Skip to main content
Log in

Fos expression following activation of the ventral pallidum in normal rats and in a model of Parkinson’s Disease: implications for limbic system and basal ganglia interactions

  • Original Article
  • Published:
Brain Structure and Function Aims and scope Submit manuscript

Abstract

The circuit-related consequences of activating the ventral pallidum (VP) are not well known, and lacking in particular is how these effects are altered in various neuropathological states. To help to address these paucities, this study investigated the brain regions affected by VP activation by quantifying neurons that stain for Fos-like immunoreactivity (ir). Fos-ir was assessed after intra-pallidal injections of the excitatory amino acid agonist, NMDA, or the GABAA antagonist, bicuculline in normal rats and in those rendered Parkinsonian-like by lesioning dopaminergic neurons with the neurotoxin, 6-OHDA. We hypothesized that activation of the VP will alter the activity state of brain regions associated with both the basal ganglia and limbic system, and that this influence would be modified in the Parkinsonian state. Blocking tonically activated GABAA receptors with bicuculline (50 ng/0.5 μl) elevated Fos-ir in the VP to 423% above the contralateral, vehicle-injected side. Likewise, intra-VP NMDA (0.23 μg or 0.45 μg/0.5 μl), dose-dependently increased the number of pallidal neurons expressing Fos-ir by 224 and 526%, respectively. At higher NMDA doses, the density of Fos-ir neurons was not elevated above control levels. This inverted U-shaped profile was mirrored by a VP output structure, the medial subthalamic nucleus (mSTN). The mSTN showed a 289% increase in Fos-ir neurons with intra-VP injections of 0.45 μg NMDA, and this response was halved following intra-VP injections of 0.9 μg NMDA. Of the 12 other brain regions measured, three showed VP NMDA-induced enhancements in Fos-ir: the frontal cortex, entopeduncular nucleus and substantia nigra pars reticulata, all regions associated with the basal ganglia. In a second study, we evaluated the NMDA activation profile in a rat model of Parkinson’s Disease (PD) which was created by a unilateral injection of 6-OHDA into the rostral substantia nigra pars compacta. Comparisons of responses to intra-VP NMDA between the hemispheres ipsilateral and contralateral to the lesion revealed that Fos-ir cells in the pedunculopontine nucleus was reduced by 62%, whereas Fos-ir for the basolateral amygdala and STN was reduced by 32 and 42%, respectively. These findings support the concept that the VP can influence both the basal ganglia and the limbic system, and that that the nature of this influence is modified in an animal model of PD. As the VP regulates motivation and cognition, adaptations in this system may contribute to the mood and mnemonic disorders that can accompany PD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Aarsland D, Alves G, Larsen JP (2005) Disorders of motivation, sexual conduct, and sleep in Parkinson’s disease. Adv Neurol 96:56–64

    PubMed  Google Scholar 

  • Ainge JA, Jenkins TA, Winn P (2004) Induction of c-fos in specific thalamic nuclei following stimulation of the pedunculopontine tegmental nucleus. Eur J Neurosci 20:1827–1837. doi:10.1111/j.1460-9568.2004.03647.x

    Article  PubMed  Google Scholar 

  • Baille-Le CV, Collombet JM, Burckhart MF, Foquin A, Pernot-Marino I, Rondouin G, Lallement G (1996) Time course and regional expression of C-FOS and HSP70 in hippocampus and piriform cortex following soman-induced seizures. J Neurosci Res 45:513–524. doi :10.1002/(SICI)1097-4547(19960901)45:5<513::AID-JNR1>3.0.CO;2-F

    Article  Google Scholar 

  • Bardo MT (1998) Neuropharmacological mechanisms of drug reward: beyond dopamine in the nucleus accumbens. Crit Rev Neurobiol 12:37–67

    PubMed  CAS  Google Scholar 

  • Bell K, Churchill L, Kalivas PW (1995) GABAergic projection from the ventral pallidum and globus pallidus to the subthalamic nucleus. Synapse 20:10–18. doi:10.1002/syn.890200103

