Skip to main content
Log in

Expression of somite segmentation genes in amphioxus: a clock without a wavefront?

  • Original Article
  • Published:
Development Genes and Evolution Aims and scope Submit manuscript

Abstract

In the basal chordate amphioxus (Branchiostoma), somites extend the full length of the body. The anteriormost somites segment during the gastrula and neurula stages from dorsolateral grooves of the archenteron. The remaining ones pinch off, one at a time, from the tail bud. These posterior somites appear to be homologous to those of vertebrates, even though the latter pinch off from the anterior end of bands of presomitic mesoderm rather than directly from the tail bud. To gain insights into the evolution of mesodermal segmentation in chordates, we determined the expression of ten genes in nascent amphioxus somites. Five (Uncx4.1, NeuroD/atonal-related, IrxA, Pcdhδ2-17/18, and Hey1) are expressed in stripes in the dorsolateral mesoderm at the gastrula stage and in the tail bud while three (Paraxis, Lcx, and Axin) are expressed in the posterior mesendoderm at the gastrula and neurula stages and in the tail bud at later stages. Expression of two genes (Pbx and OligA) suggests roles in the anterior somites that may be unrelated to initial segmentation. Together with previous data, our results indicate that, with the exception that Engrailed is only segmentally expressed in the anterior somites, the genetic mechanisms controlling formation of both the anterior and posterior somites are probably largely identical. Thus, the fundamental pathways for mesodermal segmentation involving Notch–Delta, Wnt/β-catenin, and Fgf signaling were already in place in the common ancestor of amphioxus and vertebrates although budding of somites from bands of presomitic mesoderm exhibiting waves of expression of Notch, Wnt, and Fgf target genes was likely a vertebrate novelty. Given the conservation of segmentation gene expression between amphioxus and vertebrate somites, we propose that the clock mechanism may have been established in the basal chordate, while the wavefront evolved later in the vertebrate lineage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aulehla A, Wiegraebe W, Baubet V, Wahl MB, Deng C, Taketo M, Lewandoski M, Pourquié (2008) A β-catenin gradient links the clock and wavefront systems in mouse embryo segmentation. Nat Cell Biol 10:186–193

    Article  PubMed  CAS  Google Scholar 

  • Beaster-Jones L, Horton AC, Gibson-Brown JJ, Holland ND, Holland LZ (2006) The amphioxus T-box gene, AmphiTbx15/18/22, illuminates the origins of chordate segmentation. Evol Dev 8:119–129

    Article  PubMed  CAS  Google Scholar 

  • Boronchain OJ, Pollet N, Ymlahi-Ouazzani Q, Dhorne-Pollet S, Heibling JC, Lecarpentier JE, Percheron K, Wegnez M (2007) The olig family: phylogenetic analysis and early gene expression in Xenopus tropicalis. Dev Genes Evol 217:485–497

    Article  Google Scholar 

  • Burgess R, Rawls A, Brown D, Bradley A, Olson EN (1996) Requirement of the paraxis gene for somite formation and musculoskeletal patterning. Nature 384:570–573

    Article  PubMed  CAS  Google Scholar 

  • Bussen M, Petry M, Schuster-Gossler K, Leitges M, Gossler A, Kispert A (2004) The T-box transcription factor Tbx18 maintains the separation of anterior and posterior somite compartments. Genes Dev 18:1209–1221

    Article  PubMed  CAS  Google Scholar 

  • Cinquin O (2007) Understanding the somitogenesis clock: what’s missing? Mech Dev 124:501–517

    Article  PubMed  CAS  Google Scholar 

  • Dequeant ML, Glynn E, Gaudenz K, Wahl M, Chen J, Mushegian A, Pourquié O (2006) A complex oscillating network of signaling genes underlies the mouse segmentation clock. Science 314:1595–1598

    Article  PubMed  CAS  Google Scholar 

  • Dunty WC Jr, Biris KK, Chalamalasetty RB, Taketo MM, Lewandoski M, Yamaguchi TP (2008) Wnt3a/-catenin signaling controls posterior body development by coordinating mesoderm formation and segmentation. Development 135:85–94

    Article  PubMed  CAS  Google Scholar 

  • Elmasri H, Liedtke D, Lucking G, Volff J-N, Gessler M, Winkler C (2004) her7 and hey1, but not lunatic fringe show dynamic expression during somitogenesis in medaka (Oryzias latipes). Gene Exp Patterns 4:553–559

