Skip to main content
Log in

Conservation of linkage and evolution of developmental function within the Tbx2/3/4/5 subfamily of T-box genes: implications for the origin of vertebrate limbs

  • Original Article
  • Published:
Development Genes and Evolution Aims and scope Submit manuscript

Abstract

T-box genes encode a family of DNA-binding transcription factors implicated in numerous developmental processes in all metazoans. The Tbx2/3/4/5 subfamily genes are especially interesting because of their key roles in the evolution of vertebrate appendages, eyes, and the heart, and, like the Hox genes, the longevity of their chromosomal linkage. A BAC library derived from the single male amphioxus (Branchiostoma floridae) used to sequence the amphioxus genome was screened for AmphiTbx2/3 and AmphiTbx4/5, yielding two independent clones containing both genes. Using comparative expression, genomic linkage, and phylogenetic analyses, we have reconstructed the evolutionary histories of these members of the T-box gene family. We find that the Tbx2–Tbx4 and Tbx3–Tbx5 gene pairs have maintained tight linkage in most animal lineages since their birth by tandem duplication, long before the divergence of protostomes and deuterostomes (e.g., arthropods and vertebrates) at least 600 million years ago, and possibly before the divergence of poriferans and cnidarians (e.g., sponges and jellyfish). Interestingly, we find that the gene linkage detected in all vertebrate genomes has been maintained in the primitively appendage-lacking, basal chordate, amphioxus. Although all four genes have been involved in the evolution of developmental programs regulating paired fin and (later) limb outgrowth and patterning, and most are also implicated in eye and heart development, linkage maintenance—often considered due to regulatory constraints imposed by limb, eye, and/or heart associated gene expression—is undoubtedly a consequence of other, much more ancient functional constraints.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Adell T, Muller WE (2005) Expression pattern of the Brachyury and Tbx2 homologues from the sponge Suberites domuncula. Biol Cell 97:641–650

    Article  PubMed  CAS  Google Scholar 

  • Adell T, Grebenjuk VA, Wiens M, Muller WE (2003) Isolation and characterization of two T-box genes from sponges, the phylogenetically oldest metazoan taxon. Dev Genes Evol 213:421–434

    Article  PubMed  CAS  Google Scholar 

  • Agulnik SI, Garvey N, Hancock S, Ruvinsky I, Chapman DL, Agulnik I, Bollag R, Papaioannou VE, Silver LM (1996) Evolution of mouse T-box genes by tandem duplication and cluster dispersion. Genetics 144:249–254

    PubMed  CAS  Google Scholar 

  • Ahn DG, Kourakis MJ, Rohde LA, Silver LM, Ho RK (2002) T-box gene tbx5 is essential for formation of the pectoral limb bud. Nature 417:754–758

    Article  PubMed  CAS  Google Scholar 

  • Animasova M, Gascuel O (2006) Approximate likelihood ratio test for branches: a fast, accurate and powerful alternative. Syst Biol 55:539–552

    Article  Google Scholar 

  • Basson CT, Bachinsky DR, Lin RC, Levi T, Elkins JA, Soults J, Grayzel D, Kroumpouzou E, Traill TA, Leblanc-Straceski J, Renault B, Kucherlapati R, Seidman JG, Seidman CE (1997) Mutations in human cause limb and cardiac malformation in Holt–Oram syndrome. Nat Genet 15:30–35

    Article  PubMed  CAS  Google Scholar 

  • Bemis WE, Grande L (1999) Development of the median fins of the North American paddlefish (Polyodon spathula), and a reevaluation of the lateral fin-fold hypothesis. In: Arratia G, Schulze HP (eds) Mesozoic fishes, vol. 2. Pfeil, Munich, pp 41–68

    Google Scholar 

  • Bollag RJ, Siegfried Z, Cebra-Thomas J, Garvey N, Davison EM, Silver LM (1994) An ancient family of embryonically expressed mouse genes sharing a conserved protein motif with the T-locus. Nat Genet 7:383–389

