Skip to main content
Log in

DmOAZ, the unique Drosophila melanogaster OAZ homologue is involved in posterior spiracle development

  • Original Article
  • Published:
Development Genes and Evolution Aims and scope Submit manuscript

Abstract

In this paper, we study DmOAZ, the unique Drosophila melanogaster homologue of the OAZ zinc finger protein family. We show partial conservation of the zinc finger organization between DmOAZ and the vertebrate members of this family. We determine the exon/intron structure of the dmOAZ gene and deduce its open reading frame. Reverse transcriptase-polymerase chain reaction analysis shows that dmOAZ is transcribed throughout life. In the embryo, strongest DmOAZ expression is observed in the posterior spiracles. We suggest that dmOAZ acts as a secondary target of the Abd-B gene in posterior spiracle development, downstream of cut and ems. In a newly created loss-of-function mutant, dmOAZ 93, the “filzkörper” part of the posterior spiracles, is indeed structurally abnormal. The dmOAZ 93 mutant is a larval lethal, a phenotype that may be linked to the spiracular defect. Given the dmOAZ 93 mutant as a new tool, the fruit fly may provide an alternative model for analyzing in vivo the functions of OAZ family members.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Adams MD et al (2000) The genome sequence of Drosophila melanogaster. Science 287:2185–2195

    Article  PubMed  Google Scholar 

  • Blochlinger K, Bodmer R, Jan LY, Jan YN (1990) Patterns of expression of cut, a protein required for external sensory organ development in wild-type and cut mutant Drosophila embryos. Genes Dev 4:1322–1331

    PubMed  CAS  Google Scholar 

  • Bray SJ, Kafatos FC (1991) Developmental function of Elf-1: an essential transcription factor during embryogenesis in Drosophila. Genes Dev 5:1672–1683

    PubMed  CAS  Google Scholar 

  • Brown S, Castelli-Gair Hombria J (2000) Drosophila grain encodes a GATA transcription factor required for cell rearrangement during morphogenesis. Development 127:4867–4876

    PubMed  CAS  Google Scholar 

  • Campos-Ortega JA, Hartenstein V (1997) The embryonic development of Drosophila melanogaster. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Castelli-Gair JE, Greig S, Micklem G, Akam ME (1994) Dissecting the temporal requirements for homeotic gene function. Development 120:1983–1995

    PubMed  CAS  Google Scholar 

  • Chang HCY, Solomon NM, Wassarman DA, Karim FD, Therrien M, Rubin GM, Wolff T (1995) Phyllopod functions in the fate determination of a subset of photoreceptors in Drosophila. Cell 80:463–472

    Article  PubMed  CAS  Google Scholar 

  • Crozatier M, Valle D, Dubois L, Ibnsouda S, Vincent A (1996) Collier, a novel regulator of Drosophila head development, is expressed in a single mitotic domain. Curr Biol 6:707–718

    Article  PubMed  CAS  Google Scholar 

  • Dalby B, Pereira, AJ, Goldstein LSB (1995) An inverse PCR screen for the detection of P element insertions in cloned genomic intervals in Drosophila melanogaster. Genetics 139:757–766

    PubMed  CAS  Google Scholar 

  • Dalton D, Chadwick R, McGinnis W (1989) Expression and embryonic function of empty spiracles: a Drosophila homeo box gene with two patterning functions on the anterior–posterior axis of the embryo. Genes Dev 3:1940–1956

    PubMed  CAS  Google Scholar 

  • Dickson BJ, Dominguez M, van der Straten A, Hafen E (1995) Control of Drosophila photoreceptor cell fates by phyllopod, a novel nuclear protein acting downstream of the Raf kinase. Cell 80:453–462

    Article  PubMed  CAS  Google Scholar 

  • Hagman J, Belanger C, Travis A, Turck CW, Grosschedl R (1993) Cloning and functional characterization of early B-cell factor, a regulator of lymphocyte-specific gene expression. Genes Dev 7:760–773

    PubMed  CAS  Google Scholar 

  • Hata A, Seoane J, Lagna G, Montalvo E, Hemmati-Brivanlou A, Massague J (2000) OAZ uses distinct DNA- and protein-binding zinc fingers in separate BMP-Smad and Olf signaling pathways. Cell 100:229–240

    Article  PubMed  CAS  Google Scholar 

  • Heimbeck G, Bugnon V, Gendre N, Keller A, Stocker F (2001) A central neural circuit for experience-independent olfactory and courtship behavior in Drosophila melanogaster. Proc Natl Acad Sci USA 98:15336–15341

    Article  PubMed  CAS  Google Scholar 

  • Hogan BL (1996) Bone morphogenetic proteins in development. Curr Opin Genet Dev 6:432–438

    Article  PubMed  CAS  Google Scholar 

  • Hombria JC, Lovegrove B (2003) Beyond homeosis—HOX function in morphogenesis and organogenesis. Differentiation 71:461–476