    Article  PubMed  CAS  Google Scholar 

  • Benson DL, Isackson PJ, Hendry SH, Jones EG (1991) Differential gene expression for glutamic acid decarboxylase and type II calcium-calmodulin-dependent protein kinase in basal ganglia, thalamus, and hypothalamus of the monkey. J Neurosci 11:1540–1564

    PubMed  CAS  Google Scholar 

  • Bergman H, Wichmann T, Karmon B, DeLong MR (1994) The primate subthalamic nucleus. II. Neuronal activity in the MPTP model of parkinsonism. J Neurophysiol 72:507–520

    PubMed  CAS  Google Scholar 

  • Bevan MD, Bolam JP (1995) Cholinergic, GABAergic, and glutamate-enriched inputs from the mesopontine tegmentum to the subthalamic nucleus in the rat. J Neurosci 15:7105–7120

    PubMed  CAS  Google Scholar 

  • Bevan MD, Smith AD, Bolam JP (1996) The substantia nigra as a site of synaptic integration of functionally diverse information arising from the ventral pallidum and the globus pallidus in the rat. Neuroscience 75:5–12. doi:10.1016/0306-4522(96)00377-6

    Article  PubMed  CAS  Google Scholar 

  • Bevan MD, Clarke NP, Bolam JP (1997) Synaptic integration of functionally diverse pallidal information in the entopeduncular nucleus and subthalamic nucleus in the rat. J Neurosci 17:308–324

    PubMed  CAS  Google Scholar 

  • Bunney BS, Grace AA (1978) Acute and chronic haloperidol treatment: comparison of effects on nigral dopaminergic cell activity. Life Sci 23:1715–1727. doi:10.1016/0024-3205(78)90471-X

    Article  PubMed  CAS  Google Scholar 

  • Campbell GA, Eckardt MJ, Weight FF (1985) Dopaminergic mechanisms in subthalamic nucleus of rat: analysis using horseradish peroxidase and microiontophoresis. Brain Res 333:261–270. doi:10.1016/0006-8993(85)91580-X

    Article  PubMed  CAS  Google Scholar 

  • Canteras NS, Shammah-Lagnado SJ, Silva BA, Ricardo JA (1990) Afferent connections of the subthalamic nucleus: a combined retrograde and anterograde horseradish peroxidase study in the rat. Brain Res 513:43–59. doi:10.1016/0006-8993(90)91087-W

    Article  PubMed  CAS  Google Scholar 

  • Cape EG, Jones BE (2000) Effects of glutamate agonist versus procaine microinjections into the basal forebrain cholinergic cell area upon gamma and theta EEG activity and sleep-wake state. Eur J Neurosci 12:2166–2184. doi:10.1046/j.1460-9568.2000.00099.x

    Article  PubMed  CAS  Google Scholar 

  • Carlsen J, Zaborszky L, Heimer L (1985) Cholinergic projections from the basal forebrain to the basolateral amygdaloid complex: a combined retrograde fluorescent and immunohistochemical study. J Comp Neurol 234:155–167. doi:10.1002/cne.902340203

    Article  PubMed  CAS  Google Scholar 

  • Ceccatelli S, Villar MJ, Goldstein M, Hokfelt T (1989) Expression of c-Fos immunoreactivity in transmitter-characterized neurons after stress. Proc Natl Acad Sci USA 86:9569–9573. doi:10.1073/pnas.86.23.9569

    Article  PubMed  CAS  Google Scholar 

  • Cepeda C, Peacock W, Levine MS, Buchwald NA (1991) Iontophoretic application of NMDA produces different types of excitatory responses in developing human cortical and caudate neurons. Neurosci Lett 126:167–171. doi:10.1016/0304-3940(91)90545-5

    Article  PubMed  CAS  Google Scholar 

  • Chapman MA, See RE (1996) Differential effects of unique profile antipsychotic drugs on extracellular amino acids in the ventral pallidum and globus pallidus of rats. J Pharmacol Exp Ther 277:1586–1594

    PubMed  CAS  Google Scholar 

  • Chen JC, Liang KW, Huang YK, Liang CS, Chiang YC (2001) Significance of glutamate and dopamine neurons in the ventral pallidum in the expression of behavioral sensitization to amphetamine. Life Sci 68:973–983. doi:10.1016/S0024-3205(00)00995-4

