Skip to main content

Advertisement

Log in

Soft tissue sarcomas with non-EWS translocations: molecular genetic features and pathologic and clinical correlations

  • Review and Perspective
  • Published:
Virchows Archiv Aims and scope Submit manuscript

Abstract

Many soft tissue sarcoma subtypes have consistent chromosomal translocations with novel fusion genes, which result in disordered cellular function. The microscopic appearances, immunophenotype and behaviour of such tumours relate to the genetic events to a variable extent. This paper reviews the molecular pathology and related morphological and clinical features of sarcomas with non-EWS translocations. These include synovial sarcoma, alveolar rhabdomyosarcoma, alveolar soft part sarcoma, dermatofibrosarcoma protuberans, low-grade fibromyxoid sarcoma, infantile fibrosarcoma and inflammatory myofibroblastic tumour.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Mitelman F, Johansson B, Mertens F (2007) The impact of translocations and gene fusions on cancer causation. Nat Rev Cancer 7:233–245

    PubMed  CAS  Google Scholar 

  2. Fisher C (1998) Synovial sarcoma. Ann Diagn Pathol 2:401–421

    PubMed  CAS  Google Scholar 

  3. McKinney CD, Mills SE, Fechner RE (1992) Intraarticular synovial sarcoma. Am J Surg Pathol 16:1017–1020

    PubMed  CAS  Google Scholar 

  4. Fetsch JF, Meis JM (1992) Intra-articular synovial sarcoma. Mod Pathol 5:6A

    Google Scholar 

  5. Ishida T, Iijima T, Moriyama S et al (1996) Intra-articular calcifying synovial sarcoma mimicking synovial chondromatosis. Skeletal Radiol 25:766–769

    PubMed  CAS  Google Scholar 

  6. van de Rijn M, Barr FG, Xiong QB et al (1997) Radiation-associated synovial sarcoma. Hum Pathol 28:1325–1328

    PubMed  Google Scholar 

  7. Egger JF, Coindre JM, Benhattar J et al (2002) Radiation-associated synovial sarcoma: clinicopathologic and molecular analysis of two cases. Mod Pathol 15:998–1004

    PubMed  Google Scholar 

  8. Deraedt K, Debiec-Rychter M, Sciot R (2006) Radiation-associated synovial sarcoma of the lung following radiotherapy for pulmonary metastasis of Wilms’ tumour. Histopathology 48:473–475

    PubMed  CAS  Google Scholar 

  9. Crew AJ, Clark J, Fisher C et al (1995) Fusion of SYT to two genes, SSX1 and SSX2, encoding proteins with homology to the Kruppel-associated box in human synovial sarcoma. Embo J 14:2333–2340

    PubMed  CAS  Google Scholar 

  10. Agus V, Tamborini E, Mezzelani A et al (2001) Re: A novel fusion gene, SYT-SSX4, in synovial sarcoma. J Natl Cancer Inst 93:1347–1349

    PubMed  CAS  Google Scholar 

  11. Otsuka S, Nishijo K, Nakayama T et al (2006) A variant of the SYT-SSX2 fusion gene in a case of synovial sarcoma. Cancer Genet Cytogenet 167:82–88

    PubMed  CAS  Google Scholar 

  12. Krskova L, Sumerauer D, Stejskalova E et al (2007) A novel variant of SYT-SSX1 fusion gene in a case of spindle cell synovial sarcoma. Diagn Mol Pathol 16:179–183

    PubMed  Google Scholar 

  13. Amary MF, Diss TC, Flanagan AM (2007) Molecular characterization of a novel variant of a SYT-SSX1 fusion transcript in synovial sarcoma. Histopathology 51:559–561

    PubMed  CAS  Google Scholar 

  14. Storlazzi CT, Mertens F, Mandahl N et al (2003) A novel fusion gene, SS18L1/SSX1, in synovial sarcoma. Genes Chromosomes Cancer 37:195–200

    PubMed  CAS  Google Scholar 

  15. Brett D, Whitehouse S, Antonson P et al (1997) The SYT protein involved in the t(X;18) synovial sarcoma translocation is a transcriptional activator localised in nuclear bodies. Hum Mol Genet 6:1559–1564

    PubMed  CAS  Google Scholar 

  16. Thaete C, Brett D, Monaghan P et al (1999) Functional domains of the SYT and SYT-SSX synovial sarcoma translocation proteins and co-localization with the SNF protein BRM in the nucleus. Hum Mol Genet 8:585–591

    PubMed  CAS  Google Scholar 

  17. Hashimoto N, Araki N, Yoshikawa H et al (2000) SYT-SSX fusion proteins in synovial sarcomas: detection and characterization with new antibodies. Cancer Lett 149:31–36

    PubMed  CAS  Google Scholar 

  18. Saito T, Oda Y, Sakamoto A et al (2000) Prognostic value of the preserved expression of the E-cadherin and catenin families of adhesion molecules and of beta-catenin mutations in synovial sarcoma. J Pathol 192:342–350

    PubMed  CAS  Google Scholar 

  19. Nielsen TO, West RB, Linn SC et al (2002) Molecular characterisation of soft tissue tumours: a gene expression study. Lancet 359:1301–1307

    PubMed  CAS  Google Scholar 

  20. Allander SV, Illei PB, Chen Y et al (2002) Expression profiling of synovial sarcoma by cDNA microarrays: association of ERBB2, IGFBP2, and ELF3 with epithelial differentiation. Am J Pathol 161:1587–1595

    PubMed  CAS  Google Scholar 

  21. Fernebro J, Francis P, Eden P et al (2006) Gene expression profiles relate to SS18/SSX fusion type in synovial sarcoma. Int J Cancer 118:1165–1172

    PubMed  CAS  Google Scholar 

  22. Folpe AL, Schmidt RA, Chapman D et al (1998) Poorly differentiated synovial sarcoma: immunohistochemical distinction from primitive neuroectodermal tumors and high-grade malignant peripheral nerve sheath tumors. Am J Surg Pathol 22:673–682

    PubMed  CAS  Google Scholar 

  23. van de Rijn M, Barr FG, Xiong QB et al (1999) Poorly differentiated synovial sarcoma: an analysis of clinical, pathologic, and molecular genetic features. Am J Surg Pathol 23:106–112

    PubMed  Google Scholar 

  24. Pilotti S, Mezzelani A, Azzarelli A et al (1998) bcl-2 expression in synovial sarcoma. J Pathol 184:337–339

    PubMed  CAS  Google Scholar 

  25. Machen SK, Fisher C, Gautam RS et al (1998) Utility of cytokeratin subsets for distinguishing poorly differentiated synovial sarcoma from peripheral primitive neuroectodermal tumour. Histopathology 33:501–507

