Skip to main content

Advertisement

Log in

Differences in integrity of white matter and changes with training in spelling impaired children: a diffusion tensor imaging study

  • Original Article
  • Published:
Brain Structure and Function Aims and scope Submit manuscript

Abstract

While the functional correlates of spelling impairment have been rarely investigated, to our knowledge no study exists regarding the structural characteristics of spelling impairment and potential changes with interventions. Using diffusion tensor imaging at 3.0 T, we here therefore sought to investigate (a) differences between children with poor spelling abilities (training group and waiting group) and controls, and (b) the effects of a morpheme-based spelling intervention in children with poor spelling abilities on DTI parameters. A baseline comparison of white matter indices revealed significant differences between controls and spelling-impaired children, mainly located in the right hemisphere (superior corona radiata (SCR), posterior limb of internal capsule, superior longitudinal fasciculus). After 5 weeks of training, spelling ability improved in the training group, along with increases in fractional anisotropy and decreases of radial diffusivity in the right hemisphere compared to controls. In addition, significantly higher decreases of mean diffusivity in the right SCR for the spelling-impaired training group compared to the waiting group were observed. Our results suggest that spelling impairment is associated with differences in white-matter integrity in the right hemisphere. We also provide first indications that white matter changes occur during successful training, but this needs to be more specifically addressed in future research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Augst G (1989) Schriftwortschatz: Untersuchungen und Wortlisten zum orthographischen Lexikon bei Schülern und Erwachsenen. Peter Lang, Frankfurt am Main

  • Aylward EH, Richards TL, Berninger VW, Nagy WE, Field KM, Grimme AC, Richards AL, Thomson JB, Cramer SC (2003) Instructional treatment associated with changes in brain activation in children with dyslexia. Neurology 61:212–219

    Article  PubMed  CAS  Google Scholar 

  • Basser PJ (1995) Inferring microstructural features and the physiological state of tissues from diffusion-weighted images. NMR Biomed 8:333–344

    Article  PubMed  CAS  Google Scholar 

  • Basser PJ, Pierpaoli C (1996) Microstructural and physiological features of tissues elucidated by quantitative-diffusion-tensor MRI. J Magn Reson B 111:209–219

    Article  PubMed  CAS  Google Scholar 

  • Beaulieu C, Plewes C, Paulson LA, Roy D, Snook L, Concha L, Phillips L (2005) Imaging brain connectivity in children with diverse reading ability. NeuroImage 25:1266–1271

    Article  PubMed  Google Scholar 

  • Bengtsson SL, Nagy Z, Skare S, Forsman L, Forssberg H, Ullén F (2005) Extensive piano practicing has regionally specific effects on white matter development. Nat Neurosci 8:1148–1150

    Article  PubMed  CAS  Google Scholar 

  • Ben-Shachar M, Dougherty R, Wandell B (2007) White matter pathways in reading. Curr Opin Neurobiol 17:258–270

    Article  PubMed  CAS  Google Scholar 

  • Booth J, Burman D, Meyer J, Gitelman D, Parrish T, Mesulam M (2002) Functional anatomy of intra- and cross-modal lexical tasks. NeuroImage 16:7–22

    Article  PubMed  Google Scholar 

  • Booth J, Burman D, Meyer J, Gitelman D, Parrish T, Mesulam M (2004) Development of brain mechanisms for processing orthographic and phonologic representations. J Cog Neurosci 16:1234–1249

    Article  Google Scholar 

  • Carter J, Lanham D, Cutting L, Clements-Stephens A, Chen X, Hadzipasic M, Kim J, Denckla M, Kaufmann W (2009) A dual DTI approach analyzing white matter in children with dyslexia. Psychiatr Res Neuroimaging 172:215–219

    Article  Google Scholar 

  • Deutsch G, Dougherty R, Bammer R, Siok WT, Gabrieli J, Wandell B (2005) Children’s reading performance is correlated with white matter structure measured by diffusion tensor imaging. Cortex 41:354–363

    Article  PubMed  Google Scholar 

  • Dougherty RF, Ben-Shachar M, Deutsch GK, Hernandez A, Fox GR, Wandell A (2007) Temporal-callosal pathway diffusivity predicts phonological skills in children. PNAS 104:8556–8561

    Article  PubMed  CAS  Google Scholar 

  • Draganski B, Gaser C, Busch V, Schuierer G, Bogdahn U, May A (2004) Changes in gray matter induced by training. Nature 427:311–312

    Article  PubMed  CAS  Google Scholar 

  • Eden GF, Jones KM, Cappell K, Gareau L, Wood FB, Zeffiro TA, Dietz NAE, Agnew JA, Flowers DL (2004) Neural changes following remediation in adult developmental dyslexia. Neuron 44:411–422

    Article  PubMed  CAS  Google Scholar 

  • Gebauer D, Fink A, Kargl R, Reishofer G, Koschutnig K, Purgstaller C, Fazekas F, Enzinger C (submitted) Differences in brain function and changes with intervention in spelling impaired children