    Article  PubMed  CAS  Google Scholar 

  • Ciardo A, Meldolesi J (1991) Regulation of intracellular calcium in cerebellar granule neurons: effects of depolarization and of glutamatergic and cholinergic stimulation. J Neurochem 56:184–191. doi:10.1111/j.1471-4159.1991.tb02579.x

    Article  PubMed  CAS  Google Scholar 

  • Da Silva AA, Marino-Neto J, Paschoalini MA (2003) Feeding induced by microinjections of NMDA and AMPA-kainate receptor antagonists into ventral striatal and ventral pallidal areas of the pigeon. Brain Res 966:76–83. doi:10.1016/S0006-8993(02)04196-3

    Article  PubMed  CAS  Google Scholar 

  • Delgado-Martinez AD, Vives F (1993) Effects of medial prefrontal cortex stimulation on the spontaneous activity of the ventral pallidal neurons in the rat. Can J Physiol Pharmacol 71:343–347

    PubMed  CAS  Google Scholar 

  • Fahn S (2003) Description of Parkinson’s disease as a clinical syndrome. Ann N Y Acad Sci 991:1–14

    PubMed  CAS  Google Scholar 

  • Feger J, Hassani O-K, Mouroux M (1997) The subthalamic nucleus and its connections, new electrophysiological and pharmacological data. In: Obeso JA, DeLong MR, Ohye C, Marsden CD (eds) The Basal Ganglia and new surgical approches for Parkinson’s Disease. Lippincott-Raven Publishers, Philadelphia, pp 31–43

    Google Scholar 

  • Filion M, Tremblay L (1991) Abnormal spontaneous activity of globus pallidus neurons in monkeys with MPTP-induced parkinsonism. Brain Res 547:142–151

    PubMed  CAS  Google Scholar 

  • Fuller TA, Russchen FT, Price JL (1987) Sources of presumptive glutamergic/aspartergic afferents to the rat ventral striatopallidal region. J Comp Neurol 258:317–338. doi:10.1002/cne.902580302

    Article  PubMed  CAS  Google Scholar 

  • Gaykema RPA, van Weeghel R, Hersh LB, Luiten PGM (1991) Prefrontal cortical projections to the cholinergic neurons in the basal forebrain. J Comp Neurol 303:563–583. doi:10.1002/cne.903030405

    Article  PubMed  CAS  Google Scholar 

  • Gerfen CR, Staines WA, Arbuthnott GW, Fibiger HC (1982) Crossed connections of the substantia nigra in the rat. J Comp Neurol 207:283–303. doi:10.1002/cne.902070308

    Article  PubMed  CAS  Google Scholar 

  • Gong WH, Neill D, Justice JB Jr (1996) Conditioned place preference and locomotor activation produced by injection of psychostimulants into ventral pallidum. Brain Res 707:64–74. doi:10.1016/0006-8993(95)01222-2

    Article  PubMed  CAS  Google Scholar 

  • Gong W, Justice JB Jr, Neill D (1997) Dissociation of locomotor and conditioned place preference responses following manipulation of GABA-A and AMPA receptors in ventral pallidum. Prog Neuropsychopharmacol Biol Psychiatry 21:839–852. doi:10.1016/S0278-5846(97)00084-5

    Article  PubMed  CAS  Google Scholar 

  • Grace AA, Bunney BS (1986) Induction of depolarization block in midbrain dopamine neurons by repeated administration of haloperidol: analysis using in vivo intracellular recording. J Pharmacol Exp Ther 238:1092–1100

    PubMed  CAS  Google Scholar 

  • Groenewegen HJ, Berendse HW (1990) Connections of the subthalamic nucleus with ventral striatopallidal parts of the basal ganglia in the rat. J Comp Neurol 294:607–622. doi:10.1002/cne.902940408

    Article  PubMed  CAS  Google Scholar 

  • Groenewegen HJ, Berendse HW, Haber SN (1993) Organization of the output of the ventral striatopallidal system in the rat: ventral pallidal efferents. Neuroscience 57:113–142. doi:10.1016/0306-4522(93)90115-V

    Article  PubMed  CAS  Google Scholar 

  • Haber SN, Groenewegen HJ, Grove EA, Nauta WJH (1985) Efferent connections of the ventral pallidum: evidence of a dual striato-pallidofugal pathway. J Comp Neurol 235:322–335. doi:10.1002/cne.902350304