    PubMed  CAS  Google Scholar 

  26. Pelmus M, Guillou L, Hostein I et al (2002) Monophasic fibrous and poorly differentiated synovial sarcoma: immunohistochemical reassessment of 60 t(X;18)(SYT-SSX)-positive cases. Am J Surg Pathol 26:1434–1440

    PubMed  Google Scholar 

  27. Fisher C, Montgomery E, Healy V (2003) Calponin and h-caldesmon expression in synovial sarcoma; the use of calponin in diagnosis. Histopathology 42:588–593

    PubMed  CAS  Google Scholar 

  28. Olsen SH, Thomas DG, Lucas DR (2006) Cluster analysis of immunohistochemical profiles in synovial sarcoma, malignant peripheral nerve sheath tumor, and Ewing sarcoma. Mod Pathol 19:659–668

    PubMed  CAS  Google Scholar 

  29. Miettinen M, Limon J, Niezabitowski A et al (2001) Calretinin and other mesothelioma markers in synovial sarcoma: analysis of antigenic similarities and differences with malignant mesothelioma. Am J Surg Pathol 25:610–617

    PubMed  CAS  Google Scholar 

  30. Ng TL, Gown AM, Barry TS et al (2005) Nuclear beta-catenin in mesenchymal tumors. Mod Pathol 18:68–74

    PubMed  CAS  Google Scholar 

  31. Terry J, Saito T, Subramanian S et al (2007) TLE1 as a diagnostic immunohistochemical marker for synovial sarcoma emerging from gene expression profiling studies. Am J Surg Pathol 31:240–246

    PubMed  Google Scholar 

  32. He R, Patel RM, Alkan S et al (2007) Immunostaining for SYT protein discriminates synovial sarcoma from other soft tissue tumors: analysis of 146 cases. Mod Pathol 20:522–528

    PubMed  CAS  Google Scholar 

  33. Winnepenninckx V, De Vos R, Debiec-Rychter M et al (2001) Calcifying/ossifying synovial sarcoma shows t(X;18) with SSX2 involvement and mitochondrial calcifications. Histopathology 38:141–145

    PubMed  CAS  Google Scholar 

  34. Mancuso T, Mezzelani A, Riva C et al (2000) Analysis of SYT-SSX fusion transcripts and bcl-2 expression and phosphorylation status in synovial sarcoma. Lab Invest 80:805–813

    PubMed  CAS  Google Scholar 

  35. Antonescu CR, Kawai A, Leung DH et al (2000) Strong association of SYT-SSX fusion type and morphologic epithelial differentiation in synovial sarcoma. Diagn Mol Pathol 9:1–8

    PubMed  CAS  Google Scholar 

  36. van de Rijn M, Barr FG, Collins MH et al (1999) Absence of SYT-SSX fusion products in soft tissue tumors other than synovial sarcoma. Am J Clin Pathol 112:43–49

    PubMed  Google Scholar 

  37. Tamborini E, Agus V, Perrone F et al (2002) Lack of SYT-SSX fusion transcripts in malignant peripheral nerve sheath tumors on RT-PCR analysis of 34 archival cases. Lab Invest 82:609–618

    PubMed  CAS  Google Scholar 

  38. Ladanyi M, Antonescu CR, Leung DH et al (2002) Impact of SYT-SSX fusion type on the clinical behavior of synovial sarcoma: a multi-institutional retrospective study of 243 patients. Cancer Res 62:135–140

    PubMed  CAS  Google Scholar 

  39. Ladanyi M (2005) Correlates of SYT-SSX fusion type in synovial sarcoma: getting more complex but also more interesting? J Clin Oncol 23:3638–3639 Author reply 3639–3640

    PubMed  Google Scholar 

  40. Spillane AJ, A’Hern R, Judson IR et al (2000) Synovial sarcoma: a clinicopathologic, staging, and prognostic assessment. J Clin Oncol 18:3794–3803

    PubMed  CAS  Google Scholar 

  41. Lewis JJ, Antonescu CR, Leung DH et al (2000) Synovial sarcoma: a multivariate analysis of prognostic factors in 112 patients with primary localized tumors of the extremity. J Clin Oncol 18:2087–2094

    PubMed  CAS  Google Scholar 

  42. Trassard M, Le Doussal V, Hacene K et al (2001) Prognostic factors in localized primary synovial sarcoma: a multicenter study of 128 adult patients. J Clin Oncol 19:525–534

    PubMed  CAS  Google Scholar 

  43. Mullen JR, Zagars GK (1994) Synovial sarcoma outcome following conservation surgery and radiotherapy. Radiother Oncol 33:23–30

    PubMed  CAS  Google Scholar 

  44. Skytting BT, Bauer HC, Perfekt R et al (1999) Ki-67 is strongly prognostic in synovial sarcoma: analysis based on 86 patients from the Scandinavian Sarcoma group register [in process citation]. Br J Cancer 80:1809–1814

    PubMed  CAS  Google Scholar 

  45. Bergh P, Meis-Kindblom JM, Gherlinzoni F et al (1999) Synovial sarcoma: identification of low and high risk groups. Cancer 85:2596–2607

    PubMed  CAS  Google Scholar 

  46. Nilsson G, Skytting B, Xie Y et al (1999) The SYT-SSX1 variant of synovial sarcoma is associated with a high rate of tumor cell proliferation and poor clinical outcome. Cancer Res 59:3180–3184

    PubMed  CAS  Google Scholar 

  47. Kawai A, Woodruff J, Healey JH et al (1998) SYT-SSX gene fusion as a determinant of morphology and prognosis in synovial sarcoma. N Engl J Med 338:153–160

    PubMed  CAS  Google Scholar 

  48. Guillou L, Benhattar J, Bonichon F et al (2004) Histologic grade, but not SYT-SSX fusion type, is an important prognostic factor in patients with synovial sarcoma: a multicenter, retrospective analysis. J Clin Oncol 22:4040–4050

    PubMed  Google Scholar 

  49. Takenaka S, Ueda T, Naka N et al (2008) Prognostic implication of SYT-SSX fusion type in synovial sarcoma: a multi-institutional retrospective analysis in Japan. Oncol Rep 19:467–476

    PubMed  Google Scholar 

  50. Thomas DG, Giordano TJ, Sanders D et al (2005) Expression of receptor tyrosine kinases epidermal growth factor receptor and HER-2/neu in synovial sarcoma. Cancer 103:830–838

