mauti O, Baeriswyl T, Esteve P, Bovolenta P, Stoeckli ET (2010) Sonic hedgehog guides post-crossing commissural axons both directly and indirectly by regulating Wnt activity. J Neurosci 30:11167–11176

    Article  CAS  PubMed  Google Scholar 

  • Echelard Y, Epstein DJ, St-Jacques B, Shen L, Mohler J, McMahon JA, McMahon AP (1993) Sonic hedgehog, a member of a family of putative signaling molecules, is implicated in the regulation of CNS polarity. Cell 75:1417–1430

    Article  CAS  PubMed  Google Scholar 

  • Echevarria D, Belo JA, Martinez S (2005) Modulation of Fgf8 activity during vertebrate brain development. Brain Res Brain Res Rev 49:150–157

    Article  PubMed  Google Scholar 

  • Farmer WT, Altick AL, Nural HF, Dugan JP, Kidd T, Charron F, Mastick GS (2008) Pioneer longitudinal axons navigate using floor plate and slit/robo signals. Development 135:3643–3653

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fogel JL, Chiang C, Huang X, Agarwala S (2008) Ventral specification and perturbed boundary formation in the mouse midbrain in the absence of Hedgehog signaling. Dev Dyn 237:1359–1372

    Article  PubMed Central  PubMed  Google Scholar 

  • Hidalgo-Sánchez M, Martínez-de-la-Torre M, Alvarado-Mallart R, Puelles L (2005) A distinct preisthmic histogenetic domain is defined by overlap of Otx2 and Pax2 gene expression in the avian caudal midbrain. J Comp Neurol 483:17–29

    Article  PubMed  Google Scholar 

  • Hidalgo-Sánchez M, Backer S, Puelles L, Bloch-Gallego E (2012) Origin and plasticity of the subdivisions of the inferior olivary complex. Dev Biol 371:215–226

    Google Scholar 

  • Jensen P, Anna F, Farago AF, Awatramani RB, Scott MM, Deneris ES, Dymecki SM (2008) Redefining the serotonergic system by genetic lineage. Nat Neurosci 11:417–419

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ju MJ, Aroca P, Luo J, Puelles L, Redies C (2004) Molecular profiling indicates avian branchiomotor nuclei invade the hindbrain alar plate. Neuroscience 128:785–796

    Article  CAS  PubMed  Google Scholar 

  • Juric-Sekhar G, Adkins J, Doherty D, Hevner RF (2012) Joubert syndrome: brain and spinal cord malformations in genotyped cases and implications for neurodevelopmental functions of primary cilia. Acta Neuropathol 123:695–709

    Article  PubMed  Google Scholar 

  • Kennedy TE, Serafini T, de la Torre JR, Tessier-Lavigne M (1994) Netrins are diffusible chemotropic factors for commissural axons in the embryonic spinal cord. Cell 78:425–435

    Article  CAS  PubMed  Google Scholar 

  • Kimmel RA, Turnbull DH, Blanquet V, Wurst W, Loomis CA, Joyner AL (2000) Two lineage boundaries coordinate vertebrate apical ectodermal ridge formation. Genes Dev 14:1377–1389

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lewis PM, Dunn MP, McMahon JA, Logan M, Martin JF, St-Jacques B, McMahon AP (2001) Cholesterol modification of sonic hedgehog is required for long-range signaling activity and effective modulation of signaling by Ptc1. Cell 105:599–612

    Article  CAS  PubMed  Google Scholar 

  • Lorente-Cánovas B, Marín F, Corral-San-Miguel R, Hidalgo-Sánchez M, Ferrán JL, Puelles L, Aroca P (2012) Multiple origins, migratory paths and molecular profiles of cells populating the avian interpeduncular nucleus. Dev Biol 361:12–26

    Article  PubMed  Google Scholar 

  • Lumsden A (1990) The cellular basis of segmentation in the developing hindbrain. Trends Neurosci 13:329–335

    Article  CAS  PubMed  Google Scholar 

  • Marín F, Puelles L (1995) Morphological fate of rhombomeres in quail/chick chimeras: a segmental analysis of hindbrain nuclei. Eur J Neurosci 7:1714–1738

    Article  PubMed  Google Scholar 

  • Marín F, Aroca P, Puelles L (2008) Hox gene colinear expression in the avian medulla oblongata is correlated with pseudorhombomeric domains. Dev Biol 323:230–247

    Article  PubMed  Google Scholar 

  • Mavromatakis YE, Lin W, Metzakopian E, Ferri ALM, Yan CH, Sasaki H, Whisett J, Ang S (2011) Foxa1 and Foxa2 positively and negatively regulate Shh signalling to specify ventral midbrain progenitor identity. Mech Dev 128:90–103