    Article  PubMed  CAS  Google Scholar 

  • Hasegawa K, Litt L, Espanol MT, Sharp FR, Chan PH (1998) Expression of c-fos and hsp70 mRNA in neonatal rat cerebrocortical slices during NMDA-induced necrosis and apoptosis. Brain Res 785:262–278. doi:10.1016/S0006-8993(97)01410-8

    Article  PubMed  CAS  Google Scholar 

  • Hassani OK, Francois C, Yelnik J, Feger J (1997) Evidence for a dopaminergic innervation of the subthalamic nucleus in the rat. Brain Res 749:88–94. doi:10.1016/S0006-8993(96)01167-5

    Article  PubMed  CAS  Google Scholar 

  • Heidenreich BA, Mitrovic I, Battaglia G, Napier TC (2004) Limbic pallidal adaptations following long-term cessation of dopaminergic transmission: lack of upregulation of dopamine receptor function. Exp Neurol 186:145–157. doi:10.1016/j.expneurol.2003.11.004

    Article  PubMed  CAS  Google Scholar 

  • Herrling PL, Morris R, Salt TE (1983) Effects of excitatory amino acids and their antagonists on membrane and action potentials of cat caudate neurones. J Physiol 339:207–222

    PubMed  CAS  Google Scholar 

  • Hooks MS, Duffy P, Striplin C, Kalivas PW (1994) Behavioral and neurochemical sensitization following cocaine self- administration. Psychopharmacology (Berl) 115:265–272. doi:10.1007/BF02244782

    Article  CAS  Google Scholar 

  • Ingham CA, Bolam JP, Wainer BH, Smith AD (1985) A correlated light and electron microscopic study of identified cholinergic basal forebrain neurons that project to the cortex in the rat. J Comp Neurol 239:176–192. doi:10.1002/cne.902390205

    Article  PubMed  CAS  Google Scholar 

  • Johnston T, Duty S (2003) Changes in GABA(B) receptor mRNA expression in the rodent basal ganglia and thalamus following lesion of the nigrostriatal pathway. Neuroscience 120:1027–1035. doi:10.1016/S0306-4522(03)00418-4

    Article  PubMed  CAS  Google Scholar 

  • Kang Y, Kitai ST (1990) Electrophysiological properties of pedunculopontine neurons and their postsynaptic responses following stimulation of substantia nigra reticulata. Brain Res 535:79–95. doi:10.1016/0006-8993(90)91826-3

    Article  PubMed  CAS  Google Scholar 

  • Kelley AE, Domesick VB, Nauta WJ (1982) The amygdalostriatal projection in the rat—an anatomical study by anterograde and retrograde tracing methods. Neuroscience 7:615–630. doi:10.1016/0306-4522(82)90067-7

    Article  PubMed  CAS  Google Scholar 

  • Kita H, Kitai ST (1987) Efferent projections of the subthalamic nucleus in the rat: light and electron microscopic analysis with the PHA-L method. J Comp Neurol 260:435–452. doi:10.1002/cne.902600309

    Article  PubMed  CAS  Google Scholar 

  • Kitai ST, Deniau JM (1981) Cortical inputs to the subthalamus: intracellular analysis. Brain Res 214:411–415. doi:10.1016/0006-8993(81)91204-X

    Article  PubMed  CAS  Google Scholar 

  • Klitenick MA, Deutch AY, Churchill L, Kalivas PW (1992) Topography and functional role of dopaminergic projections from the ventral mesencephalic tegmentum to the ventral pallidum. Neuroscience 50:371–386. doi:10.1016/0306-4522(92)90430-A

    Article  PubMed  CAS  Google Scholar 

  • Kretschmer BD (1999) Modulation of the mesolimbic dopamine system by glutamate: role of NMDA receptors. J Neurochem 73:839–848. doi:10.1046/j.1471-4159.1999.0730839.x

    Article  PubMed  CAS  Google Scholar 

  • Kreuter JD, Mattson BJ, Wang B, You ZB, Hope BT (2004) Cocaine-induced Fos expression in rat striatum is blocked by chloral hydrate or urethane. Neuroscience 127:233–242. doi:10.1016/j.neuroscience.2004.04.047