    PubMed  CAS  Google Scholar 

  51. Blay JY, Ray-Coquard I, Alberti L et al (2004) Targeting other abnormal signaling pathways in sarcoma: EGFR in synovial sarcomas, PPAR-gamma in liposarcomas. Cancer Treat Res 120:151–167

    PubMed  CAS  Google Scholar 

  52. Tschoep K, Kohlmann A, Schlemmer M et al (2007) Gene expression profiling in sarcomas. Crit Rev Oncol Hematol 63:111–124

    PubMed  Google Scholar 

  53. GE NWA, Webber BL et al (1995) Classification of Rhabdomyosarcoma and related sarcomas. Pathologic aspects and proposal for a new classification. An intragroup rhabdomyosarcoma study. Cancer 76:1073–1085

    Google Scholar 

  54. Weiss SW, Goldblum JR (2008) Soft Tissue Tumors. Mosby Elsevier, Philadelphia, pp 595–632

    Google Scholar 

  55. Downing JR, Khandekar A, Shurtleff SA et al (1995) Multiplex RT-PCR assay for the differential diagnosis of alveolar rhabdomyosarcoma and Ewing’s sarcoma. Am J Pathol 146:626–634

    PubMed  CAS  Google Scholar 

  56. de Alava E, Ladanyi M, Rosai J et al (1995) Detection of chimeric transcripts in desmoplastic small round cell tumor and related developmental tumors by reverse transcriptase polymerase chain reaction. A specific diagnostic assay. Am J Pathol 147:1584–1591

    PubMed  Google Scholar 

  57. Barr FG (2001) Gene fusions involving PAX and FOX family members in alveolar rhabdomyosarcoma. Oncogene 20:5736–5746

    PubMed  CAS  Google Scholar 

  58. Barr FG, Qualman SJ, Macris MH et al (2002) Genetic heterogeneity in the alveolar rhabdomyosarcoma subset without typical gene fusions. Cancer Res 62:4704–4710

    PubMed  CAS  Google Scholar 

  59. Sorensen PH, Lynch JC, Qualman SJ et al (2002) PAX3-FKHR and PAX7-FKHR gene fusions are prognostic indicators in alveolar rhabdomyosarcoma: a report from the children’s oncology group. J Clin Oncol 20:2672–2679

    PubMed  CAS  Google Scholar 

  60. Wachtel M, Dettling M, Koscielniak E et al (2004) Gene expression signatures identify rhabdomyosarcoma subtypes and detect a novel t(2;2)(q35;p23) translocation fusing PAX3 to NCOA1. Cancer Res 64:5539–5545

    PubMed  CAS  Google Scholar 

  61. Anderson J, Ramsay A, Gould S et al (2001) PAX3-FKHR induces morphological change and enhances cellular proliferation and invasion in rhabdomyosarcoma. Am J Pathol 159:1089–1096

    PubMed  CAS  Google Scholar 

  62. Keller C, Arenkiel BR, Coffin CM et al (2004) Alveolar rhabdomyosarcomas in conditional Pax3:Fkhr mice: cooperativity of Ink4a/ARF and Trp53 loss of function. Genes Dev 18:2614–2626

    PubMed  CAS  Google Scholar 

  63. Begin LR, Schurch W, Lacoste J et al (1994) Glycogen-rich clear cell rhabdomyosarcoma of the mediastinum. Potential diagnostic pitfall. Am J Surg Pathol 18:302–308

    Article  PubMed  CAS  Google Scholar 

  64. Boman F, Champigneulle J, Schmitt C et al (1996) Clear cell rhabdomyosarcoma. Pediatr Pathol Lab Med 16:951–959

    PubMed  CAS  Google Scholar 

  65. Chan JK, Ng HK, Wan KY et al (1989) Clear cell rhabdomyosarcoma of the nasal cavity and paranasal sinuses. Histopathology 14:391–399

    PubMed  CAS  Google Scholar 

  66. Tsokos M, Webber BL, Parham DM et al (1992) Rhabdomyosarcoma. A new classification scheme related to prognosis. Arch Pathol Lab Med 116:847–855 [see comments]

    PubMed  CAS  Google Scholar 

  67. Parham DM, Shapiro DN, Downing JR et al (1994) Solid alveolar rhabdomyosarcomas with the t(2;13). Report of two cases with diagnostic implications. Am J Surg Pathol 18:474–478

    PubMed  CAS  Google Scholar 

  68. Parham DM, Qualman SJ, Teot L et al (2007) Correlation between histology and PAX/FKHR fusion status in alveolar rhabdomyosarcoma: a report from the Children’s Oncology Group. Am J Surg Pathol 31:895–901

    PubMed  Google Scholar 

  69. Kohashi K, Oda Y, Yamamoto H et al (2008) Alterations of RB1 gene in embryonal and alveolar rhabdomyosarcoma: special reference to utility of pRB immunoreactivity in differential diagnosis of rhabdomyosarcoma subtype. J Cancer Res Clin Oncol 134:1097–1103

    PubMed  CAS  Google Scholar 

  70. Kelly KM, Womer RB, Sorensen PH et al (1997) Common and variant gene fusions predict distinct clinical phenotypes in rhabdomyosarcoma. J Clin Oncol 15:1831–1836

    PubMed  CAS  Google Scholar 

  71. Kazanowska B, Reich A, Stegmaier S et al (2007) Pax3-fkhr and pax7-fkhr fusion genes impact outcome of alveolar rhabdomyosarcoma in children. Fetal Pediatr Pathol 26:17–31

    PubMed  CAS  Google Scholar 

  72. Lae M, Ahn EH, Mercado GE et al (2007) Global gene expression profiling of PAX-FKHR fusion-positive alveolar and PAX-FKHR fusion-negative embryonal rhabdomyosarcomas. J Pathol 212:143–151

    PubMed  CAS  Google Scholar 

  73. De Pitta C, Tombolan L, Albiero G et al (2006) Gene expression profiling identifies potential relevant genes in alveolar rhabdomyosarcoma pathogenesis and discriminates PAX3-FKHR positive and negative tumors. Int J Cancer 118:2772–2781

    PubMed  Google Scholar 

  74. Davicioni E, Finckenstein FG, Shahbazian V et al (2006) Identification of a PAX-FKHR gene expression signature that defines molecular classes and determines the prognosis of alveolar rhabdomyosarcomas. Cancer Res 66:6936–6946

    PubMed  CAS  Google Scholar 

  75. Folpe AL, Deyrup AT (2006) Alveolar soft-part sarcoma: a review and update. J Clin Pathol 59:1127–1132

    PubMed  CAS  Google Scholar 

  76. Lieberman PH, Brennan MF, Kimmel M et al (1989) Alveolar soft-part sarcoma. A clinico-pathologic study of half a century. Cancer 63:1–13