  • Heim S, Eickhoff SB, Ischebeck AK, Friederici AD, Stephan KE, Amunts K (2009) Effective connectivity of the left BA 44, BA 45 and inferior temporal gyrus during lexical and phonological decisions identified with DCM. Hum Brain Mapp 30:392–402

    Article  PubMed  Google Scholar 

  • Hoeft F, McCandliss B, Black J, Gantman A, Zakerani N, Hulme C, Lyytinen H, Whitfield-Gabrieli S, Glover G, Reiss A, Gabrieli J (2011) Neural systems predicting long-term outcome in dyslexia. PNAS 108:361–366

    Article  PubMed  CAS  Google Scholar 

  • Kargl R, Purgstaller C (2010) Morphem unterstütztes Segmentierungstraining MORPHEUS. Hogrefe, Göttingen

  • Keller TA, Just MA (2009) Altering cortical connectivity: remediation-induced changes in the white matter of poor readers. Neuron 64:624–631

    Article  PubMed  CAS  Google Scholar 

  • Klicpera C, Schabmann A, Gasteiger-Klicpera B (2007) Legasthenie. Ernst Reinhardt Verlag, München, Basel

  • Klingberg T, Hedehus M, Temple E, Salz T, Gabrieli J, Moseley M, Poldrack R (2000) Microstructure of temporo-parietal white matter as a basis for reading ability: evidence from diffusion tensor magnetic resonance imaging. Neuron 25:493–500

    Article  PubMed  CAS  Google Scholar 

  • Kronbichler M, Wimmer H, Staffen W, Hutzler F, Mair A, Ladurner G (2008) Developmental dyslexia: gray matter abnormalities in the occipitotemporal cortex. Hum Brain Mapp 29:613–625

    Article  PubMed  Google Scholar 

  • Lenhard W, Schneider W (2006) ELFE 1-6. Ein Leseverständnistest für Erst- bis Sechstklässler. Hogrefe, Göttingen

  • Maisog JM, Einbinder ER, Flowers DL, Turkeltaub PE, Eden GF (2008) A meta-analysis of functional neuroimaging studies of dyslexia. Ann N Y Acad Sci 1145:237–259

    Article  PubMed  Google Scholar 

  • Makris N, Kennedy DN, McInerney S, Sorensen AG, Wang R, Caviness VS, Pandya DN (2005) Segmentation of subcomponents within the superior longitudinal fascicle in humans: a quantitative, in vivo, DT-MRI study. Cereb Cortex 15:854–869

    Article  PubMed  Google Scholar 

  • Maldanado IL, Moritz-Gasser S, Duffau H (2011) Does the left superior longitudinal fascicle subserve language semantics? A brain electrostimulation study. Brain Struct Funct 216:263–274

    Article  Google Scholar 

  • May P, Vieluf U, Malitzky V (2000) Hamburger Schreibprobe. Diagnose orthographischer Kompetenz. Verlag für pädagogische Medien, Hamburg

  • Mayringer H, Wimmer H (2003) Salzburger Lese-Screening für die Klassenstufen 1 - 4. Hans Huber, Bern

  • Mayringer H, Wimmer H (2005) Salzburger Lese-Screening für die Klassenstufen 5 - 8. Hans Huber, Bern

  • Meyler A, Keller T, Cherkassky VL, Gabrieli J, Just MA (2008) Modifying the brain activation of poor readers during sentence comprehension with extended remedial instruction: a longitudinal study of neuroplasticity. Neuropsychologia 46:2580–2592

    Article  PubMed  Google Scholar 

  • Nagy Z, Westerberg H, Klingberg T (2004) Maturation of white matter is associated with the development of cognitive functions during childhood. J Cogn Neurosci 16:1227–1233

    Article  PubMed  Google Scholar 

  • Nichols TE, Holmes AP (2002) Nonparametric permutation tests for functional neuroimaging: a primer with examples. Hum Brain Mapp 15:1–25

    Article  PubMed  Google Scholar 

  • Niogi SM, McCandliss BD (2006) Left lateralized white matter microstructure accounts for individual differences in reading ability and disability. Neuropsychologia 44:2178–2188

    Article  PubMed  Google Scholar 

  • Poldrack RA, Desmond JE, Glover GH, Gabrieli JD (1998) The neural basis of visual skill learning: an fMRI study of mirror reading. Cereb Cortex 8:1–10

    Article  PubMed  CAS  Google Scholar 

  • Raichle ME, Fiez JA, Videen TO, MacLeod AM, Pardo JV, Fox PT, Petersen SE (1994) Practice-related changes in human brain functional anatomy during nonmotor learning. Cereb Cortex 4:8–26

    Article  PubMed  CAS  Google Scholar 

  • Raven JC (1960) Guide to the Standard Progressive Matrices: Sets A, B, C, D and E. HK Lewis, London

  • Richards TL, Aylward EH, Berninger VW, Field KM, Grimme AC, Richards AL, Nagy W (2006) Individual fMRI activiation in orthographic mapping and morpheme mapping after orthographic or morphological spelling treatment in child dyslexics. J Neuroling 19:56–86

