Skip to main content
Log in

The structural basis for mapping behavior onto the ventral striatum and its subdivisions

  • Review
  • Published:
Brain Structure and Function Aims and scope Submit manuscript

Abstract

The striatum can be divided into dorsal (caudate-putamen) and ventral parts. In the ventral division, the nucleus accumbens, which subserves adaptive and goal-directed behaviors, is further subdivided into shell and core. Accumbal neurons show different types of experience-dependent plasticity: those in the core seem to discriminate the motivational value of conditioned stimuli, features that rely on the integration of information and enhanced synaptic plasticity at the many spines on these cells, whereas shell neurons seem to be involved with the release of predetermined behavior patterns in relation to unconditioned stimuli, and the behavioral consequences of repeated administration of addictive drugs. In the core, the principal neurons are medium sized and densely spiny, but in the medial shell, these same neurons are much smaller and their dendrites, significantly less spiny, suggesting that morphological differences could mediate unique neuroadaptations associated with each region. This review is focused on evaluating the structural differences in nucleus accumbens core and shell neurons and discusses how such different morphologies could underlie distinguishable behavioral processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Alheid GF, Heimer L (1988) New perspectives in basal forebrain organization of special relevance for neuropsychiatric disorders: the striatopallidal, amygdaloid, and corticopetal components of substantia innominata. Neuroscience 27:1–39

    Article  PubMed  CAS  Google Scholar 

  • Alheid GF, Heimer L (1996) Theories of basal forebrain organization and the “emotional motor system”. Prog Brain Res 107:461–484

    Article  PubMed  CAS  Google Scholar 

  • Baldo BA, Kelley AE (2007) Discrete neurochemical coding of distinguishable motivational processes: insights from nucleus accumbens control of feeding. Psychopharmacology (Berl) 191:439–459

    Article  CAS  Google Scholar 

  • Baldo BA, Sadeghian K, Basso AM, Kelley AE (2002) Effects of selective dopamine D1 or D2 receptor blockade within nucleus accumbens subregions on ingestive behavior and associated motor activity. Behav Brain Res 137:165–177

    Article  PubMed  CAS  Google Scholar 

  • Baldo BA, Daniel RA, Berridge CW, Kelley AE (2003) Overlapping distributions of orexin/hypocretin- and dopamine-beta-hydroxylase immunoreactive fibers in rat brain regions mediating arousal, motivation, and stress. J Comp Neurol 464:220–237

    Article  PubMed  Google Scholar 

  • Baldo BA, Alsene KM, Negron A, Kelley AE (2005) Hyperphagia induced by GABAA receptor-mediated inhibition of the nucleus accumbens shell: dependence on intact neural output from the central amygdaloid region. Behav Neurosci 119:1195–1206

    Article  PubMed  CAS  Google Scholar 

  • Barrot M, Olivier JD, Perrotti LI, DiLeone RJ, Berton O, Eisch AJ, Impey S, Storm DR, Neve RL, Yin JC, Zachariou V, Nestler EJ (2002) CREB activity in the nucleus accumbens shell controls gating of behavioral responses to emotional stimuli. Proc Natl Acad Sci USA 99:11435–11440

    Article  PubMed  CAS  Google Scholar 

  • Basso AM, Kelley AE (1999) Feeding induced by GABA(A) receptor stimulation within the nucleus accumbens shell: regional mapping and characterization of macronutrient and taste preference. Behav Neurosci 113:324–336

    Article  PubMed  CAS  Google Scholar 

  • Beckstead RM, Domesick VB, Nauta WJ (1979) Efferent connections of the substantia nigra and ventral tegmental area in the rat. Brain Res 175:191–217

    Article  PubMed  CAS  Google Scholar 

  • Bernard V, Bolam JP (1998) Subcellular and subsynaptic distribution of the NR1 subunit of the NMDA receptor in the neostriatum and globus pallidus of the rat: co-localization at synapses with the GluR2/3 subunit of the AMPA receptor. Eur J Neurosci 10:3721–3736

    Article  PubMed  CAS  Google Scholar 

  • Bernard V, Somogyi P, Bolam JP (1997) Cellular, subcellular, and subsynaptic distribution of AMPA-type glutamate receptor subunits in the neostriatum of the rat. J Neurosci 17:819–833

