Skip to main content
Log in

Axonal morphometry of hippocampal pyramidal neurons semi-automatically reconstructed after in vivo labeling in different CA3 locations

  • Original Article
  • Published:
Brain Structure and Function Aims and scope Submit manuscript

Abstract

Axonal arbors of principal neurons form the backbone of neuronal networks in the mammalian cortex. Three-dimensional reconstructions of complete axonal trees are invaluable for quantitative analysis and modeling. However, digital data are still sparse due to labor intensity of reconstructing these complex structures. We augmented conventional tracing techniques with computational approaches to reconstruct fully labeled axonal morphologies. We digitized the axons of three rat hippocampal pyramidal cells intracellularly filled in vivo from different CA3 sub-regions: two from areas CA3b and CA3c, respectively, toward the septal pole, and one from the posterior/ventral area (CA3pv) near the temporal pole. The reconstruction system was validated by comparing the morphology of the CA3c neuron with that traced from the same cell by a different operator on a standard commercial setup. Morphometric analysis revealed substantial differences among neurons. Total length ranged from 200 (CA3b) to 500 mm (CA3c), and axonal branching complexity peaked between 1 (CA3b and CA3pv) and 2 mm (CA3c) of Euclidean distance from the soma. Length distribution was analyzed among sub-regions (CA3a,b,c and CA1a,b,c), cytoarchitectonic layers, and longitudinal extent within a three-dimensional template of the rat hippocampus. The CA3b axon extended thrice more collaterals within CA3 than into CA1. On the contrary, the CA3c projection was double into CA1 than within CA3. Moreover, the CA3b axon extension was equal between strata oriens and radiatum, while the CA3c axon displayed an oriens/radiatum ratio of 1:6. The axonal distribution of the CA3pv neuron was intermediate between those of the CA3b and CA3c neurons both relative to sub-regions and layers, with uniform collateral presence across CA3/CA1 and moderate preponderance of radiatum over oriens. In contrast with the dramatic sub-region and layer differences, the axon longitudinal spread around the soma was similar for the three neurons. To fully characterize the axonal diversity of CA3 principal neurons will require higher-throughput reconstruction systems beyond the threefold speed-up of the method adopted here.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ascoli GA (2006) Mobilizing the base of neuroscience data: the case of neuronal morphologies. Nat Rev Neurosci 7:318–324

    Article  CAS  PubMed  Google Scholar 

  • Ascoli GA (2008) Neuroinformatics grand challenges. Neuroinformatics 6:1–3

    Article  PubMed  Google Scholar 

  • Ascoli GA, Donohue DE, Halavi M (2007) NeuroMorpho.Org: a central resource for neuronal morphologies. J Neurosci 27:9247–9251

    Article  CAS  PubMed  Google Scholar 

  • Ascoli GA, Brown KM, Calixto E, Card JP, Galvan EJ, Perez-Rosello T, Barrionuevo G (2009) Quantitative morphometry of electrophysiologically identified CA3b interneurons reveals robust local geometry and distinct cell classes. J Comp Neurol 515:677–695

    Article  PubMed  Google Scholar 

  • Bannerman DM, Yee BK, Good MA, Heupel MJ, Iversen SD, Rawlins JN (1999) Double dissociation of function within the hippocampus: a comparison of dorsal, ventral, and complete hippocampal cytotoxic lesions. Behav Neurosci 113:1170–1188

    Article  CAS  PubMed  Google Scholar 

  • Buzsaki G (1986) Hippocampal sharp waves: their origin and significance. Brain Res 398:242–252

    Article  CAS  PubMed  Google Scholar 

  • Carr CE, Konishi M (1990) A circuit for detection of interaural time differences in the brain stem of the barn owl. J Neurosci 10:3227–3246

    CAS  PubMed  Google Scholar 

  • Claiborne BJ, Amaral DG, Cowan WM (1990) Quantitative, three-dimensional analysis of granule cell dendrites in the rat dentate gyrus. J Comp Neurol 302:206–219

    Article  CAS  PubMed  Google Scholar 

  • Csicsvari J, Hirase H, Mamiya A, Buzsaki G (2000) Ensemble patterns of hippocampal CA3-CA1 neurons during sharp wave-associated population events. Neuron 28:585–594

    Article  CAS  PubMed  Google Scholar 

  • Csicsvari J, Jamieson B, Wise KD, Buzsaki G (2003) Mechanisms of gamma oscillations in the hippocampus of the behaving rat. Neuron 37:311–322

    Article  CAS  PubMed  Google Scholar 

  • Debanne D (2004) Information processing in the axon. Nat Rev Neurosci 5:304–316

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez-Burgos G, Krimer LS, Urban NN, Barrionuevo G, Lewis DA (2004) Synaptic efficacy during repetitive activation of excitatory inputs in primate dorsolateral prefrontal cortex. Cereb Cortex 14:530–542