    Article  Google Scholar 

  • Richards T, Berninger V, Fayol M (2009) fMRI activation differences between 11-year-old good and poor spellers’ access in working memory to temporary and long-term orthographic representations. J Neuroling 22:327–353

    Article  Google Scholar 

  • Richlan F, Kronbichler M, Wimmer H (2009) Functional abnormalities in the dyslexic brain: a quantitative meta-analysis of neuroimaging studies. Hum Brain Mapp 30:3299–3308

    Article  PubMed  Google Scholar 

  • Rimrodt SL, Peterson DJ, Denckla MB, Kaufmann WE, Cutting LE (2010) White matter microstructural differences linked to left perisylvian language network in children with dyslexia. Cortex 46:739–749

    Article  PubMed  Google Scholar 

  • Rollins N, Vachha B, Srinivasan P, Chia J, Pickering J, Hughes C, Gimi B (2009) Simple developmental dyslexia in children: alterations in diffusion tensor matrices of white matter tracts at 3 T. Radiology 251:882–891

    Article  PubMed  Google Scholar 

  • Scheerer-Neumann G (1979) Intervention bei Lese-Rechtschreibschwäche. Überblick über Theorien, Methoden und Ergebnisse. Kamp, Bochum

  • Scholz J, Klein M, Behrens T, Johansen-Berg H (2009) Training induces changes in white-matter architecture. Nat Neurosci 12:1370–1371

    Article  PubMed  CAS  Google Scholar 

  • Schulte-Körne G, Remschmidt H (2003) Legasthenie- Symptomatik, Diagnostik, Ursachen, Verlauf und Behandlung. Deutsches Ärzteblatt 7:396–406

    Google Scholar 

  • Sen PN, Basser PJ (2005) A model for diffusion in white matter in the brain. Biophys J 89:2927–2938

    Article  PubMed  CAS  Google Scholar 

  • Shaywitz B, Shaywitz S, Blachman B, Pugh K, Fulbright R, Skudlarski P, Einar Mencl W, Constable R, Holohan J, Marchione K, Fletcher J, Lyon G, Gore J (2004) Development of left occipitotemporal systems forskilled reading in children after a phonologically based intervention. Biol Psychiatry 55:926–233

    Google Scholar 

  • Shaywitz SE, Mody M, Shaywitz B (2006) Neural mechanisms in dyslexia. Curr Dir Psychol Sci 15:278–281

    Article  Google Scholar 

  • Simos P, Fletcher J, Berman M, Breier J, Foorman B, Castillo E, Davis R, Fitzgerald M, Papanicolaou A (2002) Dyslexia-specific brain activation profile becomes normal following successful remedial training. Neurology 58:1203–1213

    Article  PubMed  CAS  Google Scholar 

  • Simos P, Fletcher J, Denton C, Sarkari S, Billingsley-Marshall R, Papanicolaou A (2006) Magnetic source imaging studies of dyslexia interventions. Dev Neuropsychol 30:591–611

    Article  PubMed  Google Scholar 

  • Smith SM, Nichols TE (2009) Threshold-free cluster enhancement: addressing problems of smoothing, threshold dependence and localisation in cluster inference. NeuroImage 44:83–98

    Article  PubMed  Google Scholar 

  • Steinbrink C, Vogt K, Kastrup A, Müller H-P, Juengling FD, Kassubek J, Riecker A (2008) The contribution of white and gray matter differences to developmental dyslexia: Insights from DTI and VBM at 3.0 T. Neuropsychologia 46:3170–3178

    Article  PubMed  CAS  Google Scholar 

  • Temple E, Deutsch G, Poldrack R, Miller S, Tallal P, Merzenich M, Gabrieli J (2003) Neural deficits in children with dyslexia ameliorated by behavioral remediation: evidence from functional MRI. PNAS USA 100:2860–2865

    Article  PubMed  CAS  Google Scholar 

  • Westerberg H, Klingberg T (2007) Changes in cortical activity after training of working memory: a single subject analysis. Physiol Behav 92:186–192

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The research presented in this paper was supported by grants from the Styrian government (Nr. A27214001062) and the Jubilee Fund of the Austrian National Bank (Nr. A26E16020013). The authors wish to express their large gratitude to Gwen Douaud, Nadja Kozel, Bernd Schneeberger, Johanna Vogl and Stefanie Rohrer who greatly contributed to this research project. The authors also thank Karin Brodtrager for technical assistance in the acquisition of the scans and Franz Ebner, MD, for continued infrastructural support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Fink.

Appendix

Appendix

See Tables 4, 5, 6 and Fig. 6.

Table 4 Local maxima and cluster size at baseline (TFCE, p < 0.95)
Table 5 Significant ROI at baseline
Table 6 Local maxima and cluster size for training effect (TFCE, p < 0.95)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gebauer, D., Fink, A., Filippini, N. et al. Differences in integrity of white matter and changes with training in spelling impaired children: a diffusion tensor imaging study. Brain Struct Funct 217, 747–760 (2012). https://doi.org/10.1007/s00429-011-0371-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-011-0371-4

Keywords

Navigation