    Article  CAS  Google Scholar 

  • Farin HF, Bussen M, Schmidt MK, Singh MK, Schuster-Gossler K, Kispert A (2007) Transcriptional repression by the T-box proteins Tbx18 and Tbx15 depends on groucho corepressors. J Biol Chem 282:25748–25759

    Article  PubMed  CAS  Google Scholar 

  • Feller J, Schneider A, Schuster-Gossler K, Gossler A (2008) Noncyclic Notch activity in the presomitic mesoderm demonstrates uncoupling of somite compartmentalization and boundary formation. Genes Dev 22:2166–2171

    Article  PubMed  CAS  Google Scholar 

  • Flood PR (1975) Fine structure of the notochord of amphioxus. Symp Zool Soc London 36:81–104

    Google Scholar 

  • Goldbeter A, Pourquie O (2008) Modeling the segmentation clock as a network of coupled oscillations in the Notch, Wnt and FGF signaling pathways. J Theor Biol 252:574–585

    Article  PubMed  CAS  Google Scholar 

  • Holland LZ, Holland ND (2000) Developmental expression of AmphiWnt1, an amphioxus gene in the Wnt1/wingless subfamily. Dev Genes Evol 210:522–524

    Article  PubMed  CAS  Google Scholar 

  • Holland LZ, Yu JK (2004) Cephalochordate (Amphioxus) embryos: procurement, culture, basic methods. Methods Cell Biol 74:195–215

    Article  PubMed  Google Scholar 

  • Holland LZ, Holland PWH, Holland ND (1996) Revealing homologies between body parts of distantly related animals by in situ hybridization to developmental genes: amphioxus versus vertebrates. In: Palumbi S, Ferraris JD (eds) Molecular approaches to zoology and evolution. Wiley, New York, pp 267–282, 473–483

    Google Scholar 

  • Holland LZ, Kene M, Williams N, Holland ND (1997) Sequence and embryonic expression of the amphioxus engrailed gene (AmphiEn): the metameric pattern of transcription resembles that of its segment-polarity homolog in Drosophila. Development 124:1723–1732

    PubMed  CAS  Google Scholar 

  • Holland LZ, Rached LA, Tamme R, Holland ND, Inoko H, Shiina T, Burgtorf C, Lardelli M (2001) Characterization and developmental expression of the amphioxus homolog of Notch (AmphiNotch): evolutionary conservation of multiple expression domains in amphioxus and vertebrates. Dev Biol 232:493–507

    Article  PubMed  CAS  Google Scholar 

  • Holland LZ, Panfilio KA, Chastain R, Schubert M, Holland ND (2005) Nuclear beta-catenin promotes non-neural ectoderm and posterior cell fates in amphioxus embryos. Dev Dyn 233:1430–1443

    Article  PubMed  CAS  Google Scholar 

  • Holland LZ, Holland ND, Gilland E (2008) Amphioxus and the evolution of head segmentation. Integrative Comp Biol. doi:10.1093/icb/icn060

  • Homayouni R, Rice DS, Curran T (2001) Disabled-1 interacts with a novel developmentally regulated protocadherin. Biochem Biophys Res Comm 289:539–547

    Article  PubMed  CAS  Google Scholar 

  • Hoppler S, Brown JD, Moon RT (1996) Expression of a dominant-negative Wnt blocks induction of MyoD in Xenopus embryos. Genes Dev 10:2805–2817

    Article  PubMed  CAS  Google Scholar 

  • Jho EH, Zhang T, Domon C, Joo CK, Freund JN, Costantini F (2002) Wnt/beta-catenin/Tcf signaling induces the transcription of Axin2, a negative regulator of the signaling pathway. Mol Cell Biol 22:1172–1183

    Article  PubMed  CAS  Google Scholar 

  • Kawamura A, Koshida S, Takada S (2008) Activator-to-repressor conversion of T-box transcription factors by the Ripply family of Groucho/TLE-associated mediators. Mol Cell Biol 28:3236–3244. doi:10.1128/MCB.01754-07

    Article  PubMed  CAS  Google Scholar 

  • Kim S, Yamamoto A, Bouwmeester T, Agius E, Robertis E (1998) The role of paraxial protocadherin in selective adhesion and cell movements of the mesoderm during Xenopus gastrulation. Development 125:4681–4690

    PubMed  CAS  Google Scholar 

  • Kim S-H, Jen W-C, De Robertis EM, Kintner C (2000) The protocadherin PAPC establishes segmental boundaries during somitogenesis in Xenopus embryos. Current Biol 10:821–830

