Skip to main content
Log in

Activation of Hox genes during caudal regeneration of the polychaete annelid Platynereis dumerilii

  • Original Article
  • Published:
Development Genes and Evolution Aims and scope Submit manuscript

Abstract

The capability of regenerating posterior segments and pygidial structures is ancestral for annelids and has been lost only a few times within this phylum. As one of the three major segmented taxa, annelids enable us to monitor reconstruction of lost tissues and organs. During regeneration, regional identities have to be imprinted onto the newly formed segments. In this study, we show spatial and temporal localization of expression of nine Hox genes during caudal regeneration of the polychaete annelid Platynereis dumerilii. Hox genes are homeodomain genes encoding transcriptional regulators of axial patterning in bilaterian animals during development. We demonstrate that five Platynereis Hox genes belonging to paralog groups (PG) 1, 4, 5, 6, and 9–14 are expressed in domains of the regenerating nervous system consistent with providing positional information along the anteroposterior axis of the regenerate. We report that expression in regenerating neuromeres is limited to varying subsets of perikarya, called gangliosomes. Four of nine genes analyzed do not appear to be involved in axial patterning. Two genes, Pdu-Hox2 and Pdu-Hox3, are predominantly expressed in the growth zone region. For some Hox genes expression in newly formed coelomic epithelia can be observed. Platynereis Hox genes do not exhibit temporal or spatial colinearity. Although there are some similarities to previously reported expression patterns during larval and postlarval development in Nereididae (Kulakova et al. 2007), expression patterns observed during caudal regeneration also show unique patterns.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abascal F, Zardoya R, Posada D (2005) ProtTest: selection of best-fit models of protein evolution. Bioinformatics 21:2104–2105

    Article  PubMed  CAS  Google Scholar 

  • Bayascas JR, Castillo E, Munoz-Marmol AM, Salo E (1997) Planarian Hox genes: novel patterns of expression during regeneration. Development 124:141–148

    PubMed  CAS  Google Scholar 

  • Bely AE (2006) Distribution of segment regeneration ability in the Annelida. Integr Comp Biol 46:508–518

    Article  PubMed  Google Scholar 

  • Bienz M (1994) Homeotic genes and positional signalling in the Drosophila viscera. Trends Genet 10:22–26

    Article  PubMed  CAS  Google Scholar 

  • Carapuco M, Novoa A, Bobola N, Mallo M (2005) Hox genes specify vertebral types in the presomitic mesoderm. Genes Dev 19:2116–2121

    Article  PubMed  CAS  Google Scholar 

  • Dorsett DA (1978) Organization of the nerve cord. In: Mill P (ed) Physiology of annelids. Academic, London

    Google Scholar 

  • Duboule D (2007) The rise and fall of Hox gene clusters. Development 134:2549–2560

    Article  PubMed  CAS  Google Scholar 

  • Finnerty, JR, Ryan, JF, Mazza, ME, Pang, K, Matus, DQ, Baxevanis, AD, Martindale, MQ (2007) Pre-bilaterian origins of the Hox cluster and the Hox code: evidence from the sea anemone, Nematostella vectensis. PLoS One 2:e153

  • Fröbius AC, Matus DQ, Seaver EC (2008) Genomic organization and expression demonstrate spatial and temporal Hox gene colinearity in the lophotrochozoan Capitella sp. I. PLoS One 3:e4004

    Article  PubMed  Google Scholar 

  • Gardiner DM, Bryant SV (1996) Molecular mechanisms in the control of limb regeneration: the role of homeobox genes. Int J Dev Biol 40:797–805

    PubMed  CAS  Google Scholar 

  • Hauenschild, C, Fischer, A (1969). Platynereis dumerilii. Grosses Zoologisches Praktikum, 10b

  • Herlant-Meewis H (1964) Regeneration in annelids. Adv Morphog 4:155–215

    PubMed  CAS  Google Scholar 

  • Hofmann D-K (1966) Untersuchungen zur Regeneration des Hinterendes bei Platynereis dumerilii (Audouin et Milne-Edwards)(Annelida, Polychaeta). Zool Jb Physiol 72:374–430

    Google Scholar 

  • Huelsenbeck JP, Ronquist F (2001) MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17:754–755

    Article  PubMed  CAS  Google Scholar 

  • In der Rieden PM, Jansen HJ, Durston AJ (2011) XMeis3 is necessary for mesodermal Hox gene expression and function. PLoS One 6:e18010

    Article  PubMed  CAS  Google Scholar 

  • Irvine SQ, Martindale MQ (2000) Expression patterns of anterior Hox genes in the polychaete Chaetopterus: correlation with morphological boundaries. Dev Biol 217:333–351

    Article  PubMed  CAS  Google Scholar 

  • Kourakis MJ, Martindale MQ (2001) Hox gene duplication and deployment in the annelid leech Helobdella. Evol Dev 3:145–153

    Article  PubMed  CAS  Google Scholar 

  • Kourakis MJ, Master VA, Lokhorst DK, Nardelli-Haefliger D, Wedeen CJ, Martindale MQ, Shankland M (1997) Conserved anterior boundaries of Hox gene expression in the central nervous system of the leech Helobdella. Dev Biol 190:284–300

    Article  PubMed  CAS  Google Scholar 

  • Krumlauf R (1994) Analysis of gene expression by northern blot. Mol Biotechnol 2:227–242

    Article  PubMed  CAS  Google Scholar 

  • Kulakova M, Bakalenko N, Novikova E, Cook CE, Eliseeva E, Steinmetz PRH, Kostyuchenko RP, Dondua A, Arendt D, Akam M, Andreeva T (2007) Hox gene expression in larval development of the polychaetes Nereis virens and Platynereis dumerilii (Annelida, Lophotrochozoa). Dev Genes Evol 217:39–54