    Article  PubMed  CAS  Google Scholar 

  • Bongers EMHF, Duijf PHG, van Beersum SEM, Schoots J, van Kampen A, Burckhardt A, Hamel BCJ, Losan F, Hoefsloot LH, Yntema HG, Knoers NVAM, van Bokhoven H (2004) Mutations in the human TBX4 gene cause small patella syndrome. Am J Hum Genet 74:1239–1248

    Article  PubMed  CAS  Google Scholar 

  • Bourlat SJ, Juliusdottir T, Lowe CJ, Freeman R, Aronowicz J, Kirschner M, Lander ES, Thorndyke M, Nakano H, Kohn AB, Heyland A, Moroz LL, Copley RR, Telford MJ (2006) Deuterostome phylogeny reveals monophyletic chordates and the new phylum Xenoturbellida. Nature 444:85–88

    Article  PubMed  CAS  Google Scholar 

  • Bowler PJ (1996) Life’s splendid drama. University of Chicago Press, Chicago

    Google Scholar 

  • Cai WW, Reneker J, Chow CW, Vaishnav M, Bradley A (1998) An anchored framework BAC map of mouse chromosome 11 assembled using multiplex oligonucleotide hybridization. Genomics 54:387–397

    Article  PubMed  CAS  Google Scholar 

  • Carroll RL (1987) Vertebrate paleontology and evolution. Freeman, New York

    Google Scholar 

  • Coates MI, Cohn MJ (1999) Vertebrate axial and appendicular patterning: the early development of paired appendages. Am Zool 39:676–685

    Google Scholar 

  • Cohn MJ, Patel K, Krumlauf R, Wilkinson DG, Clarke JDW, Tickle C (1997) Hox9 genes and vertebrate limb specification. Nature 387:97–101

    Article  PubMed  CAS  Google Scholar 

  • Coulier F, Popovicci C, Villet R, Birnbaum D (2000) MetaHox gene clusters. J Exp Zool 288:345–351

    Article  PubMed  CAS  Google Scholar 

  • Dehal P, Boore JL (2005) Two rounds of whole genome duplication in the ancestral vertebrate. PLoS Biol 3:1700–1708

    Article  CAS  Google Scholar 

  • Dehal P, Satou Y, Campbell RK, Chapman J, Degnan B, De Tomaso A, Davidson B, Di Gregorio A, Gelpke M, Goodstein DM, Harafuji N, Hastings KE, Ho I, Hotta K, Huang W, Kawashima T, Lemaire P, Martinez D, Meinertzhagen IA, Necula S, Nonaka M, Putnam N, Rash S, Saiga H, Satake M, Terry A, Yamada L, Wang HG, Awazu S, Azumi K, Boore J, Branno M, Chin-Bow S, DeSantis R, Doyle S, Francino P, Keys DN, Haga S, Hayashi H, Hino K, Imai KS, Inaba K, Kano S, Kobayashi K, Kobayashi M, Lee BI, Makabe KW, Manohar C, Matassi G, Medina M, Mochizuki Y, Mount S, Morishita T, Miura S, Nakayama A, Nishizaka S, Nomoto H, Ohta F, Oishi K, Rigoutsos I, Sano M, Sasaki A, Sasakura Y, Shoguchi E, Shin-i T, Spagnuolo A, Stainier D, Suzuki MM, Tassy O, Takatori N, Tokuoka M, Yagi K, Yoshizaki F, Wada S, Zhang C, Hyatt PD, Larimer F, Detter C, Doggett N, Glavina T, Hawkins T, Richardson P, Lucas S, Kohara Y, Levine M, Satoh N, Rokhsar DS (2002) The draft genome of Ciona intestinalis: insights into chordate and vertebrate origins. Science 298:2157–2167

    Article  PubMed  CAS  Google Scholar 

  • Delsuc F, Brinkmann H, Chourrout D, Philippe H (2006) Tunicates and not cephalochordates are the closest living relatives of vertebrates. Nature 439:965–968

    Article  PubMed  CAS  Google Scholar 

  • Felsenstein J (1978) Cases in which parsimony or compatibility methods will be positively misleading. Syst Zool 27:401–410

