Skip to main content

Advertisement

Log in

Claudins-4 and -7 might be valuable markers to distinguish hepatocellular carcinoma from cholangiocarcinoma

  • Original Article
  • Published:
Virchows Archiv Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

The claudin family members are the functional components of tight junctions. Expression and localization of claudins vary among organs and tumor types. In this study, we examined expression and localization of tight junction proteins (TJP) in human liver tumors, to estimate their usefulness as differential diagnostic markers. The materials used for immunohistochemical analysis were 47 liver tumor specimens including 29 cases of hepatocellular carcinoma (HCC), 15 cases of cholangiocarcinoma (CC), 3 cases of combined HCC and CC (CHC), and 3 cases of cholangiolocellular carcinoma (CoCC). Samples were examined using semiquantitative and statistical analysis of immunoreactivity. In HCC, claudin-1, occludin, tricellulin, and JAM-A were expressed on the cell membrane as well as in hepatocytes. In CC, claudins-1, -4, and -7, tricellulin, and JAM-A were expressed on the cell membrane and occludin was predominantly expressed in the apicalmost areas of the cell membrane. Significant differences in the immunohistochemical scores of claudin-4 and claudin-7 were observed when comparing HCC and CC. CHC was positive for all of the TJPs examined in this study. The expression pattern of CoCC was found to be similar to that of CC. There were differences in the distribution of intensity scores of claudins-4 and -7 and occludin between CoCC and HCC. In addition, CHC was positive for Glypican-3 and CK-19. CoCC was positive for only CK-19. The results suggest that claudins-4 and -7 might be valuable markers for distinguishing HCC and CC and that CoCC might arise from hepatic ductal cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Anderson JM, Cereijido M (2001) Tight junctions, 2nd edn. CRC Press, Boca Raton, pp 1–18

    Google Scholar 

  2. Tsukita S, Furuse M, Itoh M (2001) Multifunctional strands in tight junctions. Nat Rev Mol Cell Biol 2:285–293

    Article  CAS  PubMed  Google Scholar 

  3. Kojima T, Murata M, Yamamoto T, Lan M, Imamura M, Son S, Takano K, Yamaguchi H, Ito T, Tanaka S, Chiba H, Hirata K, Sawada N (2009) Tight junction proteins and signal transduction pathways in hepatocytes. Histol Histopathol 24:1463–1472

    CAS  PubMed  Google Scholar 

  4. Kojima T, Sawada N, Yamaguchi H, Fort AG, Spray DC (2009) Gap and tight junctions in liver: composition, regulation, and function. In: Arias IM et al (eds) The liver: biology and pathobiology, 5th edn. Lippincott Williams & Wilkins, Philadelphia, pp 201–220

    Chapter  Google Scholar 

  5. Kojima T, Sawada N (2011) Expression and function of claudins in hepatocytes. Methods Mol Biol 762:233–244

    Article  CAS  PubMed  Google Scholar 

  6. Sawada N, Murata M, Kikuchi K, Osanai M, Tobioka H, Kojima T, Chiba H (2003) Tight junctions and human diseases. Med Electron Microsc 36:147–156

    Article  PubMed  Google Scholar 

  7. Chiba H, Osanai M, Murata M, Kojima T, Sawada N (2008) Transmembrane proteins of tight junctions. Biochim Biophys Acta 1778:588–600

    Article  CAS  PubMed  Google Scholar 

  8. Jakab C, Kiss A, Schaff Z, Szabó Z, Rusvai M, Gálfi P, Szabára A, Sterczer A, Kulka J (2010) Claudin-7 protein differentiates canine cholangiocarcinoma from hepatocellular carcinoma. Histol Histopathol 25:857–864

    PubMed  Google Scholar 

  9. Tsujiwaki M, Murata M, Takasawa A, Hiratsuka Y, Fukuda R, Sugimoto K, Ono Y, Nojima M, Tanaka S, Hirata K, Kojima T, Sawada N (2015) Aberrant expression of claudin-4 and −7 in hepatocytes in the cirrhotic human liver. Med Mol Morphol 48:33–34

    Article  CAS  PubMed  Google Scholar 

  10. González-Mariscal L, Tapia R, Chamorro D (2008) Crosstalk of tight junction components with signaling pathways. Biochim Biophys Acta 1778:729–756

    Article  PubMed  Google Scholar 

  11. Sawada N (2013) Tight junction-related human diseases. Pathol Int 63:1–12

    Article  CAS  PubMed  Google Scholar 

  12. Morin PJ (2005) Claudin proteins in human cancer: promising new targets for diagnosis and therapy. Cancer Res 65:9603–9606

    Article  CAS  PubMed  Google Scholar 

  13. Kominsky SL (2006) Claudins: emerging targets for cancer therapy. Expert Rev Mol Med 8:1–11

    Article  PubMed  Google Scholar 

  14. Oliveira SS, Morgado-Díaz JA (2007) Claudins: multifunctional players in epithelial tight junctions and their role in cancer. Cell Mol Life Sci 64:17–28