    Article  PubMed  CAS  Google Scholar 

  • Lambert JD, Jones RS, Andreasen M, Jensen MS, Heinemann U (1989) The role of excitatory amino acids in synaptic transmission in the hippocampus. Comp Biochem Physiol A 93:195–201. doi:10.1016/0300-9629(89)90207-7

    Article  PubMed  CAS  Google Scholar 

  • Larsen KD, Mcbride RL (1979) The organization of feline entopenduncular nucleus projections: anatomical studies. J Comp Neurol 184:293–308. doi:10.1002/cne.901840206

    Article  PubMed  CAS  Google Scholar 

  • Lavoie B, Parent A (1994) Pedunculopontine nucleus in the squirrel monkey: projections to the basal ganglia as revealed by anterograde tract-tracing methods. J Comp Neurol 344:210–231. doi:10.1002/cne.903440204

    Article  PubMed  CAS  Google Scholar 

  • Levesque JC, Parent A (2005) GABAergic interneurons in human subthalamic nucleus. Mov Disord 20:574–584. doi:10.1002/mds.20374

    Article  PubMed  Google Scholar 

  • Maslowski-Cobuzzi RJ, Napier TC (1994) Activation of dopaminergic neurons modulates ventral pallidal responses evoked by amygdala stimulation. Neuroscience 62:1103–1120. doi:10.1016/0306-4522(94)90347-6

    Article  PubMed  CAS  Google Scholar 

  • Maurice N, Deniau JM, Menetrey A, Glowinski J, Thierry AM (1997) Position of the ventral pallidum in the rat prefrontal cortex-basal ganglia circuit. Neuroscience 80:523–534. doi:10.1016/S0306-4522(97)00002-X

    Article  PubMed  CAS  Google Scholar 

  • Maurice N, Deniau JM, Menetrey A, Glowinski J, Thierry AM (1998) Prefrontal cortex-basal ganglia circuits in the rat: involvement of ventral pallidum and subthalamic nucleus. Synapse 29:363–370. doi :10.1002/(SICI)1098-2396(199808)29:4<363::AID-SYN8>3.0.CO;2-3

    Article  PubMed  CAS  Google Scholar 

  • Mesulam MM, Mufson EJ, Wainer BH, Levey AI (1983) Central cholinergic pathways in the rat: an overview based on an alternative nomenclature (Ch1–Ch6). Neuroscience 10:1185–1201. doi:10.1016/0306-4522(83)90108-2

    Article  PubMed  CAS  Google Scholar 

  • Mitrovic I, Napier TC (1998) Substance P attenuates and DAMGO potentiates amygdala glutamatergic neurotransmission within the ventral pallidum. Brain Res 792:193–206. doi:10.1016/S0006-8993(98)00130-9

    Article  PubMed  CAS  Google Scholar 

  • Mogenson GJ, Yang CR (1991) The contribution of basal forebrain to limbic-motor integration and the mediation of motivation to action. In: Napier TC, Kalivas PW, Hanin I (eds) The basal froebrain: anatomy to function. Plenum Press, New York, pp 267–290

    Google Scholar 

  • Mugnaini E, Oertel WH (1985) Atlas of the distribution of GABAergic neurons and terminals in the rat CNS as revealed by GAD immunohistochemistry. In: Bjorklund A, Hokfelt T (eds) Handbook of chemical neuroanatomy: GABA and Neuropeptides in the CNS. Elsvier, Amsterdam, pp 436–595

    Google Scholar 

  • Muma NA, Lee JM, Gorman L, Heidenreich BA, Mitrovic I, Napier TC (2001) 6-hydroxydopamine-induced lesions of dopaminergic neurons alter the function of postsynaptic cholinergic neurons without changing cytoskeletal proteins. Exp Neurol 168:135–143. doi:10.1006/exnr.2000.7582

    Article  PubMed  CAS  Google Scholar 

  • Napier TC, Rehman F (1992) Motoric analysis of dopamine receptor subtype activation within the ventral pallidum and dorsal globus pallidus. Soc Neurosci Abstr 18:994