    PubMed  CAS  Google Scholar 

  • Betancur C, Rostene W, Berod A (1997) Chronic cocaine increases neurotensin gene expression in the shell of the nucleus accumbens and in discrete regions of the striatum. Mol Brain Res 44:334–340

    Article  PubMed  CAS  Google Scholar 

  • Bittencourt JC, Presse F, Arias C, Peto C, Vaughan J, Nahon JL, Vale W, Sawchenko PE (1992) The melanin-concentrating hormone system of the rat brain: an immuno and hybridization histochemical characterization. J Comp Neurol 319:218–245

    Article  PubMed  CAS  Google Scholar 

  • Bolam JP (1984) Synapses of identified neurons in the neostriatum. Ciba Found Symp 107:30–47

    PubMed  CAS  Google Scholar 

  • Brog JS, Salyapongse A, Deutch AY, Zahm DS (1993) The patterns of afferent innervation of the core and shell in the “accumbens” part of the rat ventral striatum: immunohistochemical detection of retrogradely transported fluoro-gold. J Comp Neurol 338:255–278

    Article  PubMed  CAS  Google Scholar 

  • Brundege JM, Williams JT (2002) Differential modulation of nucleus accumbens synapses. J Neurophysiol 88:142–151

    PubMed  Google Scholar 

  • Cardinal RN, Parkinson JA, Hall J, Everitt BJ (2002) Emotion and motivation: the role of the amygdala, ventral striatum, and prefrontal cortex. Neurosci Biobehav Rev 26:321–352

    Article  PubMed  Google Scholar 

  • Chang JY, Sawyer SF, Lee RS, Woodward DJ (1994) Electrophysiological and pharmacological evidence for the role of the nucleus accumbens in cocaine self-administration in freely moving rats. J Neurosci 14:1224–1244

    PubMed  CAS  Google Scholar 

  • Corbit LH, Muir JL, Balleine BW (2001) The role of the nucleus accumbens in instrumental conditioning: evidence of a functional dissociation between accumbens core and shell. J Neurosci 21:3251–3260

    PubMed  CAS  Google Scholar 

  • Dani JA, Zhou FM (2004) Selective dopamine filter of glutamate striatal afferents. Neuron 42:522–524

    Article  PubMed  CAS  Google Scholar 

  • Delfs JM, Zhu Y, Druhan JP, Aston-Jones GS (1998) Origin of noradrenergic afferents to the shell subregion of the nucleus accumbens: anterograde and retrograde tract-tracing studies in the rat. Brain Res 806:127–140

    Article  PubMed  CAS  Google Scholar 

  • Deng YP, Xie JP, Wang HB, Lei WL, Chen Q, Reiner A (2007) Differential localization of the GluR1 and GluR2 subunits of the AMPA-type glutamate receptor among striatal neuron types in rats. J Chem Neuroanat 33:167–192

    Article  PubMed  CAS  Google Scholar 

  • Di Ciano P, Cardinal RN, Cowell RA, Little SJ, Everitt BJ (2001) Differential involvement of NMDA, AMPA/kainate, and dopamine receptors in the nucleus accumbens core in the acquisition and performance of pavlovian approach behavior. J Neurosci 21:9471–9477

    PubMed  CAS  Google Scholar 

  • Dumartin B, Doudnikoff E, Gonon F, Bloch B (2007) Differences in ultrastructural localization of dopaminergic D1 receptors between dorsal striatum and nucleus accumbens in the rat. Neurosci Lett 419:273–277

    Article  PubMed  CAS  Google Scholar 

  • Everitt BJ, Parkinson JA, Olmstead MC, Arroyo M, Robledo P, Robbins TW (1999) Associative processes in addiction and reward. The role of amygdala-ventral striatal subsystems. Ann N Y Acad Sci 877:412–438

    Article  PubMed  CAS  Google Scholar 

  • Floresco SB, Ghods-Sharifi S, Vexelman C, Magyar O (2006) Dissociable roles for the nucleus accumbens core and shell in regulating set shifting. J Neurosci 26:2449–2457

    Article  PubMed  CAS  Google Scholar 

  • French SJ, Totterdell S (2003) Individual nucleus accumbens-projection neurons receive both basolateral amygdala and ventral subicular afferents in rats. Neuroscience 119:19–31