    PubMed  CAS  Google Scholar 

  77. Amin MB, Patel RM, Oliveira P et al (2006) Alveolar soft-part sarcoma of the urinary bladder with urethral recurrence: a unique case with emphasis on differential diagnoses and diagnostic utility of an immunohistochemical panel including TFE3. Am J Surg Pathol 30:1322–1325

    PubMed  Google Scholar 

  78. Nielsen GP, Oliva E, Young RH et al (1995) Alveolar soft-part sarcoma of the female genital tract: a report of nine cases and review of the literature. Int J Gynecol Pathol 14:283–292

    PubMed  CAS  Google Scholar 

  79. Luo J, Melnick S, Rossi A et al (2008) Primary cardiac alveolar soft part sarcoma. A report of the first observed case with molecular diagnostics corroboration. Pediatr Dev Pathol 11:142–147

    PubMed  CAS  Google Scholar 

  80. Fanburg-Smith JC, Miettinen M, Folpe AL et al (2004) Lingual alveolar soft part sarcoma; 14 cases: novel clinical and morphological observations. Histopathology 45:526–537

    PubMed  CAS  Google Scholar 

  81. Font RL, Jurco S 3rd, Zimmerman LE (1982) Alveolar soft-part sarcoma of the orbit: a clinicopathologic analysis of seventeen cases and a review of the literature. Hum Pathol 13:569–579

    PubMed  CAS  Google Scholar 

  82. Joyama S, Ueda T, Shimizu K et al (1999) Chromosome rearrangement at 17q25 and xp11.2 in alveolar soft-part sarcoma: a case report and review of the literature. Cancer 86:1246–1250

    PubMed  CAS  Google Scholar 

  83. Cullinane C, Thorner PS, Greenberg ML et al (1992) Molecular genetic, cytogenetic, and immunohistochemical characterization of alveolar soft-part sarcoma. Implications for cell of origin. Cancer 70:2444–2450

    PubMed  CAS  Google Scholar 

  84. Ladanyi M, Lui MY, Antonescu CR et al (2001) The der(17) t(X;17)(p11;q25) of human alveolar soft part sarcoma fuses the TFE3 transcription factor gene to ASPL, a novel gene at 17q25. Oncogene 20:48–57

    PubMed  CAS  Google Scholar 

  85. Argani P, Lal P, Hutchinson B et al (2003) Aberrant nuclear immunoreactivity for TFE3 in neoplasms with TFE3 gene fusions: a sensitive and specific immunohistochemical assay. Am J Surg Pathol 27:750–761

    PubMed  Google Scholar 

  86. Argani P, Antonescu CR, Illei PB et al (2001) Primary renal neoplasms with the ASPL-TFE3 gene fusion of alveolar soft part sarcoma: a distinctive tumor entity previously included among renal cell carcinomas of children and adolescents. Am J Pathol 159:179–192

    PubMed  CAS  Google Scholar 

  87. Bruder E, Passera O, Harms D et al (2004) Morphologic and molecular characterization of renal cell carcinoma in children and young adults. Am J Surg Pathol 28:1117–1132

    PubMed  Google Scholar 

  88. Folpe AL, Mentzel T, Lehr HA et al (2005) Perivascular epithelioid cell neoplasms of soft tissue and gynecologic origin: a clinicopathologic study of 26 cases and review of the literature. Am J Surg Pathol 29:1558–1575

    PubMed  Google Scholar 

  89. LP SFH, Foote FW, Stewart FW (1964) Ultrastructure of alveolar soft part sarcoma. Cancer 17:821–830

    Google Scholar 

  90. Ordonez NG, Ro JY, Mackay B (1989) Alveolar soft part sarcoma. An ultrastructural and immunocytochemical investigation of its histogenesis. Cancer 63:1721–1736

    PubMed  CAS  Google Scholar 

  91. Ladanyi M, Antonescu CR, Drobnjak M et al (2002) The precrystalline cytoplasmic granules of alveolar soft part sarcoma contain monocarboxylate transporter 1 and CD147. Am J Pathol 160:1215–1221

    PubMed  CAS  Google Scholar 

  92. Portera CA Jr, Ho V, Patel SR et al (2001) Alveolar soft part sarcoma: clinical course and patterns of metastasis in 70 patients treated at a single institution. Cancer 91:585–591

    PubMed  Google Scholar 

  93. Casanova M, Ferrari A, Bisogno G et al (2000) Alveolar soft part sarcoma in children and adolescents: A report from the Soft-Tissue Sarcoma Italian Cooperative Group. Ann Oncol 11:1445–1449

    PubMed  CAS  Google Scholar 

  94. Tsuda M, Davis IJ, Argani P et al (2007) TFE3 fusions activate MET signaling by transcriptional up-regulation, defining another class of tumors as candidates for therapeutic MET inhibition. Cancer Res 67:919–929

    PubMed  CAS  Google Scholar 

  95. Criscione VD, Weinstock MA (2007) Descriptive epidemiology of dermatofibrosarcoma protuberans in the United States, 1973 to 2002. J Am Acad Dermatol 56:968–973

    PubMed  Google Scholar 

  96. Maire G, Fraitag S, Galmiche L et al (2007) A clinical, histologic, and molecular study of 9 cases of congenital dermatofibrosarcoma protuberans. Arch Dermatol 143:203–210

    PubMed  CAS  Google Scholar 

  97. Shmookler BM, Enzinger FM, Weiss SW (1989) Giant cell fibroblastoma. A juvenile form of dermatofibrosarcoma protuberans. Cancer 64:2154–2161

    PubMed  CAS  Google Scholar 

  98. Alguacil-Garcia A (1991) Giant cell fibroblastoma recurring as dermatofibrosarcoma protuberans. Am J Surg Pathol 15:798–801

    PubMed  CAS  Google Scholar 

  99. Allen PW, Zwi J (1992) Giant cell fibroblastoma transforming into dermatofibrosarcoma protuberans. Am J Surg Pathol 16:1127–1129

    PubMed  CAS  Google Scholar 

  100. Goldblum JR (1996) Giant cell fibroblastoma: a report of three cases with histologic and immunohistochemical evidence of a relationship to dermatofibrosarcoma protuberans. Arch Pathol Lab Med 120:1052–1055

    PubMed  CAS  Google Scholar 

  101. Wrotnowski U, Cooper PH, Shmookler BM (1988) Fibrosarcomatous change in dermatofibrosarcoma protuberans. Am J Surg Pathol 12:287–293