    Article  CAS  Google Scholar 

  • Kim S-Y, Chung HS, Sun W, Kim H (2007) Spatiotemporal expression pattern of non-clustered protocadherin family members in the developing rat brain. Neuroscience 147:996–1021

    Article  PubMed  CAS  Google Scholar 

  • Kozmik Z, Holland ND, Kreslova J, Oliveri D, Schubert M, Jonasova K, Holland LZ, Pestarino M, Benes V, Candiani S (2007) Pax-Six-Eya-Dach network during amphioxus development: conservation in vitro but context specificity in vivo. Dev Biol 306:143–159

    Article  PubMed  CAS  Google Scholar 

  • Kusakabe R, Kuratani S (2007) Evolutionary perspectives from development of mesodermal components in the lamprey. Dev Dyn 236:2410–2420

    Article  PubMed  CAS  Google Scholar 

  • Kusakabe R, Kusakabe T, Satoh N, Holland ND, Holland LZ (1997) Differential gene expression and intracellular mRNA localization of amphioxus actin isoforms throughout development: implications for conserved mechanisms of chordate development. Dev Genes Evol 207:203–215

    Article  CAS  Google Scholar 

  • Laurent A, Bihan R, Omilli F, Deschamps S, Pellerin I (2008) PBX proteins: much more than Hox cofactors. Dev Biol 52:9–20

    Article  CAS  Google Scholar 

  • Lebel M, Agarwal P, Cheng CW, Kabir MG, Chan TY, Thanabalasingham V, Zhang X, Cohen DR, Husain M, Cheng SH, Bruneau BG, Hui C-C (2003) The Iroquois homeobox gene Irx2 is not essential for normal development of the heart and midbrain-hindbrain boundary in mice. Mol Cell Biol 23:8216–8225

    Article  PubMed  CAS  Google Scholar 

  • Leimeister C, Dale K, Fischer A, Klamt B, Hrabe de Angelis M, Radtke F, McGrew MJ, Pourquie O, Gessler M (2000) Oscillating expression of c-Hey2 in the presomitic mesoderm suggests that the segmentation clock may use combinatorial signaling through multiple interacting bHLH factors. Dev Biol 227:91–103

    Article  PubMed  CAS  Google Scholar 

  • Li X, Zhang W, Chen D, Lin Y, Huang X, Shi D, Zhang H (2006) Expression of a novel somite-formation-related gene, AmphiSom, during amphioxus development. Dev Genes Evol 216:52–55

    Article  PubMed  CAS  Google Scholar 

  • Linker C, Lesbros C, Gros J, Burrus LW, Rawls A, Marcelle C (2005) β-catenin-dependent Wnt signalling controls the epithelial organisation of somites through the activation of paraxis. Development 132:3895–3905

    Article  PubMed  CAS  Google Scholar 

  • Mara A, Holley SA (2007) Oscillators and the emergence of tissue organization during zebra fish somitogenesis. Trends Cell Biol 17:593–599

    Article  PubMed  CAS  Google Scholar 

  • Matsumoto K, Nishihara S, Kamimura M, Shiraishi T, Otoguro T, Uehara M, Maeda Y, Ogura K, Lumsden A, Ogura T (2004) The prepattern transcription factor Irx2, a target of the FGF8/MAP kinase cascade, is involved in cerebellum formation. Nature Neurosci 7:605–612

    Article  PubMed  CAS  Google Scholar 

  • Meulemans D, Bronner-Fraser M (2007) Insights from amphioxus into the evolution of vertebrate cartilage. PLoS ONE 2:e787

    Article  PubMed  Google Scholar 

  • Minguillón C, Jimenez-Delgado S, Panopoulou G, Garcia-Fernandez J (2003) The amphioxus Hairy family: differential fate after duplication. Development 130:5903–5914

    Article  PubMed  Google Scholar 

  • Morimoto M, Sasaki N, Oginuma M, Kiso M, Igarashi K, Aizaki K, Kanno J, Saga Y (2007) The negative regulation of Mesp2 by mouse Ripply2 is required to establish the rostro-caudal patterning within a somite. Development 134:1561–1569

    Article  PubMed  CAS  Google Scholar 

  • Neal HV (1918) The history of the eye muscles. J Morphol 30:433–453

    Article  Google Scholar 

  • Noden DM, Francis-West P (2006) The differentiation and morphogenesis of craniofacial muscles. Dev Dynam 235:1194–1218