    Article  PubMed  CAS  Google Scholar 

  • Freund TF, Powell JF, Smith AD (1984) Tyrosine hydroxylase-immunoreactive boutons in synaptic contact with identified striatonigral neurons, with particular reference to dendritic spines. Neuroscience 13:1189–1215

    Article  PubMed  CAS  Google Scholar 

  • Gerfen CR, Herkenham M, Thibault J (1987) The neostriatal mosaic: II. Patch- and matrix-directed mesostriatal dopaminergic and non-dopaminergic systems. J Neurosci 7:3915–3934

    PubMed  CAS  Google Scholar 

  • Gracy KN, Pickel VM (1996) Ultrastructural immunocytochemical localization of the N-methyl-d-aspartate receptor and tyrosine hydroxylase in the shell of the rat nucleus accumbens. Brain Res 739:169–181

    Article  PubMed  CAS  Google Scholar 

  • Groenewegen HJ, Berendse HW, Meredith GE, Haber SN, Voorn P, Wolters JG, Lohman AHM (1991) Functional anatomy of the ventral, limbic system-innervated striatum. In: Willner P, Scheel-Krüger J (eds) The mesolimbic dopamine system: from motivation to action. Wiley, Chichester, pp 19–59

    Google Scholar 

  • Hanlon EC, Baldo BA, Sadeghian K, Kelley AE (2004) Increases in food intake or food-seeking behavior induced by GABAergic, opioid, or dopaminergic stimulation of the nucleus accumbens: is it hunger? Psychopharmacology (Berl) 172:241–247

    Article  CAS  Google Scholar 

  • Hara Y, Pickel VM (2005) Overlapping intracellular and differential synaptic distributions of dopamine D1 and glutamate N-methyl-D-aspartate receptors in rat nucleus accumbens. J Comp Neurol 492:442–455

    Article  PubMed  CAS  Google Scholar 

  • Heimer L, Wilson RD (1975) The subcortical projections of the allocortex: similarities in the neural associations of the hippocampus, the piriform cortex, and the neocortex. In: Santinni M (ed) Golgi centennial symposium. Raven Press, New York, pp 177–193

    Google Scholar 

  • Heimer L, Alheid GF (1991) Piecing together the puzzle of basal forebrain anatomy. Adv Exp Med Biol 295:1–42

    PubMed  CAS  Google Scholar 

  • Heimer L, Van Hoesen GW (2006) The limbic lobe and its output channels: implications for emotional functions and adaptive behavior. Neurosci Biobehav Rev 30:126–147

    Article  PubMed  Google Scholar 

  • Heimer L, Zahm DS, Churchill L, Kalivas PW, Wohltmann C (1991a) Specificity in the projection patterns of accumbal core and shell in the rat. Neuroscience 41:89–125

    Article  PubMed  CAS  Google Scholar 

  • Heimer L, de Olmos J, Alheid GF, Zaborszky L (1991b) “Perestroika” in the basal forebrain: opening the border between neurology and psychiatry. Prog Brain Res 87:109–165

    Article  PubMed  CAS  Google Scholar 

  • Heimer L, Alheid GF, Zahm DS (1993) Basal forebrain organization: an anatomical framework for motor aspects of drive and motivation. In: Kalivas PW, Barnes CD (eds) Limbic motor circuits and neuropsychiatry. CRC Press, Boca Raton, pp 1–43

    Google Scholar 

  • Heimer L, Alheid GF, de Olmos JS, Groenewegen HJ, Haber SN, Harlan RE, Zahm DS (1997) The accumbens: beyond the core-shell dichotomy. J Neuropsychiatry Clin Neurosci 9:354–381

    PubMed  CAS  Google Scholar 

  • Hernandez PJ, Sadeghian K, Kelley AE (2002) Early consolidation of instrumental learning requires protein synthesis in the nucleus accumbens. Nat Neurosci 5:1327–1331

    Article  PubMed  CAS  Google Scholar 

  • Hernandez PJ, Andrzejewski ME, Sadeghian K, Panksepp JB, Kelley AE (2005) AMPA/kainate, NMDA, and dopamine D1 receptor function in the nucleus accumbens core: a context-limited role in the encoding and consolidation of instrumental memory. Learn Mem 12:285–295