    Article  PubMed  CAS  Google Scholar 

  • Kulakova MA, Cook CE, Andreeva TF (2008) ParaHox gene expression in larval and postlarval development of the polychaete Nereis virens (Annelida, Lophotrochozoa). BMC Dev Biol 8:61

    Article  PubMed  Google Scholar 

  • McGinnis W, Krumlauf R (1992) Homeobox genes and axial patterning. Cell 68:283–302

    Article  PubMed  CAS  Google Scholar 

  • Miller, MA, Pfeiffer, W, Schwartz, T (2010) Creating the CIPRES Science Gateway for inference of large phylogenetic trees. Proceedings of the Proceedings of the Gateway Computing Environments Workshop (GCE), New Orleans, LA, 14 November 2010

  • Morgan TH (1901) Regeneration. Macmillan, New York

    Google Scholar 

  • Müller MC (2006) Polychaete nervous systems: ground pattern and variations—cLS microscopy and the importance of novel characteristics in phylogenetic analysis. Integr Comp Biol 46:125–133

    Article  PubMed  Google Scholar 

  • Müller MC, Henning L (2004) Ground plan of the polychaete brain—I. Patterns of nerve development during regeneration in Dorvillea bermudensis (Dorvilleidae). J Comp Neurol 471:49–58

    Article  PubMed  Google Scholar 

  • Müller MCM, Westheide W (2002) Comparative analysis of the nervous systems in presumptive progenetic dinophilid and dorvilleid polychaetes (Annelida) by immunohistochemistry and cLSM. Acta Zool 83:33–48

    Article  Google Scholar 

  • Müller MCM, Berenzen A, Westheide W (2003) Experiments on anterior regeneration in Eurythoe complanata ("Polychaeta", Amphinomidae): reconfiguration of the nervous system and its function for regeneration. Zoomorphology 122:95–103

    Article  Google Scholar 

  • Pfannenstiel HD (1984) The ventral nerve cord signals positional information during segment formation in an annelid (Ophryotrocha puerilis, Polychaeta). Wilhelm Rouxs Arc Dev Biol 194:32–36

    Article  Google Scholar 

  • Sanchez Alvarado A (2000) Regeneration in the metazoans: why does it happen? Bioessays 22:578–590

    Article  PubMed  CAS  Google Scholar 

  • Seaver EC, Kaneshige LM (2006) Expression of 'segmentation' genes during larval and juvenile development in the polychaetes Capitella sp. I and H. elegans. Dev Biol 289:179–194

    Article  PubMed  CAS  Google Scholar 

  • Smith JE (1956) Some observations on the neuron arrangement and fibre patterns in the nerve cord of nereid polychaetes. Pubbl Stn Zool Napoli 27:168–188

    Google Scholar 

  • Smith JE (1957) The nervous anatomy of the body segments of nereid polychaetes. Phil Trans B 240:135–196

    Article  Google Scholar 

  • Tamura, K, Peterson, D, Peterson, N, Stecher, G, Nei, M, Kumar, S (2011) MEGA5: Molecular Evolutionary Genetics Analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28(10):2731–2739

    Google Scholar 

  • Tanaka EM (2003) Regeneration: if they can do it, why can't we? Cell 113:559–562

    Article  PubMed  CAS  Google Scholar 

  • Wong VY, Aisemberg GO, Gan WB, Macagno ER (1995) The leech homeobox gene Lox4 may determine segmental differentiation of identified neurons. J Neurosci 15:5551–5559

    PubMed  CAS  Google Scholar 

  • Yoshida-Noro C, Myohara M, Kobari F, Tochinai S (2000) Nervous system dynamics during fragmentation and regeneration in Enchytraeus japonensis (Oligochaeta, Annelida). Dev Genes Evol 210:311–319

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Brigitte Fronk and Sabine Wagner for maintenance of the Platynereis dumerilii culture and technical assistance. We gratefully acknowledge Elaine C. Seaver for the careful reading and valuable remarks. Thanks are due to unknown reviewers for valuable comments. This research was supported in part by the National Science Foundation through TeraGrid resources provided by the CIPRES portal.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas C. Fröbius.

Additional information

Communicated by M. Martindale

K. Pfeifer and A. C. Fröbius contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1

Orthology assignments for Platynereis dumerilii Hox genes. Platynereis dumerilii Hox sequences are delimited by arrows. Numbers above branches indicate Bayesian posterior probabilities. Ovals delimit bootstrap support >50 at a node from either neighbor-joining (NJ) or maximum likelyhood (ML) analyses and squares show bootstrap support >50 from both NJ and ML analyses (JPEG 102 kb)

High resolution image (TIFF 639 kb)

Fig. S2

Comparison of spatial expression of Hox genes of Platynereis dumerilii in adult posterior ends and during caudal regeneration. Lighter and darker colors indicate lower and higher expression levels, respectively. The red dashed line marks the amputation site for regenerates. The asterisk marks the last original segment for regenerates. nsz nascent segment zone, pgz posterior growth zone region, py pygidium (JPEG 40 kb)

High resolution image (TIFF 950 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pfeifer, K., Dorresteijn, A.W.C. & Fröbius, A.C. Activation of Hox genes during caudal regeneration of the polychaete annelid Platynereis dumerilii . Dev Genes Evol 222, 165–179 (2012). https://doi.org/10.1007/s00427-012-0402-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00427-012-0402-z

Keywords

Navigation