    Article  CAS  PubMed  Google Scholar 

  • Nieuwenhuys R (2011) The structural, functional, and molecular organization of the brainstem. Front Neuroanat 5:33

    PubMed Central  PubMed  Google Scholar 

  • Pabst O, Herbrand H, Takuma N, Arnold HH (2000) NKX2 gene expression in neuroectoderm but not in mesendodermally derived structures depends on sonic hedgehog in mouse embryos. Dev Genes Evol 210:47–50

    Article  CAS  PubMed  Google Scholar 

  • Parisi MA, Dobyns WB (2003) Human malformations of the midbrain and hindbrain: review and proposed classification scheme. Mol Genet Metab 80:36–53

    Article  CAS  PubMed  Google Scholar 

  • Pasqualetti M, Díaz C, Renaud JS, Rijli FM, Glover JC (2007) Fate-mapping the mammalian hindbrain: segmental origins of vestibular projection neurons assessed using rhombomere-specific Hoxa2 enhancer elements in the mouse embryo. J Neurosci 36:9670–9681

    Article  Google Scholar 

  • Pattyn A, Vallstedt A, Dias JM, Samad OA, Krumlauf R, Rijli FM, Brunet J, Ericson J (2003) Coordinated temporal and spatial control of motor neuron and serotonergic neuron generation from a common pool of CNS progenitors. Genes Dev 17:729–737

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Paxinos G, Butcher LL (1985) Organizational principles of the brain as revealed by choline acetyltransferase and acetylcholinesterase distribution and projections. In: Paxinos G (ed) The rat nervous system, vol I., Forebrain and midbrainAcademic Press, Sydney, pp 487–521

    Google Scholar 

  • Perez-Balaguer A, Puelles E, Wurst W, Martinez S (2009) Shh dependent and independent maintenance of basal midbrain. Mech Dev 126:301–313

    Article  CAS  PubMed  Google Scholar 

  • Placzek M, Briscoe J (2005) The floor plate: multiple cells, multiple signals. Nat Rev Neurosci 6:230–240

    Article  CAS  PubMed  Google Scholar 

  • Puelles L (2001) Brain segmentation and forebrain development in amniotes. Brain Res Bull 55:695–710

    Article  CAS  PubMed  Google Scholar 

  • Puelles L (2013) Plan of the developing vertebrate nervous system: relating embryology to the adult nervous system (Prosomere model, overview of brain organization). Chapter in: Rakic P and Rubenstelin JLR (eds) Comprehensive developmental neuroscience, Elsevier, London (in press)

  • Puelles L, Martinez-de-la-Torre M, Paxinos G, Martinez S (2007) The chick brain in stereotaxic coordinates. An atlas featuring neuromeric subdivisions and mammalian homologies. Elsevier Academic Press, San Diego

  • Puelles E, Martinez-de-la-Torre M, Watson C, Puelles L (2012) Midbrain. In: Watson C, Paxinos G, Puelles L (eds) The mouse nervous system, 1st edn. Elsevier Academic Press, San Diego, pp 337–359

    Chapter  Google Scholar 

  • Qiu M, Shimamura K, Sussel L, Chen S, Rubenstein JL (1998) Control of antero-posterior and dorsoventral domains of Nkx6.1 gene expression relative to other Nkx genes during vertebrate CNS development. Mech Dev 72:77–88

    Article  CAS  PubMed  Google Scholar 

  • Rastegar S, Albert S, Le Roux I, Fischer N, Blader P, Müller F, Strähle U (2002) A floor plate enhancer of the zebrafish netrin1 gene requires Cyclops (Nodal) signalling and the winged helix transcription factor FoxA2. Dev Biol 252:1–14

    Article  CAS  PubMed  Google Scholar 

  • Ribes V, Balaskas N, Sasai N, Cruz C, Dessaud E, Cayuso J, Tozer S, Yang LL, Novitch B, Marti E et al (2010) Distinct sonic hedgehog signaling dynamics specify floor plate and ventral neuronal progenitors in the vertebrate neural tube. Genes Dev 24:1186–1200

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sander M, Sussel L, Conners J, Scheel D, Kalamaras J, Cruz dela F, Schwitzgebel V, Hayes-Jordan A, German M (2000) Homeobox gene Nkx6.1 lies downstream of Nkx2.2 in the major pathway of beta-cell formation in the pancreas. Development 127:5533–5540