    Article  PubMed  Google Scholar 

  • Herrick CJ (1926) Neurological foundations of animal behavior. Brains of rats and men. University of Chicago Press, Chicago, 382 pp

    Google Scholar 

  • Hollander JA, Carelli RM (2005) Abstinence from cocaine self-administration heightens neural encoding of goal-directed behaviors in the accumbens. Neuropsychopharmacology 30:1464–1474

    Article  PubMed  CAS  Google Scholar 

  • Ingham CA, Hood SH, Arbuthnott GW (1989) Spine density on neostriatal neurons changes with 6-hydroxydopamine lesions with age. Brain Res 503:334–338

    Article  PubMed  CAS  Google Scholar 

  • Ito R, Robbins TW, Everitt BJ (2004) Differential control over cocaine-seeking behavior by nucleus accumbens core and shell. Nat Neurosci 7:389–397

    Article  PubMed  CAS  Google Scholar 

  • Kelley AE (1999) Neural integrative activities of nucleus accumbens subregions in relation to learning and motivation. Psychobiology 27:198–213

    Google Scholar 

  • Kelley AE (2004) Ventral striatal control of appetitive motivation: role in ingestive behavior and reward-related learning. Neurosci Biobehav Rev 27:765–776

    Article  PubMed  Google Scholar 

  • Kelley AE, Domesick VB (1982) The distribution of the projection from the hippocampal formation to the nucleus accumbens in the rat: an anterograde- and retrograde-horseradish peroxidase study. Neuroscience 7:2321–2335

    Article  PubMed  CAS  Google Scholar 

  • Kelley AE, Swanson CJ (1997) Feeding induced by blockade of AMPA and kainate receptors within the ventral striatum: a microinfusion mapping study. Behav Brain Res 89:107–113

    Article  PubMed  CAS  Google Scholar 

  • Kelley AE, Berridge KC (2002) The neuroscience of natural rewards: relevance to addictive drugs. J Neurosci 22:3306–3311

    PubMed  CAS  Google Scholar 

  • Kelley AE, Domesick VB, Nauta WJ (1982) The amygdalostriatal projection in the rat–an anatomical study by anterograde and retrograde tracing methods. Neuroscience 7:615–630

    Article  PubMed  CAS  Google Scholar 

  • Kelley AE, Smith-Roe SL, Holahan MR (1997) Response-reinforcement learning is dependent on N-methyl-D-aspartate receptor activation in the nucleus accumbens core. Proc Natl Acad Sci USA 94:12174–12179

    Article  PubMed  CAS  Google Scholar 

  • Kelley AE, Andrzejewski ME, Baldwin AE, Hernandez PJ, Pratt WE (2003) Glutamate-mediated plasticity in corticostriatal networks: role in adaptive motor learning. Ann N Y Acad Sci 1003:159–168

    Article  PubMed  CAS  Google Scholar 

  • Kelley AE, Baldo BA, Pratt WE, Will MJ (2005) Corticostriatal-hypothalamic circuitry and food motivation: integration of energy, action and reward. Physiol Behav 86:773–795

    Article  PubMed  CAS  Google Scholar 

  • Kemp JM, Powell TP (1971) The termination of fibres from the cerebral cortex and thalamus upon dendritic spines in the caudate nucleus: a study with the Golgi method. Philos Trans R Soc Lond B Biol Sci 262:429–439

    Article  PubMed  CAS  Google Scholar 

  • Koch C, Zador A (1993) The function of dendritic spines: devices subserving biochemical rather than electrical compartmentalization. J Neurosci 13:413–422

    PubMed  CAS  Google Scholar 

  • Lu W, Wolf ME (1999) Repeated amphetamine administration alters AMPA receptor subunit expression in rat nucleus accumbens and medial prefrontal cortex. Synapse 32:119–131

    Article  PubMed  CAS  Google Scholar 

  • Maldonado-Irizarry CS, Kelley AE (1994) Differential behavioral effects following microinjection of an NMDA antagonist into nucleus accumbens subregions. Psychopharmacology (Berl) 116:65–72