    PubMed  CAS  Google Scholar 

  102. Ding J, Hashimoto H, Enjoji M (1989) Dermatofibrosarcoma protuberans with fibrosarcomatous areas. A clinicopathologic study of nine cases and a comparison with allied tumors. Cancer 64:721–729

    PubMed  CAS  Google Scholar 

  103. Connelly JH, Evans HL (1992) Dermatofibrosarcoma protuberans. A clinicopathologic review with emphasis on fibrosarcomatous areas. Am J Surg Pathol 16:921–925

    PubMed  CAS  Google Scholar 

  104. Diaz-Cascajo C, Weyers W, Borrego L et al (1997) Dermatofibrosarcoma protuberans with fibrosarcomatous areas: a clinico-pathologic and immunohistochemic study in four cases. Am J Dermatopathol 19:562–567

    PubMed  CAS  Google Scholar 

  105. Mentzel T, Beham A, Katenkamp D et al (1998) Fibrosarcomatous (“high-grade”) dermatofibrosarcoma protuberans: clinicopathologic and immunohistochemical study of a series of 41 cases with emphasis on prognostic significance. Am J Surg Pathol 22:576–587

    PubMed  CAS  Google Scholar 

  106. Abbott JJ, Oliveira AM, Nascimento AG (2006) The prognostic significance of fibrosarcomatous transformation in dermatofibrosarcoma protuberans. Am J Surg Pathol 30:436–443

    PubMed  Google Scholar 

  107. Pedeutour F, Simon MP, Minoletti F et al (1996) Translocation, t(17;22)(q22;q13), in dermatofibrosarcoma protuberans: a new tumor-associated chromosome rearrangement. Cytogenet Cell Genet 72:171–174

    PubMed  CAS  Google Scholar 

  108. Simon MP, Pedeutour F, Sirvent N et al (1997) Deregulation of the platelet-derived growth factor B-chain gene via fusion with collagen gene COL1A1 in dermatofibrosarcoma protuberans and giant-cell fibroblastoma. Nat Genet 15:95–98

    PubMed  CAS  Google Scholar 

  109. Wang J, Hisaoka M, Shimajiri S et al (1999) Detection of COL1A1-PDGFB fusion transcripts in dermatofibrosarcoma protuberans by reverse transcription-polymerase chain reaction using archival formalin-fixed, paraffin-embedded tissues. Diagn Mol Pathol 8:113–119

    PubMed  CAS  Google Scholar 

  110. Sirvent N, Maire G, Pedeutour F (2003) Genetics of dermatofibrosarcoma protuberans family of tumors: from ring chromosomes to tyrosine kinase inhibitor treatment. Genes Chromosomes Cancer 37:1–19

    PubMed  CAS  Google Scholar 

  111. Sandberg AA, Bridge JA (2003) Updates on the cytogenetics and molecular genetics of bone and soft tissue tumors. Dermatofibrosarcoma protuberans and giant cell fibroblastoma. Cancer Genet Cytogenet 140:1–12

    PubMed  CAS  Google Scholar 

  112. Nishio J, Iwasaki H, Ohjimi Y et al (2001) Supernumerary ring chromosomes in dermatofibrosarcoma protuberans may contain sequences from 8q11.2-qter and 17q21-qter: a combined cytogenetic and comparative genomic hybridization study. Cancer Genet Cytogenet 129:102–106

    PubMed  CAS  Google Scholar 

  113. Nishio J, Iwasaki H, Ishiguro M et al (2001) Supernumerary ring chromosome in a Bednar tumor (pigmented dermatofibrosarcoma protuberans) is composed of interspersed sequences from chromosomes 17 and 22: a fluorescence in situ hybridization and comparative genomic hybridization analysis. Genes Chromosomes Cancer 30:305–309

    PubMed  CAS  Google Scholar 

  114. Maire G, Martin L, Michalak-Provost S et al (2002) Fusion of COL1A1 exon 29 with PDGFB exon 2 in a der(22) t(17;22) in a pediatric giant cell fibroblastoma with a pigmented Bednar tumor component. Evidence for age-related chromosomal pattern in dermatofibrosarcoma protuberans and related tumors. Cancer Genet Cytogenet 134:156–161

    PubMed  CAS  Google Scholar 

  115. Wang J, Morimitsu Y, Okamoto S et al (2000) COL1A1-PDGFB fusion transcripts in fibrosarcomatous areas of six dermatofibrosarcomas protuberans. J Mol Diagn 2:47–52

    PubMed  CAS  Google Scholar 

  116. Sheng WQ, Hashimoto H, Okamoto S et al (2001) Expression of COL1A1-PDGFB fusion transcripts in superficial adult fibrosarcoma suggests a close relationship to dermatofibrosarcoma protuberans. J Pathol 194:88–94

    PubMed  CAS  Google Scholar 

  117. Patel KU, Szabo SS, Hernandez VS et al (2008) Dermatofibrosarcoma protuberans COL1A1-PDGFB fusion is identified in virtually all dermatofibrosarcoma protuberans cases when investigated by newly developed multiplex reverse transcription polymerase chain reaction and fluorescence in situ hybridization assays. Hum Pathol 39:184–193

    PubMed  CAS  Google Scholar 

  118. Terrier-Lacombe MJ, Guillou L, Maire G et al (2003) Dermatofibrosarcoma protuberans, giant cell fibroblastoma, and hybrid lesions in children: clinicopathologic comparative analysis of 28 cases with molecular data–a study from the French Federation of Cancer Centers Sarcoma Group. Am J Surg Pathol 27:27–39

    PubMed  Google Scholar 

  119. Sonobe H, Furihata M, Iwata J et al (1999) Dermatofibrosarcoma protuberans harboring t(9;22)(q32;q12.2). Cancer Genet Cytogenet 110:14–18

    PubMed  CAS  Google Scholar 

  120. Linn SC, West RB, Pollack JR et al (2003) Gene expression patterns and gene copy number changes in dermatofibrosarcoma protuberans. Am J Pathol 163:2383–2395

    PubMed  CAS  Google Scholar 

  121. Nielsen TO (2006) Microarray Analysis of Sarcomas. Adv Anat Pathol 13:166–173

    PubMed  CAS  Google Scholar 

  122. West RB, Harvell J, Linn SC et al (2004) Apo D in soft tissue tumors: a novel marker for dermatofibrosarcoma protuberans. Am J Surg Pathol 28:1063–1069

    PubMed  Google Scholar 

  123. Lisovsky M, Hoang MP, Dresser KA et al (2008) Apolipoprotein D in CD34-positive and CD34-negative cutaneous neoplasms: a useful marker in differentiating superficial acral fibromyxoma from dermatofibrosarcoma protuberans. Mod Pathol 21:31–38

