Skip to main content

Advertisement

Log in

ETV1 mRNA is specifically expressed in gastrointestinal stromal tumors

  • Original Article
  • Published:
Virchows Archiv Aims and scope Submit manuscript

Abstract

Gastrointestinal stromal tumors (GISTs) develop from interstitial cells of Cajal (ICCs) mainly by activating mutations in the KIT or PDGFRA genes. Immunohistochemical analysis for KIT, DOG1, and PKC-θ is used for the diagnosis of GIST. Recently, ETV1 has been shown to be a lineage survival factor for ICCs and required for tumorigenesis of GIST. We investigated the diagnostic value of ETV1expression in GIST. On fresh-frozen tissue samples, RT-PCR analysis showed that ETV1 as well as KIT, DOG1, and PKC-θ are highly expressed in GISTs. On tissue microarrays containing 407 GISTs and 120 non-GIST mesenchymal tumors of GI tract, we performed RNA in situ hybridization (ISH) for ETV1 together with immunohistochemical analysis for KIT, DOG1, PKC-θ, CD133, and CD44. Overall, 387 (95 %) of GISTs were positive for ETV1, while KIT and DOG1 were positive in 381 (94 %) and 392 (96 %) cases, respectively, showing nearly identical overall sensitivity of ETV1, KIT, and DOG1 for GISTs. In addition, ETV1 expression was positively correlated with that of KIT. Notably, ETV1 was positive in 15 of 26 (58 %) KIT-negative GISTs and even positive in 2 cases of GIST negative for KIT and DOG1, whereas only 6 (5 %) non-GIST mesenchymal GI tumors expressed ETV1. We conclude that ETV1 is specifically expressed in the majority of GISTs, even in some KIT-negative cases, suggesting that ETV1 may be useful as ancillary marker in diagnostically difficult select cases of GIST.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Agaram NP, Wong GC, Guo T, Maki RG, Singer S, DeMatteo RP, Besmer P, Antonescu CR (2008) Novel V600E BRAF mutations in imatinib-naive and imatinib-resistant gastrointestinal stromal tumors. Genes Chromosom Cancer 47(10):853–859

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Martinho O, Gouveia A, Viana-Pereira M, Silva P, Pimenta A, Reis RM, Lopes JM (2009) Low frequency of MAP kinase pathway alterations in KIT and PDGFRA wild-type GISTs. Histopathology 55(1):53–62

    Article  PubMed  Google Scholar 

  3. Celestino R, Lima J, Faustino A, Vinagre J, Maximo V, Gouveia A, Soares P, Lopes JM (2013) Molecular alterations and expression of succinate dehydrogenase complex in wild-type KIT/PDGFRA/BRAF gastrointestinal stromal tumors. Eur J Hum Genet 21(5):503–510. doi:10.1038/ejhg.2012.205

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Paral J, Slaninka I, Kalabova H, Hadzi-Nikolov D (2010) Gastrointestinal stromal tumors: review on morphology, molecular pathology, diagnostics, prognosis and treatment options. Acta Gastroenterol Belg 73(3):349–359

    CAS  PubMed  Google Scholar 

  5. Lee HE, Kim MA, Lee HS, Lee BL, Kim WH (2008) Characteristics of KIT-negative gastrointestinal stromal tumours and diagnostic utility of protein kinase C theta immunostaining. J Clin Pathol 61(6):722–729. doi:10.1136/jcp.2007.052225

    Article  CAS  PubMed  Google Scholar 

  6. Novelli M, Rossi S, Rodriguez-Justo M, Taniere P, Seddon B, Toffolatti L, Sartor C, Hogendoorn PC, Sciot R, Van Glabbeke M, Verweij J, Blay JY, Hohenberger P, Flanagan A, Dei Tos AP (2010) DOG1 and CD117 are the antibodies of choice in the diagnosis of gastrointestinal stromal tumours. Histopathology 57(2):259–270. doi:10.1111/j.1365-2559.2010.03624.x.

    Article  PubMed  Google Scholar 

  7. Miettinen M, Wang ZF, Lasota J (2009) DOG1 antibody in the differential diagnosis of gastrointestinal stromal tumors: a study of 1840 cases. Am J Surg Pathol 33(9):1401–1408. doi:10.1097/PAS.0b013e3181a90e1a

    Article  PubMed  Google Scholar 

  8. Debiec-Rychter M, Wasag B, Stul M, De Wever I, Van Oosterom A, Hagemeijer A, Sciot R (2004) Gastrointestinal stromal tumours (GISTs) negative for KIT (CD117 antigen) immunoreactivity. J Pathol 202(4):430–438. doi:10.1002/path.1546

    Article  CAS  PubMed  Google Scholar 

  9. Medeiros F, Corless CL, Duensing A, Hornick JL, Oliveira AM, Heinrich MC, Fletcher JA, Fletcher CD (2004) KIT-negative gastrointestinal stromal tumors: proof of concept and therapeutic implications. Am J Surg Pathol 28(7):889–894