    Article  CAS  Google Scholar 

  • Maldonado-Irizarry CS, Swanson CJ, Kelley AE (1995) Glutamate receptors in the nucleus accumbens shell control feeding behavior via the lateral hypothalamus. J Neurosci 15:6779–6788

    PubMed  CAS  Google Scholar 

  • McGeorge AJ, Faull RL (1989) The organization of the projection from the cerebral cortex to the striatum in the rat. Neuroscience 29:503–537

    Article  PubMed  CAS  Google Scholar 

  • Meredith GE (1999) The synaptic framework for chemical signaling in nucleus accumbens. Ann N Y Acad Sci 877:140–156

    Article  PubMed  CAS  Google Scholar 

  • Meredith GE, Totterdell S (1999) Microcircuits in nucleus accumbens’ shell and core involved in cognition and reward. Psychobiology 27:165–186

    Google Scholar 

  • Meredith GE, Blank B, Groenewegen HJ (1989) The distribution and compartmental organization of the cholinergic neurons in nucleus accumbens of the rat. Neuroscience 31:327–345

    Article  PubMed  CAS  Google Scholar 

  • Meredith GE, Agolia R, Arts MP, Groenewegen HJ, Zahm DS (1992) Morphological differences between projection neurons of the core and shell in the nucleus accumbens of the rat. Neuroscience 50:149–162

    Article  PubMed  CAS  Google Scholar 

  • Meredith GE, Ypma P, Zahm DS (1995) Effects of dopamine depletion on the morphology of medium spiny neurons in the shell and core of the rat nucleus accumbens. J Neurosci 15:3808–3820

    PubMed  CAS  Google Scholar 

  • Meredith GE, De Souza IE, Hyde TM, Tipper G, Wong ML, Egan MF (2000) Persistent alterations in dendrites, spines, and dynorphinergic synapses in the nucleus accumbens shell of rats with neuroleptic-induced dyskinesias. J Neurosci 20:7798–7806

    PubMed  CAS  Google Scholar 

  • Mogenson GJ, Wu M (1982) Neuropharmacological and electrophysiological evidence implicating the mesolimbic dopamine system in feeding responses elicited by electrical stimulation of the medial forebrain bundle. Brain Res 253:243–251

    Article  PubMed  CAS  Google Scholar 

  • Mogenson GJ, Jones DL, Yim CY (1980) From motivation to action: functional interface between the limbic system and the motor system. Prog Neurobiol 14:69–97

    Article  PubMed  CAS  Google Scholar 

  • Parkinson JA, Olmstead MC, Burns LH, Robbins TW, Everitt BJ (1999) Dissociation in effects of lesions of the nucleus accumbens core and shell on appetitive pavlovian approach behavior and the potentiation of conditioned reinforcement and locomotor activity by D-amphetamine. J Neurosci 19:2401–2411

    PubMed  CAS  Google Scholar 

  • Parkinson JA, Willoughby PJ, Robbins TW, Everitt BJ (2000) Disconnection of the anterior cingulate cortex and nucleus accumbens core impairs Pavlovian approach behavior: further evidence for limbic cortical-ventral striatopallidal systems. Behav Neurosci 114:42–63

    Article  PubMed  CAS  Google Scholar 

  • Pecina S, Berridge KC (2005) Hedonic hot spot in nucleus accumbens shell: where do mu-opioids cause increased hedonic impact of sweetness? J Neurosci 25:11777–11786

    Article  PubMed  CAS  Google Scholar 

  • Peyron C, Tighe DK, van den Pol AN, de Lecea L, Heller HC, Sutcliffe JG, Kilduff TS (1998) Neurons containing hypocretin (orexin) project to multiple neuronal systems. J Neurosci 18:9996–10015

    PubMed  CAS  Google Scholar 

  • Phillips GD, Setzu E, Hitchcott PK (2003a) Facilitation of appetitive pavlovian conditioning by d-amphetamine in the shell, but not the core, of the nucleus accumbens. Behav Neurosci 117:675–684

    Article  PubMed  CAS  Google Scholar 

  • Phillips GD, Setzu E, Vugler A, Hitchcott PK (2003b) Immunohistochemical assessment of mesotelencephalic dopamine activity during the acquisition and expression of Pavlovian versus instrumental behaviours. Neuroscience 117:755–767