    Article  CAS  PubMed  Google Scholar 

  15. Maeda T, Murata M, Chiba H, Takasawa A, Tanaka S, Kojima T, Masumori N, Tsukamoto T, Sawada N (2012) Claudin-4-targeted therapy using Clostridium perfringens enterotoxin for prostate cancer. Prostate 72:351–360

    Article  CAS  PubMed  Google Scholar 

  16. Soini Y, Takasawa A, Eskelinen M, Juvonen P, Kärjä V, Hasegawa T, Murata M, Tanaka S, Kojima T, Sawada N (2012) Expression of claudins 7 and 18 in pancreatic ductal adenocarcinoma: association with features of differentiation. J Clin Pathol 65:431–436

    Article  CAS  PubMed  Google Scholar 

  17. Keira Y, Takasawa A, Murata M, Nojima M, Takasawa K, Ogino J, Higashiura Y, Sasaki A, Kimura Y, Mizuguchi T, Tanaka S, Hirata K, Sawada N, Hasegawa T (2015) An immunohistochemical marker panel including claudin-18, maspin, and p53 improves diagnostic accuracy of bile duct neoplasms in surgical and presurgical biopsy specimens. Virchows Arch 466:265–277

    Article  CAS  PubMed  Google Scholar 

  18. Offner S, Hekele A, Teichmann U, Weinberger S, Gross S, Kufer P, Itin C, Baeuerle PA, Kohleisen B (2005) Epithelial tight junction proteins as potential antibody targets for pancarcinoma therapy. Cancer Immunol Immunother 54:431–445

    Article  CAS  PubMed  Google Scholar 

  19. London WT, McGlynn KA (2006) Liver cancer. In: Schottenfeld D, Fraumeni J Jr (eds) Cancer epidemiology and prevention, 3rd edn. Oxford University Press, New York, pp 763–786

    Chapter  Google Scholar 

  20. Lindsey AT, Freddie B, Rebecca LS, Jacques F, Joannie LT, Ahmedin J (2012) Global cancer statistics, 2012. Cancer J Clin 65:87–108

    Google Scholar 

  21. Roskams T (2006) Liver stem cells and their implication in hepatocellular and cholangiocarcinoma. Oncogene 25:3818–3822

    Article  CAS  PubMed  Google Scholar 

  22. Allen RA, Lisa JR (1949) Combined liver cell and bile duct carcinoma. Am J Pathol 25:647–655

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Fowler KJ, Sheybani A, Parker RA 3rd, Doherty S, M Brunt E, Chapman WC, Menias CO (2013) Combined hepatocellular and cholangiocarcinoma (biphenotypic) tumors: imaging features and diagnostic accuracy of contrast-enhanced CT and MRI. Am J Roentgenol 201:332–339

    Article  Google Scholar 

  24. Libbrecht L (2006) Hepatic progenitor cells in human liver tumor development. World J Gastroenterol 12:6261–6265

    Article  PubMed  PubMed Central  Google Scholar 

  25. Steiner PE, Higginson J (1959) Cholangiolocellular carcinoma of the liver. Cancer 12:753–759

    Article  CAS  PubMed  Google Scholar 

  26. Shiota K, Taguchi J, Nakashima O, Nakashima M, Kojiro M (2001) Clinicopathologic study on cholangiolocellular carcinoma. Oncol Rep 8:263–268

    CAS  PubMed  Google Scholar 

  27. Kozaka K, Sasaki M, Fujii T, Harada K, Zen Y, Sato Y, Sawada S, Minato H, Matsui O, Nakanuma Y (2007) A subgroup of intrahepatic cholangiocarcinoma with an infiltrating replacement growth pattern and a resemblance to reactive proliferating bile ductules: bile ductular carcinoma. Histopathology 51:390–400

    Article  CAS  PubMed  Google Scholar 

  28. Komuta M, Spee B, Vander Borght S, De Vos R, Verslype C, Aerts R, Yano H, Suzuki T, Matsuda M, Fujii H, Desmet VJ, Kojiro M, Roskams T (2008) Clinicopathological study on cholangiolocellular carcinoma suggesting hepatic progenitor cell origin. Hepatology 47:1544–1556

    Article  CAS  PubMed  Google Scholar 

  29. Liver Cancer Study Group of Japan (2009) The general rules for the clinical and pathological study of primary liver cancer. 5th ed. Revised version. Kanehara, Tokyo

  30. Theise ND, Nakashima O, Park YN, Nakanuma Y (2010) Combined hepatocellular-cholangiocarcinoma. In: Bosman FT, Carneiro F, Hruban RH, Theise ND (eds) World health organization classification of tumors. WHO Classification of Tumors of the Digestive System. International Agency for Research on Cancer, Lyon, pp 225–227