    PubMed  CAS  Google Scholar 

  124. Shimizu A, O’Brien KP, Sjoblom T et al (1999) The dermatofibrosarcoma protuberans-associated collagen type Ialpha1/platelet-derived growth factor (PDGF) B-chain fusion gene generates a transforming protein that is processed to functional PDGF-BB. Cancer Res 59:3719–3723

    PubMed  CAS  Google Scholar 

  125. Greco A, Fusetti L, Villa R et al (1998) Transforming activity of the chimeric sequence formed by the fusion of collagen gene COL1A1 and the platelet derived growth factor b-chain gene in dermatofibrosarcoma protuberans. Oncogene 17:1313–1319

    PubMed  CAS  Google Scholar 

  126. Sjoblom T, Shimizu A, O’Brien KP et al (2001) Growth inhibition of dermatofibrosarcoma protuberans tumors by the platelet-derived growth factor receptor antagonist STI571 through induction of apoptosis. Cancer Res 61:5778–5783

    PubMed  CAS  Google Scholar 

  127. Rubin BP, Schuetze SM, Eary JF et al (2002) Molecular targeting of platelet-derived growth factor B by imatinib mesylate in a patient with metastatic dermatofibrosarcoma protuberans. J Clin Oncol 20:3586–3591

    PubMed  CAS  Google Scholar 

  128. Maki RG, Awan RA, Dixon RH et al (2002) Differential sensitivity to imatinib of 2 patients with metastatic sarcoma arising from dermatofibrosarcoma protuberans. Int J Cancer 100:623–626

    PubMed  CAS  Google Scholar 

  129. Kasper B, Lossignol D, Gil T et al (2006) Imatinib mesylate in a patient with metastatic disease originating from a dermatofibrosarcoma protuberans of the scalp. Anticancer Drugs 17:1223–1225

    PubMed  CAS  Google Scholar 

  130. McArthur GA (2006) Dermatofibrosarcoma protuberans: a surgical disease with a molecular savior. Curr Opin Oncol 18:341–346

    PubMed  Google Scholar 

  131. Ostman A, Heldin CH (2007) PDGF Receptors as Targets in Tumor Treatment. Adv Cancer Res 97:247–274

    PubMed  Google Scholar 

  132. McArthur GA, Demetri GD, van Oosterom A et al (2005) Molecular and clinical analysis of locally advanced dermatofibrosarcoma protuberans treated with imatinib: Imatinib Target Exploration Consortium Study B2225. J Clin Oncol 23:866–873

    PubMed  CAS  Google Scholar 

  133. McArthur GA (2007) Molecular targeting of dermatofibrosarcoma protuberans: a new approach to a surgical disease. J Natl Compr Canc Netw 5:557–562

    PubMed  Google Scholar 

  134. Evans HL (1987) Low-grade fibromyxoid sarcoma. A report of two metastasizing neoplasms having a deceptively benign appearance. Am J Clin Pathol 88:615–619

    CAS  Google Scholar 

  135. Lane KL, Shannon RJ, Weiss SW (1997) Hyalinizing spindle cell tumor with giant rosettes: a distinctive tumor closely resembling low-grade fibromyxoid sarcoma. Am J Surg Pathol 21:1481–1488

    PubMed  CAS  Google Scholar 

  136. Evans HL (1993) Low-grade fibromyxoid sarcoma. A report of 12 cases. Am J Surg Pathol 17:595–600

    PubMed  CAS  Google Scholar 

  137. Folpe AL, Lane KL, Paull G et al (2000) Low-grade fibromyxoid sarcoma and hyalinizing spindle cell tumor with giant rosettes: a clinicopathologic study of 73 cases supporting their identity and assessing the impact of high-grade areas. Am J Surg Pathol 24:1353–1360

    PubMed  CAS  Google Scholar 

  138. Kim L, Yoon YH, Choi SJ et al (2007) Hyalinizing spindle cell tumor with giant rosettes arising in the lung: report of a case with FUS-CREB3L2 fusion transcripts. Pathol Int 57:153–157

    PubMed  CAS  Google Scholar 

  139. Saito R, Kumabe T, Watanabe M et al (2008) Low-grade fibromyxoid sarcoma of intracranial origin. J Neurosurg 108:798–802

    PubMed  Google Scholar 

  140. Jakowski JD, Wakely PE Jr (2008) Primary intrathoracic low-grade fibromyxoid sarcoma. Hum Pathol 39:623–628

    PubMed  Google Scholar 

  141. Winfield HL, De Las Casas LE, Greenfield WW et al (2007) Low-grade fibromyxoid sarcoma presenting clinically as a primary ovarian neoplasm: a case report. Int J Gynecol Pathol 26:173–176

    PubMed  Google Scholar 

  142. Park IJ, Kim HC, Yu CS et al (2007) Low-grade fibromyxoid sarcoma of the colon. Dig Liver Dis 39:274–277

    PubMed  CAS  Google Scholar 

  143. Billings SD, Giblen G, Fanburg-Smith JC (2005) Superficial low-grade fibromyxoid sarcoma (Evans tumor): a clinicopathologic analysis of 19 cases with a unique observation in the pediatric population. Am J Surg Pathol 29:204–210

    PubMed  Google Scholar 

  144. Bejarano PA, Padhya TA, Smith R et al (2000) Hyalinizing spindle cell tumor with giant rosettes–a soft tissue tumor with mesenchymal and neuroendocrine features. An immunohistochemical, ultrastructural, and cytogenetic analysis. Arch Pathol Lab Med 124:1179–1184

    PubMed  CAS  Google Scholar 

  145. Mezzelani A, Sozzi G, Nessling M et al (2000) Low grade fibromyxoid sarcoma. a further low-grade soft tissue malignancy characterized by a ring chromosome. Cancer Genet Cytogenet 122:144–148

    PubMed  CAS  Google Scholar 

  146. Reid R, de Silva MV, Paterson L et al (2003) Low-grade fibromyxoid sarcoma and hyalinizing spindle cell tumor with giant rosettes share a common t(7;16)(q34;p11) translocation. Am J Surg Pathol 27:1229–1236

    PubMed  Google Scholar 

  147. Panagopoulos I, Storlazzi CT, Fletcher CD et al (2004) The chimeric FUS/CREB3l2 gene is specific for low-grade fibromyxoid sarcoma. Genes Chromosomes Cancer 40:218–228

    PubMed  CAS  Google Scholar 

  148. Mertens F, Fletcher CD, Antonescu CR et al (2005) Clinicopathologic and molecular genetic characterization of low-grade fibromyxoid sarcoma, and cloning of a novel FUS/CREB3L1 fusion gene. Lab Invest 85:408–415