    CAS  PubMed  Google Scholar 

  • Shi M, Guo C, Dai JX, Ding YQ (2008) DCC is required for the tangential migration of noradrenergic neurons in locus coeruleus of mouse brain. Mol Cell Neurosci 39:529–538

    Article  CAS  PubMed  Google Scholar 

  • Shimamura K, Hartigan DJ, Martínez S, Puelles L, Rubenstein JL (1995) Longitudinal organization of the anterior neural plate and neural tube. Development 121:3923–3933

    CAS  PubMed  Google Scholar 

  • Simeone A, D’Apice MR, Nigro V, Casanova J, Graziani F, Acampora D, Avantaggiato V (1994) Orthopedia, a novel homeobox-containing gene expressed in the developing CNS of both mouse and Drosophila. Neuron 13:83–101

    Article  CAS  PubMed  Google Scholar 

  • Tilleman H, Hakim V, Novikov O, Liser K, Nashelsky L, Di Salvio M, Krauthammer M, Scheffner O, Maor I, Mayseless O et al (2010) Bmp5/7 in concert with the mid-hindbrain organizer control development of noradrenergic locus coeruleus neurons. Mol Cell Neurosci 45:1–11

    Article  CAS  PubMed  Google Scholar 

  • Vaage S (1969) The segmentation of the primitive neural tube in chick embryos (Gallus domesticus). A morphological, histochemical and autoradiographical investigation. Ergeb Anat Entwicklungsgesch 41:3–87

    CAS  PubMed  Google Scholar 

  • Vaage S (1973) The histogenesis of the isthmic nuclei in chick embryos (Gallus domesticus). I. A morphological study. Z Anat Entwicklungsgesch 142:283–314

    Google Scholar 

  • Vieira C, Martínez S (2006) Sonic hedgehog from the basal plate and the zona limitans intrathalamica exhibits differential activity on diencephalic molecular regionalization and nuclear structure. Neuroscience 143:129–140

    Article  CAS  PubMed  Google Scholar 

  • Vieira C, Pombero A, García-Lopez R, Gimeno L, Echevarria D, Martinez S (2010) Molecular mechanisms controlling brain development: an overview of neuroepithelial secondary organizers. Int J Dev Biol 54:7–20

    Article  CAS  PubMed  Google Scholar 

  • Vogel-Höpker A, Rohrer H (2002) The specification of noradrenergic locus coeruleus (LC) neurones depends on bone morphogenetic proteins (BMPs). Development 129:983–991

    PubMed  Google Scholar 

  • Zervas M, Millet S, Ahn S, Joyner AL (2004) Cell behaviors and genetic lineages of the mesencephalon and rhombomere 1. Neuron 43:345–357

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Work supported by “Ministerio de Economía y Competitividad” BFU2010-16548 (FEDER Fonds) to E. Puelles, Consolider Grant (CSD2007-00023) and European commission (EUCOMMTOOLS, contract 261492) to S.M., and “Ministerio de Economía y Competitividad” grant BFU2008-01456 and Fundación SENECA contract 04548/GERM/06 (no. 10891) to L. Puelles. J.A. Moreno-Bravo was supported by the Predoctoral Program of the “Consejo Superior de Investigaciones Científicas-Junta de Ampliación de Estudios”, co-financed by the European Social Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Puelles.

Electronic supplementary material

Below is the link to the electronic supplementary material.

429_2013_534_MOESM1_ESM.tif

ESM 1. In the absence of Shh function, an Otx2 -positive population targets the IPC, and an Otp -positive population targets the IPR. a, b, e, f, Transversal sections to r1 of wild-type (a, e) and mutant mouse (b, f) E14.5 embryos stained with in situ hybridization for Otx2 (a, b) and Otp (e, f), or immunoreacted against PAX7 (a, b). c, d, g, h, sagittal sections of wild-type (c, g) and mutant (d, h) E18.5 embryos stained with in situ hybridization for Otx2 (c, d) and Otp (g, h). The basal Otx2-positive migration restricted to the caudal rhombomere1 is still present in the conditional mutant (arrow in b, d) but displays distinct reduction. The Otp-positive tangential migration into the IP complex was also detected at the rostral r1 (f, h). However, these cells do not colonize properly the IPR. The dotted line in c, d indicates the plane of section in a, b, e, f. Scale bar 200 μm. (TIFF 9946 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moreno-Bravo, J.A., Perez-Balaguer, A., Martinez-Lopez, J.E. et al. Role of Shh in the development of molecularly characterized tegmental nuclei in mouse rhombomere 1. Brain Struct Funct 219, 777–792 (2014). https://doi.org/10.1007/s00429-013-0534-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-013-0534-6

Keywords

Navigation