    Google Scholar 

  31. Iwahashi S, Utsunomiya T, Shimada M, Saito Y, Morine Y, Imura S, Ikemoto T, Mori H, Hanaoka J, Bando Y (2013) High expression of cancer stem cell markers in cholangiolocellular carcinoma. Surg Today 43:654–660

    Article  CAS  PubMed  Google Scholar 

  32. Kondo F, Fukusato T (2015) Pathogenesis of cholangiolocellular carcinoma: possibility of an interlobular duct origin. Intern Med 54:1685–1694

    Article  PubMed  Google Scholar 

  33. Ryu HS, Lee K, Shin E, Kim SH, Jing J, Jung HY, Lee H, Jang JJ (2012) Comparative analysis of immunohistochemical markers for differential diagnosis of hepatocelluar carcinoma and cholangiocarcinoma. Tumori 98:478–484

    PubMed  Google Scholar 

  34. Lódi C, Szabó E, Holczbauer A, Batmunkh E, Szíjártó A, Kupcsulik P, Kovalszky I, Paku S, Illyés G, Kiss A, Schaff Z (2006) Claudin-4 differentiates biliary tract cancers from hepatocellular carcinomas. Mod Pathol 19:460–469

    Article  PubMed  Google Scholar 

  35. Holczbauer Á, Gyöngyösi B, Lotz G, Törzsök P, Kaposi-Novák P, Szijártó A, Tátrai P, Kupcsulik P, Schaff Z, Kiss A (2014) Increased expression of claudin-1 and claudin-7 in liver cirrhosis and hepatocellular carcinoma. Pathol Oncol Res 20:493–502

    Article  CAS  PubMed  Google Scholar 

  36. Brokalaki EI, Weber F, Sotiropoulos GC, Daoudaki M, Cicinnati VR, Beckebaum S (2012) Claudin-7 expression in hepatocellular carcinoma. Transplant Proc 44:2737–2740

    Article  CAS  PubMed  Google Scholar 

  37. Raleigh DR, Marchiando AM, Zhang Y, Shen L, Sasaki H, Wang Y, Long M, Turner JR (2010) Tight junction-associated MARVEL proteins marveld3, tricellulin, and occludin have distinct but overlapping functions. Mol Biol Cell 21:1200–1213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Murata M, Kojima T, Yamamoto T, Go M, Takano K, Osanai M, Chiba H, Sawada N (2005) Down-regulation of survival signaling through MAPK and Akt in occludin-deficient mouse hepatocytes in vitro. Exp Cell Res 310:140–151

    Article  CAS  PubMed  Google Scholar 

  39. Osanai M, Murata M, Nishikiori N, Chiba H, Kojima T, Sawada N (2006) Epigenetic silencing of occludin promotes tumorigenic and metastatic properties of cancer cells via modulations of unique sets of apoptosis-associated genes. Cancer Res 66:9125–9133

    Article  CAS  PubMed  Google Scholar 

  40. Kitajiri S, Katsuno T, Sasaki H, Ito J, Furuse M, Tsukita S (2014) Deafness in occludin-deficient mice with dislocation of tricellulin and progressive apoptosis of the hair cells. Biol Open 3:759–766

    Article  PubMed  PubMed Central  Google Scholar 

  41. Kojima T, Sawada N (2012) Regulation of tight junctions in human normal pancreatic duct epithelial cells and cancer cells. Ann N Y Acad Sci 1257:85–92

    Article  CAS  PubMed  Google Scholar 

  42. Masuda R, Semba S, Mizuuchi E, Yanagihara K, Yokozaki H (2010) Negative regulation of the tight junction protein tricellulin by snail-induced epithelial-mesenchymal transition in gastric carcinoma cells. Pathobiology 77:106–113

    Article  CAS  PubMed  Google Scholar 

  43. Mariano C, Palmela I, Pereira P, Fernandes A, Falcão AS, Cardoso FL, Vaz AR, Campos AR, Gonçalves-Ferreira A, Kim KS, Brites D, Brito MA (2013) Tricellulin expression in brain endothelial and neural cells. Cell Tissue Res 351:397–407

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported in by Grants-in-Aid from the Ministry of Education, Culture, Sports, Science and Technology and the Ministry of Health, Labour and Welfare of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masaki Murata.

Ethics declarations

Informed consent

Informed consent was obtained from all patients, in this study.

Conflict of interest statement

The authors declare that they have no conflict of interest.

Additional information

Yusuke Ono and Yutaro Hiratsuka contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ono, Y., Hiratsuka, Y., Murata, M. et al. Claudins-4 and -7 might be valuable markers to distinguish hepatocellular carcinoma from cholangiocarcinoma. Virchows Arch 469, 417–426 (2016). https://doi.org/10.1007/s00428-016-1984-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00428-016-1984-z

Keywords

Navigation