    Article  Google Scholar 

  • Fernald RD (2006) Casting a genetic light on the evolution of eyes. Science 313:1914–1918

    Article  PubMed  CAS  Google Scholar 

  • Force A, Lynch M, Pickett FB, Amores A, Yan Y, Postlethwaite J (1999) Preservation of duplicate genes by complementary, degenerative mutations. Genetics 151:1531–1545

    PubMed  CAS  Google Scholar 

  • Gascuel O (1997) BIONJ: an improved version of the NJ algorithm based on a simple model of sequence data. Mol Biol Evol 14:685–695

    PubMed  CAS  Google Scholar 

  • Gibson-Brown JJ, Agulnik SI, Chapman DL, Alexiou M, Garvey N, Silver LM, Papaioannou VE (1996) Evidence of a role for T-box genes in the evolution of limb morphogenesis and the specification of forelimb/hindlimb identity. Mech Dev 56:93–101

    Article  PubMed  CAS  Google Scholar 

  • Gibson-Brown JJ, Agulnik SI, Silver LM, Niswander L, Papaioannou VE (1998a) Involvement of T-box genes Tbx2–Tbx5 in vertebrate limb specification and development. Development 125:2499–2509

    PubMed  CAS  Google Scholar 

  • Gibson-Brown JJ, Agulnik SI, Silver LM, Papaioannou VE (1998b) Expression of T-box genes Tbx2–Tbx5 during chick organogenesis. Mech Dev 74:165–169

    Article  PubMed  CAS  Google Scholar 

  • Gibson-Brown JJ, Osoegawa K, McPherson JD, Waterston RH, De Jong PJ, Rokhsar DS, Holland LZ (2003) A proposal to sequence the amphioxus genome submitted to the Joint Genome Institute of the US Department of Energy. J Exp Zool (Mol Dev Evol) 300B:5–22

    Article  Google Scholar 

  • Goldman N, Anderson JP, Rodrigo AG (2000) Likelihood-based tests of topologies in phylogenetics. Syst Biol 49:652–670

    Article  PubMed  CAS  Google Scholar 

  • Goodrich ES (1958) Studies on the structure and development of vertebrates. Dover, New York

    Google Scholar 

  • Gross JM, Peterson RE, Wu SY, McClay DR (2003) LvTbx2/3: a T-box family transcription factor involved in formation of the oral/aboral axis of the sea urchin embryo. Development 130:1989–1999

    Article  PubMed  CAS  Google Scholar 

  • Guindon S, Gascuel O (2003) A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52:696–704

    Article  PubMed  Google Scholar 

  • Guindon S, Lethiec F, Duroux P, Gascuel O (2005) PHYML Online—a web server for fast maximum likelihood-based phylogenetic inference. Nucleic Acids Res 33:W557–W559

    Article  PubMed  CAS  Google Scholar 

  • Han CS, Sutherland RD, Jewett PB, Campbell ML, Meincke LJ, Tesmer JG, Mundt MO, Fawcett JJ, Kim UJ, Deaven LL, Doggett NA (2000) Construction of a BAC contig map of chromosome 16q by two-dimensional overgo hybridization. Genome Res 10:714–721

    Article  PubMed  CAS  Google Scholar 

  • Hasson P, Del Buono J, Logan MPO (2007) Tbx5 is dispensable for forelimb outgrowth. Development 134:85–92

    Article  PubMed  CAS  Google Scholar 

  • Holland ND, Holland LZ (1993) Embryos and larvae of invertebrate deuterostomes. In: Stern CD, Holland PWH (eds) Essential developmental biology: a practical approach. IRL, Oxford, pp 21–32

    Google Scholar 

  • Holland LZ, Holland PWH, Holland ND (1996) Revealing homologies of distantly related animals by in situ hybridization to developmental genes: amphioxus versus vertebrates. In: Ferraris JD, Palumbi SR (eds) Molecular zoology: advances, strategies and protocols. Wiley, New York, pp 267–282

