Skip to main content
Log in

The thymus is a site of mast cell development in chicken embryos

  • Original Article
  • Published:
Anatomy and Embryology Aims and scope Submit manuscript

Abstract

Thymic mast cells were studied by light and transmission electron microscopy in chicken embryos during organogenesis. Mast cells made their first appearance at day 15. At days 16 and 17, there was a burst of mast cell development with a peak of 278 ± 54 cells/mm2 at day 16. Then, mast cell density decreased until hatching. During the whole embryonic period, about 80% of mast cells localized to the thymic medulla. In the cortex, they were less numerous, and some rare mast cells could be identified in the capsule and septa. Thymic mast cells could be recognized in association with hematopoietic foci, but frequently they grew independently from areas of hematopoiesis and appeared as single cells interspersed among thymocytes, thymic epithelial cells, and interdigitating cells. They were often recognized in close relationship with the scanty and delicate extracellular matrix of the developing gland. Viewed by electron microscopy, mast cells were relatively small cells, with a few secretory granules. Exocytosis was never seen, but, notably, granules emptied in a piecemeal degranulation fashion. This study demonstrates that the chicken thymus is a site of mast cell development during embryogenesis. The high mast cell density we found suggests a possible role for these cells during thymus organogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Abou-Rabia N, Kendall MD (1994) Involution of the rat thymus in experimentally induced hypothyroidism. Cell Tissue Res 277:447–455

    CAS  PubMed  Google Scholar 

  • Artuc M, Steckelings M, Henz BM (2002) Mast cell-fibroblast interactions: human mast cells as source and inducer of fibroblast and epithelial growth factors. J Invest Dermatol 118:391–395

    Article  CAS  PubMed  Google Scholar 

  • Barbini A, Gheri Bryk S, Balboni CG (1981) Behaviour of thymus mast cells in the rat under various experimental conditions. Boll Soc It Biol Sper 57:645–650

    CAS  Google Scholar 

  • Befus AD, Johnston N, Nielsen L, Bienenstock J, Butler J, Cosmos E (1981) Thymic mast cell deficiency in avian muscular dystrophy. Thymus 3:369–376

    CAS  PubMed  Google Scholar 

  • Bigaj J, Urbanska-Stopa M, Plyrycz B (1991) Argentaffin mast cells in the thymus of the frog. Folia Histochem Cytobiol 29:45–47

    CAS  PubMed  Google Scholar 

  • Bodey B, Calvo W, Prummer O, Fliedner TM, Borysenko M (1987) Development and histogenesis of the thymus in dog: a light and electron microscopical study. Dev Com Immunol 11:227–238

    Article  CAS  Google Scholar 

  • Bodey B, Bodey B Jr, Siegel SE, Kaiser HE (1998) Intrathymic non-lymphatic hematopoiesis during mammalian ontogenesis. In Vivo 12:599–618

    CAS  PubMed  Google Scholar 

  • Crivellato E, Beltrami CA, Mallardi F, Ribatti D (2004) The mast cell: an active participant or an innocent by-stander? Histol Histopathol 19:259–270

    CAS  PubMed  Google Scholar 

  • Derbinski J, Schulte A, Kyewshi B, Klein L (2001) Promiscuous gene expression in medullary thymic epithelial cells mirrors the peripheral self. Nature Immunol 2:1032–1039

    Article  CAS  Google Scholar 

  • Durkin HG, Waksman BH (2001) Thymus and tolerance: is regulation the major function of the thymus? Immunol Rev 182:33–57

    Article  CAS  PubMed  Google Scholar 

  • Dvorak AM (1991) Basophil and mast cell degranulation and recovery. In: Harris JR (ed) Blood cell biochemistry, vol. 4. Plenum Press, New York, pp 340–377

  • Dvorak AM (1994) Ultrastructural analysis of human basophil and mast cell recovery after secretion. Sem Clin Immunol 8:5–16

    Google Scholar 

  • Dvorak AM (2000) Ultrastructural features of human basophil and mast cell secretory function. In: Marone G, Lichtenstein LM, Galli SJ (eds) Mast cells and basophils. Academic, New York, pp 63–88

  • Dvorak AM, Mihm MC Jr, Dvorak HF (1976) Degranulation of basophilic leukocytes in allergic contact dermatitis reactions in man. J Immunol 116:687–695

    CAS  PubMed  Google Scholar 

  • Dvorak HF, Dvorak AM, Churchill WH (1973) Immunologic rejection of diethylnitrosamine-induced hepatomas in strain 2 guinea pigs: participation of basophilic leukocytes and macrophages aggregates. J Exp Med 137:751–775

    Article  CAS  PubMed  Google Scholar 

  • Dvorak HF, Mihm MC Jr, Dvorak AM, Johnson RA, Manseau EJ, Morgan E, Colvin RB (1974) Morphology of delayed type hypersensitivity reactions in man, I: quantitative description of the inflammatory response. Lab Invest 31:111–130

    CAS  PubMed  Google Scholar 

  • Enerbäck L (1966) Mast cells in rat gastrointestinal mucosa, 2: dye-binding and metachromatic properties. Acta Pathol Microbiol Scand 66:303–312

    PubMed  Google Scholar 

  • Farr AG, Rudensky A (1998) Medullary thymic epithelium: a mosaic of epithelial “self”? J Exp Med 188:1–4

    Article  CAS  PubMed  Google Scholar 

  • Farr AG, Dooley JL, Erickson L (2002) Organization of thymic medullary epithelial heterogeneity: implications for mechanisms of epithelial differentiation. Immunol Rev 189:20–27