    PubMed  CAS  Google Scholar 

  149. Matsuyama A, Hisaoka M, Shimajiri S et al (2006) Molecular detection of FUS-CREB3L2 fusion transcripts in low-grade fibromyxoid sarcoma using formalin-fixed, paraffin-embedded tissue specimens. Am J Surg Pathol 30:1077–1084

    PubMed  Google Scholar 

  150. Panagopoulos I, Moller E, Dahlen A et al (2007) Characterization of the native CREB3L2 transcription factor and the FUS/CREB3L2 chimera. Genes Chromosomes Cancer 46:181–191

    PubMed  CAS  Google Scholar 

  151. Guillou L, Benhattar J, Gengler C et al (2007) Translocation-positive low-grade fibromyxoid sarcoma: clinicopathologic and molecular analysis of a series expanding the morphologic spectrum and suggesting potential relationship to sclerosing epithelioid fibrosarcoma: a study from the French Sarcoma Group. Am J Surg Pathol 31:1387–1402

    PubMed  Google Scholar 

  152. Matsuyama A, Hisaoka M, Shimajiri S et al (2008) DNA-based Polymerase chain reaction for detecting FUS-CREB3L2 in low-grade fibromyxoid sarcoma using formalin-fixed, paraffin-embedded tissue specimens. Diagn Mol Pathol 17:237–240

    PubMed  CAS  Google Scholar 

  153. Schofield DE, Fletcher JA, Grier HE et al (1994) Fibrosarcoma in infants and children. Application of new techniques. Am J Surg Pathol 18:14–24

    Article  PubMed  CAS  Google Scholar 

  154. Gorman PA, Malone M, Pritchard J et al (1990) Deletion of part of the short arm of chromosome 17 in a congenital fibrosarcoma. Cancer Genet Cytogenet 48:193–198

    PubMed  CAS  Google Scholar 

  155. Strehl S, Ladenstein R, Wrba F et al (1993) Translocation (12;13) in a case of infantile fibrosarcoma. Cancer Genet Cytogenet 71:94–96

    PubMed  CAS  Google Scholar 

  156. Boulos BM, Dajuvone C, Azarnoff DL (1976) A new method for increasing the chemotherapeutic drug concentration in the tumor tissue. Panminerva Med 18:95–98

    PubMed  CAS  Google Scholar 

  157. Knezevich SR, McFadden DE, Tao W et al (1998) A novel ETV6-NTRK3 gene fusion in congenital fibrosarcoma. Nat Genet 18:184–187

    PubMed  CAS  Google Scholar 

  158. Sheng WQ, Hisaoka M, Okamoto S et al (2001) Congenital-infantile fibrosarcoma. A clinicopathologic study of 10 cases and molecular detection of the ETV6-NTRK3 fusion transcripts using paraffin-embedded tissues. Am J Clin Pathol 115:348–355

    PubMed  CAS  Google Scholar 

  159. Kaplan DR, Miller FD (1997) Signal transduction by the neurotrophin receptors. Curr Opin Cell Biol 9:213–221

    PubMed  CAS  Google Scholar 

  160. Lannon CL, Martin MJ, Tognon CE et al (2004) A highly conserved NTRK3 C-terminal sequence in the ETV6-NTRK3 oncoprotein binds the phosphotyrosine binding domain of insulin receptor substrate-1: an essential interaction for transformation. J Biol Chem 279:6225–6234

    PubMed  CAS  Google Scholar 

  161. Wai DH, Knezevich SR, Lucas T et al (2000) The ETV6-NTRK3 gene fusion encodes a chimeric protein tyrosine kinase that transforms NIH3T3 cells. Oncogene 19:906–915

    PubMed  CAS  Google Scholar 

  162. Tognon C, Garnett M, Kenward E et al (2001) The chimeric protein tyrosine kinase ETV6-NTRK3 requires both Ras-Erk1/2 and PI3-kinase-Akt signaling for fibroblast transformation. Cancer Res 61:8909–8916

    PubMed  CAS  Google Scholar 

  163. Martin MJ, Melnyk N, Pollard M et al (2006) The insulin-like growth factor I receptor is required for Akt activation and suppression of anoikis in cells transformed by the ETV6-NTRK3 chimeric tyrosine kinase. Mol Cell Biol 26:1754–1769

    PubMed  CAS  Google Scholar 

  164. Jin W, Yun C, Hobbie A et al (2007) Cellular transformation and activation of the phosphoinositide-3-kinase-Akt cascade by the ETV6-NTRK3 chimeric tyrosine kinase requires c-Src. Cancer Res 67:3192–3200

    PubMed  CAS  Google Scholar 

  165. Jin W, Kim BC, Tognon C et al (2005) The ETV6-NTRK3 chimeric tyrosine kinase suppresses TGF-beta signaling by inactivating the TGF-beta type II receptor. Proc Natl Acad Sci U S A 102:16239–16244

    PubMed  CAS  Google Scholar 

  166. Knezevich SR, Garnett MJ, Pysher TJ et al (1998) ETV6-NTRK3 gene fusions and trisomy 11 establish a histogenetic link between mesoblastic nephroma and congenital fibrosarcoma. Cancer Res 58:5046–5048

    PubMed  CAS  Google Scholar 

  167. Rubin BP, Chen CJ, Morgan TW et al (1998) Congenital mesoblastic nephroma t(12;15) is associated with ETV6-NTRK3 gene fusion: cytogenetic and molecular relationship to congenital (infantile) fibrosarcoma. Am J Pathol 153:1451–1458

    PubMed  CAS  Google Scholar 

  168. Tognon C, Knezevich SR, Huntsman D et al (2002) Expression of the ETV6-NTRK3 gene fusion as a primary event in human secretory breast carcinoma. Cancer Cell 2:367–376

    PubMed  CAS  Google Scholar 

  169. Eguchi M, Eguchi-Ishimae M, Tojo A et al (1999) Fusion of ETV6 to neurotrophin-3 receptor TRKC in acute myeloid leukemia with t(12;15)(p13;q25). Blood 93:1355–1363

    PubMed  CAS  Google Scholar 

  170. Fletcher C, Unni K, Mertens F (eds) (2002) World Health Organization Classification of Tumours. Pathology and genetics of tumours of soft tissue and bone. IARC, Lyon.