    Google Scholar 

  • Holland ND, Venkatesh TV, Holland LZ, Jacobs DK, Bodmer R (2003) AmphiNk2-tin, an amphioxus homeobox gene expressed in myocardial progenitors: insights into evolution of the vertebrate heart. Dev Biol 255:128–137

    Article  PubMed  CAS  Google Scholar 

  • Horton AC, Mahadevan NR, Ruvinsky I, Gibson-Brown JJ (2003) Phylogenetic analyses alone are insufficient to determine whether genome duplication(s) occurred during early vertebrate evolution. J Exp Zool (Mol Dev Evol) 299B:41–53

    Article  CAS  Google Scholar 

  • Isaac A, Rodriguez-Esteban C, Ryan A, Altabef M, Tsukui T, Patel K, Tickle C, Izpisua-Belmonte JC (1998) Tbx genes and limb identity in chick embryo development. Development 125:1867–1875

    PubMed  CAS  Google Scholar 

  • Kishino H, Hasegawa M (1989) Evaluation of the maximum likelihood estimate of the evolutionary tree topologies from DNA sequence data, and the branching order in Hominoidea. J Mol Evol 29:170–179

    Article  PubMed  CAS  Google Scholar 

  • Kozmik Z (2005) Pax genes in eye development and evolution. Curr Opin Genet Dev 15:430–438

    Article  PubMed  CAS  Google Scholar 

  • Lanctot C, Moreau A, Chamberland M, Tremblay ML, Drouin J (1999) Hindlimb patterning and mandible development require Ptx1 gene. Development 126:1805–1810

    PubMed  CAS  Google Scholar 

  • Li QY, Newbury-Ecob RA, Terrett JA, Wilson DI, Curtis AR, Yi CH, Gebuhr T, Bullen PJ, Robson SC, Strachan T, Bonnet D, Lyonnet S, Young ID, Raeburn JA, Buckler AJ, Law DJ, Brook JD (1997) Holt–Oram syndrome is caused by mutations in TBX5, a member of the Brachyury (T) gene family. Nat Genet 15:21–29

    Article  PubMed  Google Scholar 

  • Logan M (2003) Finger or toe: the molecular basis of limb identity. Development 130:6401–6410

    Article  PubMed  CAS  Google Scholar 

  • Logan M, Tabin CJ (1999) Role of Pitx1 upstream of Tbx4 in specification of hindlimb identity. Science 283:1736–1739

    Article  PubMed  CAS  Google Scholar 

  • Logan M, Simon HG, Tabin C (1998) Differential regulation of T-box and homeobox transcription factors suggests roles in controlling chick limb-type identity. Development 125:2825–2835

    PubMed  CAS  Google Scholar 

  • Lowe CJ, Terasaki M, Wu M, Freeman RM, Runft L, Kwan K, Haigo S, Aronowicz J, Lander E, Gruber C, Smith M, Kirschner M, Gerhart J (2006) Dorsoventral patterning in hemichordates: insights into early chordate evolution. PLoS Biol 4:e291 doi:10.1371/journal.pbio.0040291

    Article  PubMed  Google Scholar 

  • Martinelli C, Spring J (2003) Distinct expression patterns of the two T-box homologues Brachyury and Tbx2/3 in the placozoan Trichoplax adhaerens. Dev Genes Evol 213:492–429

    Article  PubMed  Google Scholar 

  • Martinelli C, Spring J (2005) T-box and homeobox genes from the ctenophore Pleurobrachia pileus: comparison of Brachyury, Tbx2/3 and Tlx in basal metazoans and bilaterians. FEBS Lett 579:5024–5028

    Article  PubMed  CAS  Google Scholar 

  • Menke DB, Guenther C, Kingsley DM (2008) Dual hindlimb control elements in the Tbx4 gene and region-specific control of bone size in vertebrate limbs. Development 135:2543–2553

    Article  PubMed  CAS  Google Scholar 

  • Minguillon C, Del Buono J, Logan MP (2005) Tbx5 and Tbx4 are not sufficient to determine limb-specific morphologies but have common roles in initiating limb outgrowth. Dev Cell 8:75–84