    Article  PubMed  Google Scholar 

  10. Eisenberg BL, Judson I (2004) Surgery and imatinib in the management of GIST: emerging approaches to adjuvant and neoadjuvant therapy. Ann Surg Oncol 11(5):465–475. doi:10.1245/ASO.2004.09.011

    Article  PubMed  Google Scholar 

  11. Faivre S, Demetri G, Sargent W, Raymond E (2007) Molecular basis for sunitinib efficacy and future clinical development. Nat Rev Drug Discov 6(9):734–745. doi:10.1038/nrd2380

    Article  CAS  PubMed  Google Scholar 

  12. Kang GH, Srivastava A, Kim YE, Park HJ, Park CK, Sohn TS, Kim S, Kang DY, Kim KM (2011) DOG1 and PKC-theta are useful in the diagnosis of KIT-negative gastrointestinal stromal tumors. Mod Pathol 24(6):866–875. doi:10.1038/modpathol.2011.11

    Article  CAS  PubMed  Google Scholar 

  13. Espinosa I, Lee CH, Kim MK, Rouse BT, Subramanian S, Montgomery K, Varma S, Corless CL, Heinrich MC, Smith KS, Wang Z, Rubin B, Nielsen TO, Seitz RS, Ross DT, West RB, Cleary ML, van de Rijn M (2008) A novel monoclonal antibody against DOG1 is a sensitive and specific marker for gastrointestinal stromal tumors. Am J Surg Pathol 32(2):210–218. doi:10.1097/PAS.0b013e3181238cec

    Article  PubMed  Google Scholar 

  14. Wong NA, Shelley-Fraser G (2010) Specificity of DOG1 (K9 clone) and protein kinase C theta (clone 27) as immunohistochemical markers of gastrointestinal stromal tumour. Histopathology 57(2):250–258. doi:10.1111/j.1365-2559.2010.03622.x.

    Article  PubMed  Google Scholar 

  15. Chen J, Guo T, Zhang L, Qin LX, Singer S, Maki RG, Taguchi T, Dematteo R, Besmer P, Antonescu CR (2012) CD133 and CD44 are universally overexpressed in GIST and do not represent cancer stem cell markers. Genes Chromosom Cancer 51(2):186–195. doi:10.1002/gcc.20942

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Arne G, Kristiansson E, Nerman O, Kindblom LG, Ahlman H, Nilsson B, Nilsson O (2011) Expression profiling of GIST: CD133 is associated with KIT exon 11 mutations, gastric location and poor prognosis. Int J Cancer 129(5):1149–1161. doi:10.1002/ijc.25755

    Article  CAS  PubMed  Google Scholar 

  17. Chi P, Chen Y, Zhang L, Guo X, Wongvipat J, Shamu T, Fletcher JA, Dewell S, Maki RG, Zheng D, Antonescu CR, Allis CD, Sawyers CL (2010) ETV1 is a lineage survival factor that cooperates with KIT in gastrointestinal stromal tumours. Nature 467(7317):849–853. doi:10.1038/nature09409

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Tomlins SA, Laxman B, Dhanasekaran SM, Helgeson BE, Cao X, Morris DS, Menon A, Jing X, Cao Q, Han B, Yu J, Wang L, Montie JE, Rubin MA, Pienta KJ, Roulston D, Shah RB, Varambally S, Mehra R, Chinnaiyan AM (2007) Distinct classes of chromosomal rearrangements create oncogenic ETS gene fusions in prostate cancer. Nature 448(7153):595–599. doi:10.1038/nature06024

    Article  CAS  PubMed  Google Scholar 

  19. Jane-Valbuena J, Widlund HR, Perner S, Johnson LA, Dibner AC, Lin WM, Baker AC, Nazarian RM, Vijayendran KG, Sellers WR, Hahn WC, Duncan LM, Rubin MA, Fisher DE, Garraway LA (2010) An oncogenic role for ETV1 in melanoma. Cancer Res 70(5):2075–2084. doi:10.1158/0008-5472.CAN-09-3092.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Jeon IS, Davis JN, Braun BS, Sublett JE, Roussel MF, Denny CT, Shapiro DN (1995) A variant Ewing’s sarcoma translocation (7;22) fuses the EWS gene to the ETS gene ETV1. Oncogene 10(6):1229–1234

    CAS  PubMed  Google Scholar 

  21. Bonin S, Hlubek F, Benhattar J, Denkert C, Dietel M, Fernandez PL, Hofler G, Kothmaier H, Kruslin B, Mazzanti CM, Perren A, Popper H, Scarpa A, Soares P, Stanta G, Groenen PJ (2010) Multicentre validation study of nucleic acids extraction from FFPE tissues. Virchows Arch 457(3):309–317. doi:10.1007/s00428-010-0917-5.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Jang BG, Lee BL, Kim WH (2013) Distribution ofLGR5+ cells and associated implications during the early stage of gastric tumorigenesis. PLoS One 8(12):e82390

    Article  PubMed Central  PubMed  Google Scholar 

  23. Birner P, Beer A, Vinatzer U, Stary S, Hoftberger R, Nirtl N, Wrba F, Streubel B, Schoppmann SF (2012) MAPKAP kinase 2 overexpression influences prognosis in gastrointestinal stromal tumors and associates with copy number variations on chromosome 1 and expression of p38 MAP kinase and ETV1. Clin Cancer Res 18(7):1879–1887. doi:10.1158/1078-0432.CCR-11-2364.