    Google Scholar 

  • Napier TC, Muench MB, Maslowski RJ, Battaglia G (1991) Is dopamine a neurotransmitter within the ventral pallidum/substantia innominata. Adv Exp Med Biol 295:183–195

    PubMed  CAS  Google Scholar 

  • Nisbet AP, Eve DJ, Kingsbury AE, Daniel SE, Marsden CD, Lees AJ et al (1996) Glutamate decarboxylase-67 messenger RNA expression in normal human basal ganglia and in Parkinson’s disease. Neuroscience 75:389–406. doi:10.1016/0306-4522(96)00299-0

    Article  PubMed  CAS  Google Scholar 

  • Oertel WH, Mugnaini E (1984) Immunocytochemical studies of GABAergic neurons in rat basal ganglia and their relations to other neuronal systems. Neurosci Lett 47:233–238. doi:10.1016/0304-3940(84)90519-6

    Article  PubMed  CAS  Google Scholar 

  • Orieux G, Francois C, Feger J, Yelnik J, Vila M, Ruberg M et al (2000) Metabolic activity of excitatory parafascicular and pedunculopontine inputs to the subthalamic nucleus in a rat model of Parkinson’s disease. Neuroscience 97:79–88. doi:10.1016/S0306-4522(00)00011-7

    Article  PubMed  CAS  Google Scholar 

  • Page KJ, Everitt BJ (1993) Transsynaptic induction of c-fos in basal forebrain, diencephalic and midbrain neurons following AMPA-induced activation of the dorsal and ventral striatum. Exp Brain Res 93:399–411

    PubMed  CAS  Google Scholar 

  • Page KJ, Saha A, Everitt BJ (1993) Differential activation and survival of basal forebrain neurons following infusions of excitatory amino acids: studies with the immediate early gene c-fos. Exp Brain Res 93:412–422

    PubMed  CAS  Google Scholar 

  • Page KJ, Sirinathsinghji DJS, Everitt BJ (1995) AMPA-induced lesions of the basal forebrain differentially affect cholinergic and non-cholinergic neurons: Lesion assessment using quantitative in situ hybridization histochemistry. Eur J Neurosci 7:1012–1021. doi:10.1111/j.1460-9568.1995.tb01089.x

    Article  PubMed  CAS  Google Scholar 

  • Panagis G, Miliaressis E, Anagnostakis Y, Spyraki C (1995) Ventral pallidum self-stimulation: a moveable electrode mapping study. Behav Brain Res 68:165–172. doi:10.1016/0166-4328(94)00169-G

    Article  PubMed  CAS  Google Scholar 

  • Panagis G, Nomikos GG, Miliaressis E, Chergui K, Kastellakis A, Svensson TH et al (1997) Ventral pallidum self-stimulation induces stimulus dependent increase in c-fos expression in reward-related brain regions. Neuroscience 77:175–186. doi:10.1016/S0306-4522(96)00471-X

    Article  PubMed  CAS  Google Scholar 

  • Paxinos G, Watson C (1998) The rat brain in stereotaxic coordinates. Academic Press, New York

    Google Scholar 

  • Robbins TW, Everitt BJ, Marston HM, Wilkinson J, Jones GH, Page KJ (1989) Comparative effects of ibotenic acid- and quisqualic acid-induced lesions of the substantia innominata on attentional function in the rat: further implications for the role of the cholinergic neurons of the nucleus basalis in cognitive processes. Behav Brain Res 35:221–240. doi:10.1016/S0166-4328(89)80143-3

    Article  PubMed  CAS  Google Scholar 

  • Rothblat DS, Schneider JS (1995) Alterations in pallidal neuronal responses to peripheral sensory and striatal stimulation in symptomatic and recovered Parkinsonian cats. Brain Res 705:1–14. doi:10.1016/0006-8993(95)00892-6

    Article  PubMed  CAS  Google Scholar 

  • Rouzaire-DuBois B, Scarnati E (1985) Bilateral corticosubthalamic nucleus projections: an electrophysiological study in rats with chronic cerebral lesions. Neuroscience 15:69–79. doi:10.1016/0306-4522(85)90124-1