    Article  PubMed  CAS  Google Scholar 

  • Müller CW, Herrmann BG (1997) Crystallographic structure of the T domain–DNA complex of the Brachyury transcription factor. Nature 389:884–888

    Article  PubMed  Google Scholar 

  • Naiche LA, Papaioannou VE (2003) Loss of Tbx4 blocks hindlimb development and affects vascularization and fusion of the allantois. Development 130:2681–2693

    Article  PubMed  CAS  Google Scholar 

  • Naiche LA, Papaioannou VE (2006) Tbx4 is not required for hindlimb identity or post-bud hindlimb outgrowth. Development 134:93–103

    Article  Google Scholar 

  • Naiche LA, Harrelson Z, Kelly RG, Papaioannou VE (2005) T-box genes in vertebrate development. Annu Rev Genet 39:219–239

    Article  PubMed  CAS  Google Scholar 

  • Ohuchi H, Takeuchi J, Yoshioka H, Ishimaru Y, Ogura K, Takahashi N, Ogura T, Noji S (1998) Correlation of wing-leg identity in ectopic FGF-induced chimeric limbs with the differential expression of chick Tbx5 and Tbx4. Development 125:51–60

    PubMed  CAS  Google Scholar 

  • Olson EN (2006) Gene regulatory networks in the evolution and development of the heart. Science 313:1922–1927

    Article  PubMed  CAS  Google Scholar 

  • O’Neill P, McCole RB, Baker CV (2007) A molecular analysis of neurogenic placode and cranial sensory ganglion development in the shark, Scyliorhinus canicula. Dev Biol 304:156–181

    Article  PubMed  CAS  Google Scholar 

  • Ota R, Waddell PJ, Hasegawa M, Shimodaira H, Kishino H (2000) Appropriate likelihood ratio tests and marginal distributions for evolutionary tree models with constraints on parameters. Mol Biol Evol 17:798–803

    PubMed  CAS  Google Scholar 

  • Owen R (1849) On the nature of limbs. John Van Voorst, London

    Google Scholar 

  • Phillipe H, Lartillot N, Brinkman H (2005) Multigene analyses of bilaterian animals corroborate the monophyly of ecdysozoa, lophotrochozoa, and protostomia. Mol Biol Evol 22:1246–1253

    Article  Google Scholar 

  • Putnam NH, Butts T, Ferrier DEK, Furlong RF, Hellsten U, Kawashima T, Robinson-Rechavi M, Shoguchi E, Terry A, Yu J-K, Benito-Gutiérrez È, Dubchak I, Garcia-Fernàndez J, Gibson-Brown JJ, Grigoriev IV, Horton AC, de Jong PJ, Kapitonov V, Kohara Y, Kuroki Y, Lindquist E, Lucas S, Osoegawa K, Pennacchio LA, Salamov AA, Satou Y, Sauka-Spengler T, Schmutz J, Sin-i T, Toyoda A, Bronner-Fraser M, Fujiyama A, Holland LZ, Holland PWH, Satoh N, Rokhsar DS (2008) The amphioxus genome and the evolution of the chordate karyotype. Nature 453:1064–1071

    Article  PubMed  CAS  Google Scholar 

  • Rallis C, Del Buono J, Logan MPO (2005) Tbx3 can alter limb position along the rostrocaudal axis of the developing embryo. Development 132:1961–1970

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez-Esteban C, Tsukui T, Yonei S, Magallon J, Tamura K, Izpisua-Belmonte JC (1999) The T-box genes Tbx4 and Tbx5 regulate limb outgrowth and identity. Nature 398:814–818

    Article  PubMed  CAS  Google Scholar 

  • Ross R, Ross XL, Rueger B, Laengin T, Reske-Kunz AB (1999) Nonradioactive detection of differentially expressed genes using complex RNA or DNA hybridization probes. Biotechniques 26:150–155

    PubMed  CAS  Google Scholar 

  • Ruvinsky I, Gibson-Brown JJ (2000) Developmental bases of serial homology in vertebrate limb evolution. Development 127:5233–5244