    Article  PubMed  CAS  Google Scholar 

  • Phillips PE, Stuber GD, Heien ML, Wightman RM, Carelli RM (2003c) Subsecond dopamine release promotes cocaine seeking. Nature 422:614–618

    Article  PubMed  CAS  Google Scholar 

  • Pontieri FE, Tanda G, Di Chiara G (1995) Intravenous cocaine, morphine, and amphetamine preferentially increase extracellular dopamine in the “shell” as compared with the “core” of the rat nucleus accumbens. Proc Natl Acad Sci USA 92:12304–12308

    Article  PubMed  CAS  Google Scholar 

  • Pulvirenti L, Berrier R, Kreifeldt M, Koob GF (1994) Modulation of locomotor activity by NMDA receptors in the nucleus accumbens core and shell regions of the rat. Brain Res 664:231–236

    Article  PubMed  CAS  Google Scholar 

  • Ragsdale CW Jr, Graybiel AM (1988) Fibers from the basolateral nucleus of the amygdala selectively innervate striosomes in the caudate nucleus of the cat. J Comp Neurol 269:506–522

    Article  PubMed  Google Scholar 

  • Rall W (1974) Dynamic patterns of brain cell assemblies. II. Concept of dynamic patterns. Nonequilibrium steady states and nerve membrane biophysics. Neurosci Res Program Bull 12:27–30

    PubMed  CAS  Google Scholar 

  • Ramón y Cajal S (1911) Histologie du Système Nerveux de l’Homme et des Vertèbres. Marloine, Paris

    Google Scholar 

  • Robinson TE, Kolb B (1999) Alterations in the morphology of dendrites and dendritic spines in the nucleus accumbens and prefrontal cortex following repeated treatment with amphetamine or cocaine. Eur J Neurosci 11:1598–1604

    Article  PubMed  CAS  Google Scholar 

  • Scheel-Krüger J, Willner P (1991) The mesolimbic syszgtem: principles of operation. In: Willner P, Scheel-Krüger J (eds) The mesolimbic dopamine system: from motivation to action. Wiley, Chichester, pp 559–597

    Google Scholar 

  • Sexton PM, Paxinos G, Kenney MA, Wookey PJ, Beaumont K (1994) In vitro autoradiographic localization of amylin binding sites in rat brain. Neuroscience 62:553–567

    Article  PubMed  CAS  Google Scholar 

  • Smith-Roe SL, Sadeghian K, Kelley AE (1999) Spatial learning and performance in the radial arm maze is impaired after N-methyl-d-aspartate (NMDA) receptor blockade in striatal subregions. Behav Neurosci 113:703–717

    Article  PubMed  CAS  Google Scholar 

  • Stratford TR, Kelley AE (1997) GABA in the nucleus accumbens shell participates in the central regulation of feeding behavior. J Neurosci 17:4434–4440

    PubMed  CAS  Google Scholar 

  • Swanson CJ, Heath S, Stratford TR, Kelley AE (1997) Differential behavioral responses to dopaminergic stimulation of nucleus accumbens subregions in the rat. Pharmacol Biochem Behav 58:933–945

    Article  PubMed  CAS  Google Scholar 

  • Thomas KL, Everitt BJ (2001) Limbic-cortical-ventral striatal activation during retrieval of a discrete cocaine-associated stimulus: a cellular imaging study with gamma protein kinase C expression. J Neurosci 21:2526–2535

    PubMed  CAS  Google Scholar 

  • van Rossum D, Menard DP, Fournier A, St-Pierre S, Quirion R (1994) Autoradiographic distribution and receptor binding profile of [125I] Bolton Hunter-rat amylin binding sites in the rat brain. J Pharmacol Exp Ther 270:779–787

    PubMed  Google Scholar 

  • Voorn P, Jorritsma-Byham B, Van Dijk C, Buijs RM (1986) The dopaminergic innervation of the ventral striatum in the rat: a light- and electron-microscopical study with antibodies against dopamine. J Comp Neurol 251:84–99

    Article  PubMed  CAS  Google Scholar 

  • Voorn P, Gerfen CR, Groenewegen HJ (1989) Compartmental organization of the ventral striatum of the rat: immunohistochemical distribution of enkephalin, substance P, dopamine, and calcium-binding protein. J Comp Neurol 289:189–201