    Article  PubMed  CAS  Google Scholar 

  • Ruskin DN, Bergstrom DA, Walters JR (2002) Nigrostriatal lesion and dopamine agonists affect firing patterns of rodent entopeduncular nucleus neurons. J Neurophysiol 88:487–496

    PubMed  CAS  Google Scholar 

  • Scarnati E, Di Loreto S, Proia A, Gallie G (1988) The functional role of the pedunculopontine nucleus in the regulation of the electrical activity of entopeduncular neurons in the rat. Arch Ital Biol 126:145–163

    PubMed  CAS  Google Scholar 

  • Semba K, Fibiger HC (1992) Afferent connections of the laterodorsal and the pedunculopontine tegmental nuclei in the rat: a retro- and antero-grade transport and immunohistochemical study. J Comp Neurol 323:387–410. doi:10.1002/cne.903230307

    Article  PubMed  CAS  Google Scholar 

  • Shink E, Bevan MD, Bolam JP, Smith Y (1996) The subthalamic nucleus and the external pallidum: two tightly interconnected structures that control the output of the basal ganglia in the monkey. Neuroscience 73:335–357. doi:10.1016/0306-4522(96)00022-X

    Article  PubMed  CAS  Google Scholar 

  • Shreve PE, Uretsky NJ (1989) AMPA, kainic acid, and N-methyl-D-aspartic acid stimulate locomotor activity after injection into the substantia innominata/lateral preoptic area. Pharmacol Biochem Behav 34:101–106. doi:10.1016/0091-3057(89)90360-2

    Article  PubMed  CAS  Google Scholar 

  • Smith Y, Parent A (1988) Neurons of the subthalamic nucleus in primates display glutamate but not GABA immunoreactivity. Brain Res 453:353–356. doi:10.1016/0006-8993(88)90177-1

    Article  PubMed  CAS  Google Scholar 

  • Spann BM, Grofova I (1991) Nigropedunculopontine projection in the rat: an anterograde tracing study with phaseolus vulgaris-leucoagglutinin (PHA-L). J Comp Neurol 311:375–388. doi:10.1002/cne.903110308

    Article  PubMed  CAS  Google Scholar 

  • Sterio D, Rezai A, Mogilner A, Zonenshayn M, Gracies JM, Kathirithamby K et al (2002) Neurophysiological modulation of the subthalamic nucleus by pallidal stimulation in Parkinson’s disease. J Neurol Neurosurg Psychiatry 72:325–328. doi:10.1136/jnnp.72.3.325

    Article  PubMed  CAS  Google Scholar 

  • Swanson LW, Mogenson GJ, Gergen GR, Robinson P (1984) Evidence for a projection from the lateral preoptic area and substantia innominata to the ‘mesencephalic locomotor region’in the rat. Brain Res 295:161–178. doi:10.1016/0006-8993(84)90827-8

    Article  PubMed  CAS  Google Scholar 

  • Szekely AM, Barbaccia ML, Costa E (1987) Activation of specific glutamate receptor subtypes increases C-fos proto-oncogene expression in primary cultures of neonatal rat cerebellar granule cells. Neuropharmacology 26:1779–1782. doi:10.1016/0028-3908(87)90132-8

    Article  PubMed  CAS  Google Scholar 

  • Takayama K, Suzuki T, Miura M (1994) The comparison of effects of various anesthetics on expression of Fos protein in the rat brain. Neurosci Lett 176:59–62. doi:10.1016/0304-3940(94)90871-0

    Article  PubMed  CAS  Google Scholar 

  • Tindell AJ, Smith KS, Pecina S, Berridge KC, Aldridge JW (2006) Ventral pallidum firing codes hedonic reward: when a bad taste turns good. J Neurophysiol 96:2399–2409. doi:10.1152/jn.00576.2006

    Article  PubMed  Google Scholar 

  • Tseng KY, Riquelme LA, Belforte JE, Pazo JH, Murer MG (2000) Substantia nigra pars reticulata units in 6-hydroxydopamine-lesioned rats: responses to striatal D2 dopamine receptor stimulation and subthalamic lesions. Eur J Neurosci 12:247–256. doi:10.1046/j.1460-9568.2000.00910.x