    Article  CAS  Google Scholar 

  • Noden DM, Trainor PA (2005) Relations and interactions between cranial mesoderm and neural crest populations. J Anat 207:575–601

    PubMed  Google Scholar 

  • Offner N, Dubal N, Jamrich M, Durand B (2005) The pro-apoptotic activity of a vertebrate Bar-like homeobox gene plays a key role in patterning the Xenopus neural plate by limiting the number of chordin-and shh-expressing cells. Development 132:1807–1818

    Article  PubMed  CAS  Google Scholar 

  • Őzbudak E, Pourquié O (2008) The vertebrate segmentation clock: the tip of the iceberg. Curr Opin Genet Dev. doi:10.1016/j.gde.2008.06.007

  • Rasmussen SLK, Holland LZ, Schubert M, Beaster-Jones L, Holland ND (2007) Amphioxus AmphiDelta: evolution of delta protein structure, segmentation, and neurogenesis. Genesis 45:113–122

    Article  PubMed  CAS  Google Scholar 

  • Redies C, Vanhalst K, van Roy F (2005) δ-Protocadherins: unique structures and functions. Cell Mol Life Sci 62:2840–2852

    Article  PubMed  CAS  Google Scholar 

  • Reig G, Cabrejos ME, Concha ML (2007) Functions of BarH transcription factors during embryonic development. Dev Biol 302:367–375

    Article  PubMed  CAS  Google Scholar 

  • Schragle J, Huang R, Christ B, Prols F (2004) Control of the temporal and spatial Uncx4.1 expression in the paraxial mesoderm of avian embryos. Anat Embryol. 208:323–332

    Article  PubMed  CAS  Google Scholar 

  • Schubert M, Holland LZ, Panopoulou GD, Lehrach H, Holland ND (2000) Characterization of amphioxus AmphiWnt8: insights into the evolution of patterning of the embryonic dorsoventral axis. Evol Dev 2:85–92

    Article  PubMed  CAS  Google Scholar 

  • Schubert M, Holland LZ, Stokes MD, Holland ND (2001) Three amphioxus Wnt genes (AmphiWnt3, AmphiWnt5, and AmphiWnt6) associated with the tail bud: the evolution of somitogenesis in chordates. Dev Biol 240:262–273

    Article  PubMed  CAS  Google Scholar 

  • Schubert M, Yu JK, Holland ND, Escriva H, Laudet V, Holland LZ (2005) Retinoic acid signaling acts via Hox1 to establish the posterior limit of the pharynx in the chordate amphioxus. Development 132:61–73

    Article  PubMed  CAS  Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  PubMed  CAS  Google Scholar 

  • Wang Y, Janicki P, Koster I, Berger CD, Wenzl C, Grosshans J, Steinbeisser H (2008) Xenopus paraxial protocadherin regulates morphogenesis by antagonizing sprouty. Genes Dev 22:878–883

    Article  PubMed  CAS  Google Scholar 

  • Yu J-K, Satou Y, Holland ND, Shin-i T, Kohara Y, Satoh N, Bronner-Fraser M, Holland LZ (2007) Axial patterning in cephalochordates and the evolution of the organizer. Nature 445:613–617

    Article  PubMed  CAS  Google Scholar 

  • Yu J-K, Satou Y, Wang M-C, Shin I-T, Kohara Y, Holland LZ, Satoh N (2008) A cDNA resource for the cephalochordate amphioxus Branchiostoma floridae. Dev Genes Evol. doi:10.1007/s00427-008-0228-x

Download references

Acknowledgements

We thank John Lawrence, Susan Bell, and the staff of the University of South Florida for providing laboratory space during the summer breeding season of amphioxus. This work was supported by an National Science Fund (NSF) predoctoral fellowship to S. L. Kaltenbach and by NSF grants Grant IBN 02-3617 to L. Z. H. and IBN 04-16292 to L. Z. H. and N. D. Holland.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Linda Z. Holland.

Additional information

Communicated by J. Gibson-Brown

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 278 kb)

ESM Table 1

EST clones used to synthesize probes for in situ hybridization (DOC 29.0 kb)

ESM Table 2

Protein sequences (DOC 26.5 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beaster-Jones, L., Kaltenbach, S.L., Koop, D. et al. Expression of somite segmentation genes in amphioxus: a clock without a wavefront?. Dev Genes Evol 218, 599–611 (2008). https://doi.org/10.1007/s00427-008-0257-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00427-008-0257-5

Keywords

Navigation