    Article  CAS  PubMed  Google Scholar 

  24. West RB, Corless CL, Chen X, Rubin BP, Subramanian S, Montgomery K, Zhu S, Ball CA, Nielsen TO, Patel R, Goldblum JR, Brown PO, Heinrich MC, van de Rijn M (2004) The novel marker, DOG1, is expressed ubiquitously in gastrointestinal stromal tumors irrespective of KIT or PDGFRA mutation status. Am J Pathol 165(1):107–113. doi:10.1016/S0002-9440(10)63279-8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Lopes LF, West RB, Bacchi LM, van de Rijn M, Bacchi CE (2010) DOG1 for the diagnosis of gastrointestinal stromal tumor (GIST): comparison between 2 different antibodies. Appl Immunohistochem Mol Morphol 18(4):333–337. doi:10.1097/PAI.0b013e3181d27ec8

    Article  PubMed  Google Scholar 

  26. Ou WB, Zhu MJ, Demetri GD, Fletcher CD, Fletcher JA (2008) Protein kinase C-theta regulates KIT expression and proliferation in gastrointestinal stromal tumors. Oncogene 27(42):5624–5634. doi:10.1038/onc.2008.177

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Mehra R, Dhanasekaran SM, Palanisamy N, Vats P, Cao X, Kim JH, Kim DS, Johnson T, Fullen DR, Chinnaiyan AM (2013) Comprehensive analysis of ETS family members in melanoma by fluorescence in situ hybridization reveals recurrent ETV1 amplification. Transl Oncol 6(4):405–412

    Article  PubMed Central  PubMed  Google Scholar 

  28. Tomlins SA, Rhodes DR, Perner S, Dhanasekaran SM, Mehra R, Sun XW, Varambally S, Cao X, Tchinda J, Kuefer R, Lee C, Montie JE, Shah RB, Pienta KJ, Rubin MA, Chinnaiyan AM (2005) Recurrent fusion of TMPRSS2 and ETS transcription factor genes in prostate cancer. Science 310(5748):644–648. doi:10.1126/science.1117679

    Article  CAS  PubMed  Google Scholar 

  29. Hostein I, Faur N, Primois C, Boury F, Denard J, Emile J-F, Bringuier P-P, Scoazec J-Y, Coindre J-M (2010) BRAF mutation status in gastrointestinal stromal tumors. Am J Clin Pathol 133(1):141–148

    Article  CAS  PubMed  Google Scholar 

  30. Wagner AJ, Remillard SP, Zhang Y-X, Doyle LA, George S, Hornick JL (2013) Loss of expression of SDHA predicts SDHA mutations in gastrointestinal stromal tumors. Mod Pathol 26(2):289–294

    Article  CAS  PubMed  Google Scholar 

  31. Killian JK, Miettinen M, Walker RL, Wang Y, Zhu YJ, Waterfall JJ, Noyes N, Retnakumar P, Yang Z, Smith WI (2014) Recurrent epimutation of SDHC in gastrointestinal stromal tumors. Sci Transl Med 6(268):268ra177

    Article  PubMed  Google Scholar 

  32. Doyle LA, Hornick JL (2014) Gastrointestinal stromal tumours: from KIT to succinate dehydrogenase. Histopathology 64(1):53–67

    Article  PubMed  Google Scholar 

  33. Kemmer K, Corless CL, Fletcher JA, McGreevey L, Haley A, Griffith D, Cummings OW, Wait C, Town A, Heinrich MC (2004) KIT mutations are common in testicular seminomas. Am J Pathol 164(1):305–313. doi:10.1016/S0002-9440(10)63120-3.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. McIntyre A, Summersgill B, Grygalewicz B, Gillis AJ, Stoop J, van Gurp RJ, Dennis N, Fisher C, Huddart R, Cooper C, Clark J, Oosterhuis JW, Looijenga LH, Shipley J (2005) Amplification and overexpression of the KIT gene is associated with progression in the seminoma subtype of testicular germ cell tumors of adolescents and adults. Cancer Res 65(18):8085–8089. doi:10.1158/0008-5472.CAN-05-0471.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by a grant from the Seoul National University Hospital Research Fund (grant number: 03-2012-0190).

Conflict of interest

The authors declare that they have no competinginterests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Woo Ho Kim.

Electronic supplementary material

Fig. S1

(PPTX 143 kb)

Fig. S2

(PPTX 2420 kb)

Table S1

(PPTX 63 kb)

Table S2

(PPTX 77 kb)

Table S3

(PPTX 70 kb)

Table S4

(PPTX 42 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jang, B.G., Lee, H.E. & Kim, W.H. ETV1 mRNA is specifically expressed in gastrointestinal stromal tumors. Virchows Arch 467, 393–403 (2015). https://doi.org/10.1007/s00428-015-1813-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00428-015-1813-9

Keywords

Navigation