    Article  PubMed  Google Scholar 

  • Hirsch JA, Martinez LM, Alonso JM, Desai K, Pillai C, Pierre C (2002) Synaptic physiology of the flow of information in the cat’s visual cortex in vivo. J Physiol 540:335–350

    Article  CAS  PubMed  Google Scholar 

  • Hock BJ Jr, Bunsey MD (1998) Differential effects of dorsal and ventral hippocampal lesions. J Neurosci 18:7027–7032

    CAS  PubMed  Google Scholar 

  • Hunsaker MR, Kesner RP (2008) Dissociations across the dorsal-ventral axis of CA3 and CA1 for encoding and retrieval of contextual and auditory-cued fear. Neurobiol Learn Mem 89:61–69

    Article  PubMed  Google Scholar 

  • Hunsaker MR, Rosenberg JS, Kesner RP (2008) The role of the dentate gyrus, CA3a, b, and CA3c for detecting spatial and environmental novelty. Hippocampus 18:1064–1073

    Article  PubMed  Google Scholar 

  • Ishizuka N, Weber J, Amaral DG (1990) Organization of intrahippocampal projections originating from CA3 pyramidal cells in the rat. J Comp Neurol 295:580–623

    Article  CAS  PubMed  Google Scholar 

  • Ishizuka N, Cowan WM, Amaral DG (1995) A quantitative analysis of the dendritic organization of pyramidal cells in the rat hippocampus. J Comp Neurol 362:17–45

    Article  CAS  PubMed  Google Scholar 

  • Jinno S, Klausberger T, Marton LF, Dalezios Y, Roberts JD, Fuentealba P, Bushong EA, Henze D, Buzsaki G, Somogyi P (2007) Neuronal diversity in GABAergic long-range projections from the hippocampus. J Neurosci 27:8790–8804

    Article  CAS  PubMed  Google Scholar 

  • Kalisman N, Silberberg G, Markram H (2003) Deriving physical connectivity from neuronal morphology. Biol Cybern 88:210–218

    Article  PubMed  Google Scholar 

  • Kennedy DN (2010) Making connections in the connectome era. Neuroinformatics 8:61–62

    Article  PubMed  Google Scholar 

  • Kesner RP (2007) Behavioral functions of the CA3 subregion of the hippocampus. Learn Mem 14:771–781

    Article  PubMed  Google Scholar 

  • Kunec S, Hasselmo ME, Kopell N (2005) Encoding and retrieval in the CA3 region of the hippocampus: a model of theta-phase separation. J Neurophysiol 94:70–82

    Article  PubMed  Google Scholar 

  • Li XG, Somogyi P, Ylinen A, Buzsaki G (1994) The hippocampal CA3 network: an in vivo intracellular labeling study. J Comp Neurol 339:181–208

    Article  CAS  PubMed  Google Scholar 

  • Lorente de Nó R (1934) Studies on the structure of the cerebral cortex II. Continuation of the study of the ammonic system. J Psychol Neurol 46:113–117

    Google Scholar 

  • Manor Y, Koch C, Segev I (1991) Effect of geometrical irregularities on propagation delay in axonal trees. Biophys J 60:1424–1437

    Article  CAS  PubMed  Google Scholar 

  • McAlpine D, Grothe B (2003) Sound localization and delay lines–do mammals fit the model? Trends Neurosci 26:347–350

    Article  CAS  PubMed  Google Scholar 

  • Moser MB, Moser EI (1998) Functional differentiation in the hippocampus. Hippocampus 8:608–619

    Article  CAS  PubMed  Google Scholar 

  • Pyapali GK, Sik A, Penttonen M, Buzsaki G, Turner DA (1998) Dendritic properties of hippocampal CA1 pyramidal neurons in the rat: intracellular staining in vivo and in vitro. J Comp Neurol 391:335–352

    Article  CAS  PubMed  Google Scholar 

  • Ramón y Cajal S (1911) Histologie du Système Nerveux. Maloine, Paris

    Google Scholar 

  • Rolls ET (2007) An attractor network in the hippocampus: theory and neurophysiology. Learn Mem 14:714–731

    Article  PubMed  Google Scholar 

  • Ropireddy D, Bachus S, Scorcioni R, Ascoli GA (2008) Computational neuroanatomy of the rat hippocampus: implications and application to epilepsy. In: Soltesz I, Staley K (eds) Computational neuroscience in epilepsy. Elsevier, San Diego, pp 71–85

    Chapter  Google Scholar 

  • Royer S, Sirota A, Patel J, Buzsaki G (2010) Distinct representations and theta dynamics in dorsal and ventral hippocampus. J Neurosci 30:1777–1787

    Article  CAS  PubMed  Google Scholar 

  • Scharfman HE (2007) The CA3 “backprojection” to the dentate gyrus. Prog Brain Res 163:627–637

    Article  PubMed  Google Scholar 

  • Scorcioni R, Ascoli GA (2005) Algorithmic reconstruction of complete axonal arborizations in rat hippocampal neurons. Neurocomputing 65–66:15–22