    Article  PubMed  CAS  Google Scholar 

  • Voorn P, Vanderschuren LJ, Groenewegen HJ, Robbins TW, Pennartz CM (2004) Putting a spin on the dorsal-ventral divide of the striatum. Trends Neurosci 27:468–474

    Article  PubMed  CAS  Google Scholar 

  • Wilson CJ, Groves PM, Kitai ST, Linder JC (1983) Three-dimensional structure of dendritic spines in the rat neostriatum. J Neurosci 3:383–388

    PubMed  CAS  Google Scholar 

  • Wolf ME (1998) The role of excitatory amino acids in behavioral sensitization to psychomotor stimulants. Prog Neurobiol 54:679–720

    Article  PubMed  CAS  Google Scholar 

  • Wolf ME, Mangiavacchi S, Sun X (2003) Mechanisms by which dopamine receptors may influence synaptic plasticity. Ann N Y Acad Sci 1003:241–249

    Article  PubMed  CAS  Google Scholar 

  • Wolf ME, Sun X, Mangiavacchi S, Chao SZ (2004) Psychomotor stimulants and neuronal plasticity. Neuropharmacology 47(Suppl 1):61–79

    Article  PubMed  CAS  Google Scholar 

  • Wood DA, Rebec GV (2004) Dissociation of core and shell single-unit activity in the nucleus accumbens in free-choice novelty. Behav Brain Res 152:59–66

    PubMed  Google Scholar 

  • Wright CI, Beijer AV, Groenewegen HJ (1996) Basal amygdaloid complex afferents to the rat nucleus accumbens are compartmentally organized. J Neurosci 16:1877–1893

    PubMed  CAS  Google Scholar 

  • Zaborszky L, Alheid GF, Beinfeld MC, Eiden LE, Heimer L, Palkovits M (1985) Cholecystokinin innervation of the ventral striatum: a morphological and radioimmunological study. Neuroscience 14:427–453

    Article  PubMed  CAS  Google Scholar 

  • Zahm DS (1992) An electron microscopic morphometric comparison of tyrosine hydroxylase immunoreactive innervation in the neostriatum and the nucleus accumbens core and shell. Brain Res 575:341–346

    Article  PubMed  CAS  Google Scholar 

  • Zhang M, Gosnell BA, Kelley AE (1998) Intake of high-fat food is selectively enhanced by mu opioid receptor stimulation within the nucleus accumbens. J Pharmacol Exp Ther 285:908–914

    PubMed  CAS  Google Scholar 

  • Zhang M, Balmadrid C, Kelley AE (2003) Nucleus accumbens opioid, GABaergic, and dopaminergic modulation of palatable food motivation: contrasting effects revealed by a progressive ratio study in the rat. Behav Neurosci 117:202–211

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was partly supported by USPHS grants from NIH: DA 016662 (GEM), DA 09311 (AEK), MH 74723 (BAB), and DA 016465 (MA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gloria E. Meredith.

Additional information

Dr. Ann Kelley died on August 5, 2007, before this manuscript was complete. We would now like to honor and remember both Dr. Heimer, who died on March 12, 2007, and Dr. Kelley, distinguished neuroscientists, both of whom made profound contributions to our understanding of the ventral striatum. Indeed, the conceptual framework for this article grew out of discussions that occurred at the 1999 conference, “Advancing from the ventral striatum to the extended amygdala,” held in honor of Dr. Heimer’s retirement. Drs. Heimer and Kelley respected each other’s work enormously, and it pleased Ann Kelley that her work would be represented in this tribute to Lennart Heimer. Both scientists sincerely hoped that, just as their own work had been inspired by the great neuroanatomists of the twentieth century, the next generation would carry on the excitement and intellectual adventure of trying to uncover the biological basis of that which makes us most human––our emotional life.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meredith, G.E., Baldo, B.A., Andrezjewski, M.E. et al. The structural basis for mapping behavior onto the ventral striatum and its subdivisions. Brain Struct Funct 213, 17–27 (2008). https://doi.org/10.1007/s00429-008-0175-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-008-0175-3

Keywords

Navigation