  171. Loh ML, Ahn P, Perez-Atayde AR et al (2002) Treatment of infantile fibrosarcoma with chemotherapy and surgery: results from the Dana-Farber Cancer Institute and Children’s Hospital, Boston. J Pediatr Hematol Oncol 24:722–726

    PubMed  Google Scholar 

  172. Chung EB, Enzinger FM (1976) Infantile fibrosarcoma. Cancer 38:729–739

    PubMed  CAS  Google Scholar 

  173. Soule EH, Pritchard DJ (1977) Fibrosarcoma in infants and children: a review of 110 cases. Cancer 40:1711–1721

    PubMed  CAS  Google Scholar 

  174. Coffin CM, Jaszcz W, O’Shea PA et al (1994) So-called congenital-infantile fibrosarcoma: does it exist and what is it? Pediatr Pathol 14:133–150

    PubMed  CAS  Google Scholar 

  175. Cecchetto G, Carli M, Alaggio R et al (2001) Fibrosarcoma in pediatric patients: results of the Italian Cooperative Group studies (1979–1995). J Surg Oncol 78:225–231

    PubMed  CAS  Google Scholar 

  176. Surico G, Muggeo P, Daniele RM et al (2003) Chemotherapy alone for the treatment of congenital fibrosarcoma: is surgery always needed? Med Pediatr Oncol 40:268–270

    PubMed  Google Scholar 

  177. Blocker S, Koenig J, Ternberg J (1987) Congenital fibrosarcoma. J Pediatr Surg 22:665–670

    PubMed  CAS  Google Scholar 

  178. Coden DJ, Hornblass A (1990) Orbital hemangiopericytoma. JAMA 264:1861

    PubMed  CAS  Google Scholar 

  179. Coffin CM, Humphrey PA, Dehner LP (1998) Extrapulmonary inflammatory myofibroblastic tumor: a clinical and pathological survey. Semin Diagn Pathol 15:85–101

    PubMed  CAS  Google Scholar 

  180. Montgomery EA, Shuster DD, Burkart AL et al (2006) Inflammatory myofibroblastic tumors of the urinary tract: a clinicopathologic study of 46 cases, including a malignant example inflammatory fibrosarcoma and a subset associated with high-grade urothelial carcinoma. Am J Surg Pathol 30:1502–1512

    PubMed  Google Scholar 

  181. Hirsch MS, Dal Cin P, Fletcher CD (2006) ALK expression in pseudosarcomatous myofibroblastic proliferations of the genitourinary tract. Histopathology 48:569–578

    PubMed  CAS  Google Scholar 

  182. Harik LR, Merino C, Coindre JM et al (2006) Pseudosarcomatous myofibroblastic proliferations of the bladder: a clinicopathologic study of 42 cases. Am J Surg Pathol 30:787–794

    PubMed  Google Scholar 

  183. Sukov WR, Cheville JC, Carlson AW et al (2007) Utility of ALK-1 protein expression and ALK rearrangements in distinguishing inflammatory myofibroblastic tumor from malignant spindle cell lesions of the urinary bladder. Mod Pathol 20:592–603

    PubMed  CAS  Google Scholar 

  184. Morris SW, Kirstein MN, Valentine MB et al (1994) Fusion of a kinase gene, ALK, to a nucleolar protein gene, NPM, in non-Hodgkin’s lymphoma. Science 263:1281–1284

    PubMed  CAS  Google Scholar 

  185. Lawrence B, Perez-Atayde A, Hibbard MK et al (2000) TPM3-ALK and TPM4-ALK oncogenes in inflammatory myofibroblastic tumors. Am J Pathol 157:377–384

    PubMed  CAS  Google Scholar 

  186. Bridge JA, Kanamori M, Ma Z et al (2001) Fusion of the ALK gene to the clathrin heavy chain gene, CLTC, in inflammatory myofibroblastic tumor. Am J Pathol 159:411–415

    PubMed  CAS  Google Scholar 

  187. Debiec-Rychter M, Marynen P, Hagemeijer A et al (2003) ALK-ATIC fusion in urinary bladder inflammatory myofibroblastic tumor. Genes Chromosomes Cancer 38:187–190

    PubMed  Google Scholar 

  188. Debelenko LV, Arthur DC, Pack SD et al (2003) Identification of CARS-ALK fusion in primary and metastatic lesions of an inflammatory myofibroblastic tumor. Lab Invest 83:1255–1265

    PubMed  CAS  Google Scholar 

  189. Panagopoulos I, Nilsson T, Domanski HA et al (2006) Fusion of the SEC31L1 and ALK genes in an inflammatory myofibroblastic tumor. Int J Cancer 118:1181–1186

    PubMed  CAS  Google Scholar 

  190. Chan JK, Cheuk W, Shimizu M (2001) Anaplastic lymphoma kinase expression in inflammatory pseudotumors. Am J Surg Pathol 25:761–768

    PubMed  CAS  Google Scholar 

  191. Cessna MH, Zhou H, Sanger WG et al (2002) Expression of ALK1 and p80 in inflammatory myofibroblastic tumor and its mesenchymal mimics: a study of 135 cases. Mod Pathol 15:931–938

    PubMed  Google Scholar 

  192. Cook JR, Dehner LP, Collins MH et al (2001) Anaplastic lymphoma kinase (ALK) expression in the inflammatory myofibroblastic tumor: a comparative immunohistochemical study. Am J Surg Pathol 25:1364–1371

    PubMed  CAS  Google Scholar 

  193. Coffin CM, Hornick JL, Fletcher CD (2007) Inflammatory myofibroblastic tumor: comparison of clinicopathologic, histologic, and immunohistochemical features including ALK expression in atypical and aggressive cases. Am J Surg Pathol 31:509–520

    PubMed  Google Scholar 

  194. Li XQ, Hisaoka M, Shi DR et al (2004) Expression of anaplastic lymphoma kinase in soft tissue tumors: an immunohistochemical and molecular study of 249 cases. Hum Pathol 35:711–721

    PubMed  CAS  Google Scholar 

  195. Coffin CM, Patel A, Perkins S et al (2001) ALK1 and p80 expression and chromosomal rearrangements involving 2p23 in inflammatory myofibroblastic tumor. Mod Pathol 14:569–576

    PubMed  CAS  Google Scholar 

  196. Biselli R, Boldrini R, Ferlini C et al (1999) Myofibroblastic tumours: neoplasias with divergent behaviour. Ultrastructural and flow cytometric analysis. Pathol Res Pract 195:619–632

    PubMed  CAS  Google Scholar 

Download references

Acknowledgement

The author thanks Marc Ladanyi for comments on the manuscript.

Conflict of interest statement

I declare that I have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cyril Fisher.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fisher, C. Soft tissue sarcomas with non-EWS translocations: molecular genetic features and pathologic and clinical correlations. Virchows Arch 456, 153–166 (2010). https://doi.org/10.1007/s00428-009-0776-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00428-009-0776-0

Keywords

Navigation