    Article  CAS  PubMed  Google Scholar 

  • Galli SJ (1990) New insights into “the riddle of the mast cells”: microenvironmental regulation of mast cell development and phenotypic heterogeneity. Lab Invest 62:5–33

    CAS  PubMed  Google Scholar 

  • Gotter J, Brors B, Hergenhahn M, Kyewski B (2004) Medullary epithelial cells of the human thymus express a highly diverse selection of tissue-specific genes colocalized in chromosomal clusters. J Exp Med 199:155–166

    Article  CAS  PubMed  Google Scholar 

  • Gruber BL, Kew RR, Jelaska A, Marchese MJ, Garlick J, Ren S, Schwartz WB, Korn JH (1997) Human mast cells activate fibroblasts. J Immunol 158:2310–2317

    CAS  PubMed  Google Scholar 

  • Gurish M, Austen KF (2001) The diverse role of mast cells. J Exp Med 194:1–5

    Article  CAS  PubMed  Google Scholar 

  • Irani AM, Schechter NM, Craig SS, De Blois G, Schwartz LB (1986) Two types of human mast cells that have distinct neutral protease composition. Proc Natl Acad Sci USA 83:4464–4468

    CAS  PubMed  Google Scholar 

  • Kendall MD (1989) The morphology of perivascular spaces in the thymus. Thymus 13:157–164

    CAS  PubMed  Google Scholar 

  • Kendall MD (1995) Hemopoiesis in the thymus. Dev Immunol 4:157–168

    CAS  PubMed  Google Scholar 

  • Kendall MD, Blackett NM (1984) Ultrastructural studies on the thymus gland after the administration of phenylhydrazine to bank voles (Clethrionomys glareolus). Cell Tissue Res 232:201–219

    Google Scholar 

  • Kendall MD, Lane DP, Schumacher U (1999) Immunohistochemical and ultrastructural evidence for myelopoiesis in the scid/scid mouse thymus. Histochem J 31:651–660

    Article  CAS  PubMed  Google Scholar 

  • Kirschenbaum AS, Goff JP, Semere T, Foster B, Scott LM, Metcalfe DD (1999) Demonstration that human mast cell arise from a progenitor cell population that is CD34(+), c-kit (+) and expresses aminopeptidase. Blood 94:2333–2342

    CAS  PubMed  Google Scholar 

  • Kitamura Y (1989) Heterogeneity of mast cells and phenotypic change between subpopulations. Ann Rev Immunol 7:59–76

    Article  CAS  Google Scholar 

  • Kitamura Y, Go S, Hatanaka S (1978) Decrease of mast cells in W/Wv mice and their increase by bone marrow transplantation. Blood 52:447–452

    CAS  PubMed  Google Scholar 

  • Klein L, Kyewski B (2000) Self-antigen presentation by thymic stromal cells: a subtle division of labor. Curr Opin Immunol 12:179–186

    Article  CAS  PubMed  Google Scholar 

  • Kyewski B, Derbinski J, Gotter J, Klein L (2002) Promiscuous gene expression and central T-cell tolerance: more than meets the eye. Trends Immunol 23:364–371

    Article  CAS  PubMed  Google Scholar 

  • Lorton D, Bellinger DL, Felten SY, Felten DL (1990) Substance P innervation of the rat thymus. Peptides 11:1269–1275

    Article  CAS  PubMed  Google Scholar 

  • Metcalfe DD, Baram D, Mekori YA (1997) Mast cells. Physiol Rev 77:1033–1079

    CAS  PubMed  Google Scholar 

  • Muller S, Weihe E (1991) Interrelation of peptidergic innervation with mast cells and ED-1 positive cells in rat thymus. Brain Behav Immunol 5:55–72

    Article  CAS  Google Scholar 

  • Savino W, Mendes-da-Cruz DA, Silva JS, Dardenne M, Cotta-de-Almeida V (2002) Intrathymic T-cell migration: a combinatorial interplay of extracellular matrix and chemokines? Trends Immunol 23:305–313

    Article  CAS  PubMed  Google Scholar 

  • Soumelis V, Liu YJ (2004) Human thymic stromal lymphopoietin: a novel epithelial cell-derived cytokine and a potential key player in the induction of allergic inflammation. Springer Semin Immunopathol 25:325–333

    Article  CAS  PubMed  Google Scholar 

  • Sprent J, Kishimoto H (2002) The thymus and negative selection. Immunol Rev 185:126–135

    Article  CAS  PubMed  Google Scholar 

  • Stampachiacchiere B, Marinova T, Velikova K, Philipov S, Stankulov IS, Chaldakov GN, Fiore M, Aloe L (2004) Altered levels of nerve growth factor in the thymus of subjects with myasthenia gravis. J Neuroimmunol 146:199–202

    Article  CAS  PubMed  Google Scholar 

  • Xu LR, Carr MM, Bland AP, Hall GA (1993) Histochemistry and morphology of porcine mast cells. Histochem J 25:516–552

    CAS  PubMed  Google Scholar 

  • Weihe E, Muller S, Fink T, Zentel HJ (1989) Tackykinins, calcitonin gene-related peptide and neuropeptide Y in nerves of the mammalian thymus: interactions with mast cells in autonomic and sensory neuroimmunomodulation? Neurosci Lett 100:77–82

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by local funds from the Ministero dell’Istruzione, dell’Università e della Ricerca, Rome, to the Department of Medical and Morphological Research, Anatomy and Pathology Sections, University of Udine, Italy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Crivellato.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Crivellato, E., Nico, B., Battistig, M. et al. The thymus is a site of mast cell development in chicken embryos. Anat Embryol 209, 243–249 (2005). https://doi.org/10.1007/s00429-004-0439-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-004-0439-5

Keywords

Navigation