    PubMed  CAS  Google Scholar 

  • Ruvinsky I, Silver LM (1997) Newly identified paralogous groups on mouse chromosomes 5 and 11 reveal the age of a T-box cluster duplication. Genomics 40:262–266

    Article  PubMed  CAS  Google Scholar 

  • Ruvinsky I, Silver LM, Gibson-Brown JJ (2000a) Phylogenetic analysis of T-box genes demonstrates the importance of amphioxus for understanding evolution of the vertebrate genome. Genetics 156:1249–1257

    PubMed  CAS  Google Scholar 

  • Ruvinsky I, Oates AC, Silver LM, Ho RK (2000b) The evolution of paired appendages in vertebrates: T-box genes in the zebrafish. Dev Genes Evol 210:82–91

    Article  PubMed  CAS  Google Scholar 

  • Schmidt HA, Strimmer K, Vingron M, von Haesseler A (2002) TREE-PUZZLE: maximum likelihood phylogenetic analysis using quartets and parallel computing. Bioinformatics 18:502–504

    Article  PubMed  CAS  Google Scholar 

  • Shimodaira H, Hasegawa M (1999) Multiple comparisons of log-likelihoods with applications to phylogenetic inference. Mol Biol Evol 16:1114–1116

    CAS  Google Scholar 

  • Suzuki T, Takeuchi J, Koshiba-Takeuchi K, Ogura T (2004) Tbx genes specify posterior digit identity through Shh and BMP signaling. Dev Cell 6:43–53

    Article  PubMed  CAS  Google Scholar 

  • Szeto DP, Rodriguez-Esteban C, Ryan AK, O’Connell SM, Liu F, Kioussi C, Gleiberman AS, Izpisua-Belmonte JC, Rosenfeld MG (1999) Role of the bicoid-related homeodomain factor Pitx1 in specifying hindlimb morphogenesis and pituitary development. Genes Dev 13:484–494

    Article  PubMed  CAS  Google Scholar 

  • Tabin C, Laufer E (1993) Hox genes and serial homology. Nature 361:692–693

    Article  Google Scholar 

  • Takeuchi JK, Koshiba-Takeuchi K, Matsumoto K, Vogel-Hopker A, Naitoh-Matsuo M, Ogura K, Takahashi N, Yasuda K, Ogura T (1999) Tbx5 and Tbx4 genes determine the wing/leg identity of limb buds. Nature 398:810–814

    Article  PubMed  CAS  Google Scholar 

  • Tanaka M, Münsterberg A, Anderson WG, Prescott AR, Hazon N, Tickle C (2002) Fin development in a cartilaginous fish and the origin of vertebrate limbs. Nature 416:527–531

    Article  PubMed  CAS  Google Scholar 

  • Wattler S, Russ A, Evans M, Nehls M (1998) A combined analysis of genomic and primary protein structure defines the phylogenetic relationship of new members if the T-box family. Genomics 48:24–33

    Article  PubMed  CAS  Google Scholar 

  • Yamada A, Pang K, Martindale MQ, Tochinai S (2007) Surprisingly complex T-box gene complement in diploblastic metazoans. Evol Dev 9:220–230

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeremy J. Gibson-Brown.

Additional information

Communicated by N. Satoh

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Fig. 1

Amino acid alignment used for the phylogenetic analysis depicted in Figure 1 (PDF 45.0 KB)

Supplementary Table 1

Amino acid coordinates of coding exons. Exon numbering as in Wattler et al. (1998) with subsequent exons numbered serially (DOC 37.5 KB)

Supplementary Table 2

Sizes of introns within coding regions. Intron numbering as in Wattler et al. (1998) with the addition of intron 0, between 5′ UTR and first coding exon, and introns 5, 6, and 7. Large (>5 kb) introns in bold type (DOC 44.0 KB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Horton, A.C., Mahadevan, N.R., Minguillon, C. et al. Conservation of linkage and evolution of developmental function within the Tbx2/3/4/5 subfamily of T-box genes: implications for the origin of vertebrate limbs. Dev Genes Evol 218, 613–628 (2008). https://doi.org/10.1007/s00427-008-0249-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00427-008-0249-5

Keywords

Navigation