    Article  Google Scholar 

  • Scorcioni R, Polavaram S, Ascoli GA (2008) L-Measure: a web-accessible tool for the analysis, comparison and search of digital reconstructions of neuronal morphologies. Nat Protoc 3:866–876

    Article  CAS  PubMed  Google Scholar 

  • Shepherd GM, Harris KM (1998) Three-dimensional structure and composition of CA3 → CA1 axons in rat hippocampal slices: implications for presynaptic connectivity and compartmentalization. J Neurosci 18:8300–8310

    CAS  PubMed  Google Scholar 

  • Sik A, Tamamaki N, Freund TF (1993) Complete axon arborization of a single CA3 pyramidal cell in the rat hippocampus, and its relationship with postsynaptic parvalbumin-containing interneurons. Eur J Neurosci 5:1719–1728

    Article  CAS  PubMed  Google Scholar 

  • Sik A, Ylinen A, Penttonen M, Buzsaki G (1994) Inhibitory CA1-CA3-hilar region feedback in the hippocampus. Science 265:1722–1724

    Article  CAS  PubMed  Google Scholar 

  • Sik A, Penttonen M, Buzsaki G (1997) Interneurons in the hippocampal dentate gyrus: an in vivo intracellular study. Eur J Neurosci 9:573–588

    Article  CAS  PubMed  Google Scholar 

  • Stepanyants A, Chklovskii DB (2005) Neurogeometry and potential synaptic connectivity. Trends Neurosci 28:387–394

    Article  CAS  PubMed  Google Scholar 

  • Stepanyants A, Hof PR, Chklovskii DB (2002) Geometry and structural plasticity of synaptic connectivity. Neuron 34:275–288

    Article  CAS  PubMed  Google Scholar 

  • Stepanyants A, Tamas G, Chklovskii DB (2004) Class-specific features of neuronal wiring. Neuron 43:251–259

    Article  CAS  PubMed  Google Scholar 

  • Stepanyants A, Hirsch JA, Martinez LM, Kisvarday ZF, Ferecsko AS, Chklovskii DB (2008) Local potential connectivity in cat primary visual cortex. Cereb Cortex 18:13–28

    Article  PubMed  Google Scholar 

  • Tamamaki N, Nojyo Y (1995) Preservation of topography in the connections between the subiculum, field CA1, and the entorhinal cortex in rats. J Comp Neurol 353:379–390

    Article  CAS  PubMed  Google Scholar 

  • Tamamaki N, Abe K, Nojyo Y (1988) Three-dimensional analysis of the whole axonal arbors originating from single CA2 pyramidal neurons in the rat hippocampus with the aid of a computer graphic technique. Brain Res 452:255–272

    Article  CAS  PubMed  Google Scholar 

  • Treves A (2004) Computational constraints between retrieving the past and predicting the future, and the CA3-CA1 differentiation. Hippocampus 14:539–556

    Article  PubMed  Google Scholar 

  • Treves A, Rolls ET (1994) Computational analysis of the role of the hippocampus in memory. Hippocampus 4:374–391

    Article  CAS  PubMed  Google Scholar 

  • Turner DA, Li XG, Pyapali GK, Ylinen A, Buzsaki G (1995) Morphometric and electrical properties of reconstructed hippocampal CA3 neurons recorded in vivo. J Comp Neurol 356:580–594

    Article  CAS  PubMed  Google Scholar 

  • Witter MP (2007) Intrinsic and extrinsic wiring of CA3: indications for connectional heterogeneity. Learn Mem 14:705–713

    Article  PubMed  Google Scholar 

  • Witter MP, Amaral DB (2004) Hippocampal formation. In: Paxinos G (ed) The rat nervous system. Elsevier, San Diego, pp 635–704

    Google Scholar 

  • Wittner L, Henze DA, Zaborszky L, Buzsaki G (2007) Three-dimensional reconstruction of the axon arbor of a CA3 pyramidal cell recorded and filled in vivo. Brain Struct Funct 212:75–83

    Article  PubMed  Google Scholar 

  • Wolf E, Birinyi A, Pomahazi S (1995) A fast 3-dimensional neuronal tree reconstruction system that uses cubic polynomials to estimate dendritic curvature. J Neurosci Methods 63:137–145

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are indebted to Todd Gillette and Maryam Halavi for their valuable feedback on an earlier version of this manuscript, to Aruna Muthulu for scanning and aligning the tracings, and to Lucia Wittner for sharing reconstruction CA3cNL on NeuroMorpho.Org. Grant sponsor: National Institute of Health Grant numbers: NS39600 & NS058816 to GAA, and NS34994 & MH54671 to GB.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giorgio A. Ascoli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ropireddy, D., Scorcioni, R., Lasher, B. et al. Axonal morphometry of hippocampal pyramidal neurons semi-automatically reconstructed after in vivo labeling in different CA3 locations. Brain Struct Funct 216, 1–15 (2011). https://doi.org/10.1007/s00429-010-0291-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-010-0291-8

Keywords

Navigation