    Article  PubMed  CAS  Google Scholar 

  • Turner MS, Lavin A, Grace AA, Napier TC (2001) Regulation of limbic information outflow by the subthalamic nucleus: excitatory amino acid projections to the ventral pallidum. J Neurosci 21:2820–2832

    PubMed  CAS  Google Scholar 

  • Turner MS, Mignon L, Napier TC (2002) Alterations in responses of ventral pallidal neurons to excitatory amino acids after long-term dopamine depletion. J Pharmacol Exp Ther 301:371–381. doi:10.1124/jpet.301.1.371

    Article  PubMed  CAS  Google Scholar 

  • Vincent SR, Kimura H, McGeer EG (1982) A histochemical study of GABA-transaminase in the efferents of the pallidum. Brain Res 241:162–165. doi:10.1016/0006-8993(82)91239-2

    Article  PubMed  CAS  Google Scholar 

  • Vives F, Mogenson GJ (1985) Electrophysiological evidence that the mediodorsal nucleus of the thalamus is a relay between the ventral pallidum and the medial prefrontal cortex in the rat. Brain Res 344:329–337. doi:10.1016/0006-8993(85)90811-X

    Article  PubMed  CAS  Google Scholar 

  • Waraczynski M, Demco C (2006) Lidocaine inactivation of the ventral pallidum affects responding for brain stimulation reward more than it affects the stimulation’s reward value. Behav Brain Res 173:288–298. doi:10.1016/j.bbr.2006.06.040

    Article  PubMed  CAS  Google Scholar 

  • Wichmann T, DeLong MR (1998) Models of basal ganglia function and pathophysiology of movement disorders. In: Bakay RAE (ed) Surgical treatments of movement disorder: neurosurgery clinics of North America. W.B.Saunders Company, Philadelphia, pp 223–236

    Google Scholar 

  • Winn P (2006) How best to consider the structure and function of the pedunculopontine tegmental nucleus: evidence from animal studies. J Neurol Sci 248:234–250. doi:10.1016/j.jns.2006.05.036

    Article  PubMed  Google Scholar 

  • Yasumi M, Sato K, Shimada S, Nishimura M, Tohyama M (1997) Regional distribution of GABA transporter 1 (GAT1) mRNA in the rat brain: comparison with glutamic acid decarboxylase67 (GAD67) mRNA localization. Brain Res Mol Brain Res 44:205–218. doi:10.1016/S0169-328X(96)00200-8

    Article  PubMed  CAS  Google Scholar 

  • Zaborszky L, Leranth CS, Heimer L (1984) Ultrastructural evidence of amygdalofugal axons terminating on cholinergic cells of the rostral forebrain. Neurosci Lett 52:219–225. doi:10.1016/0304-3940(84)90165-4

    Article  PubMed  CAS  Google Scholar 

  • Zaborszky L, Gaykema RP, Swanson DJ, Cullinan WE (1997) Cortical input to the basal forebrain. Neuroscience 79:1051–1078. doi:10.1016/S0306-4522(97)00049-3

    Article  PubMed  CAS  Google Scholar 

  • Zahm DS (1989) The ventral striatopallidal parts of the basal ganglia in the rat—II. Compartmentation of ventral pallidal efferents. Neuroscience 30:33–50. doi:10.1016/0306-4522(89)90351-5

    Article  PubMed  CAS  Google Scholar 

  • Zahm DS, Heimer L (1988) Ventral striatopallidal parts of the basal ganglia in the rat: I. Neurochemical compartmentation as reflected by the distributions of neurotensin and substance P immunoreactivity. J Comp Neurol 272:516–535. doi:10.1002/cne.902720406

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Jeanine Rice and Alex Mackie for their outstanding technical contributions to this work and Dr. Jeffrey Kordower for editorial comments on an earlier version of this manuscript. Work supported by USPHSG #MH45180 to MST and TCN.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Celeste Napier.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Turner, M.S., Gray, T.S., Mickiewicz, A.L. et al. Fos expression following activation of the ventral pallidum in normal rats and in a model of Parkinson’s Disease: implications for limbic system and basal ganglia interactions. Brain Struct Funct 213, 197–213 (2008). https://doi.org/10.1007/s00429-008-0190-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-008-0190-4

Keywords

Navigation