    Article  PubMed  Google Scholar 

  • Hu N, Castelli-Gair J (1999) Study of the posterior spiracles of Drosophila as a model to understand the genetic and cellular mechanisms controlling morphogenesis. Dev Biol 214:197–210

    Article  PubMed  CAS  Google Scholar 

  • Isaac DD, Andrew DJ (1996) Tubulogenesis in Drosophila: a requirement for the trachealess gene product. Genes Dev 10:103–117

    PubMed  CAS  Google Scholar 

  • Iuchi S (2001) Three classes of C2H2 zinc finger proteins. Cell Mol Life Sci 58:625–635

    Article  PubMed  CAS  Google Scholar 

  • Jones B, McGinnis W (1993) The regulation of empty spiracles by abdominal-B mediates an abdominal segment identity function. Genes Dev 7:229–240

    PubMed  CAS  Google Scholar 

  • Jürgens G (1985) A group of genes controlling the spatial expression of the bithorax complex in Drosophila. Nature 316:153–155

    Article  Google Scholar 

  • Klein T, Campos-Ortega JA (1997) klumpfuss, a Drosophila gene encoding a member of the EGR family of transcription factors, is involved in bristle and leg development. Development 124:3123–3134

    PubMed  CAS  Google Scholar 

  • Knight RD, Shimeld SM (2001) Identification of conserved C2H2 zinc-finger gene families in the bilateria. Genome Biol 2:RESEARCH0016

    PubMed  CAS  Google Scholar 

  • Ku MC, Stewart S, Hata A (2003) Poly(ADP-ribose) polymerase 1 interacts with OAZ and regulates BMP-target genes. Biochem Biophys Res Commun 311:702–707

    Article  PubMed  CAS  Google Scholar 

  • Kuhnlein RP, Frommer G, Friedrich M, Gonzalez-Gaitan M, Weber A, Wagner-Bernholz JF, Gehring WJ, Jäckle H, Schuh R (1994) spalt encodes an evolutionarily conserved zinc finger protein of novel structure which provides homeotic gene function in the head and tail region of the Drosophila embryo. EMBO J 13:168–179

    PubMed  CAS  Google Scholar 

  • Lamka ML, Boulet AM, Sakonju S (1992) Ectopic expression of UBX and ABD-B proteins during Drosophila embryogenesis: competition, not a functional hierarchy, explains phenotypic suppression. Development 116:841–854

    PubMed  CAS  Google Scholar 

  • Letunic I, Copley RR, Schmidt S, Ciccarelli FD, Doerks T, Schultz J, Ponting CP, Bork P (2004) SMART 4.0: towards genomic data integration. Nucleic Acids Res 32:D142–144

    Article  PubMed  CAS  Google Scholar 

  • Manning G, Krasnow MA (1993) Development of the Drosophila tracheal system. In: Bate M, Martinez Arias A (eds) The development of Drosophila melanogaster, vol 1. Cold Spring Harbor Lab Press, pp. 609–685

  • Merabet S, Hombria JC, Hu N, Pradel J, Graba Y (2005) Hox-controlled reorganisation of intrasegmental patterning cues underlies Drosophila posterior spiracle organogenesis. Development 132:3093–3102

    Article  PubMed  CAS  Google Scholar 

  • Ng M, Diaz-Benjumea FJ, Cohen SM (1995) nubbin encodes a POU-domain protein required for proximal–distal patterning in the Drosophila wing. Development 121:589–599

    PubMed  CAS  Google Scholar 

  • Patel NH, Martin-Blanco E, Coleman KG, Poole SJ, Ellis MC, Kornberg TB, Goodman CS (1989) Expression of engrailed proteins in arthropods, annelids, and chordates. Cell 58:955–968

    Article  PubMed  CAS  Google Scholar 

  • Sanchez-Herrero E, Vernos I, Marco R, Morata G (1985) Genetic organization of Drosophila bithorax complex. Nature 313:108–113

    Article  PubMed  CAS  Google Scholar 

  • Schultz J, Milpetz F, Bork P, Ponting CP (1998) SMART, a simple modular architecture research tool: identification of signaling domains. Proc Natl Acad Sci USA 95:5857–5864

    Article  PubMed  CAS  Google Scholar 

  • Schüpbach T, Wieschaus E (1991) Female sterile mutations on the second chromosome of Drosophila melanogaster. II. Mutations blocking oogenesis or altering egg morphology. Genetics 129:1119–36

    PubMed  Google Scholar 

  • Shim S, Bae N, Han JK (2002) Bone morphogenetic protein-4-induced activation of Xretpos is mediated by Smads and Olf-1/EBF associated zinc finger (OAZ). Nucleic Acids Res 30:3107–3117

    Article  PubMed  CAS  Google Scholar 

  • Stocker RF, Heimbeck G, Gendre N, de Belle JS (1997) Neuroblast ablation in Drosophila P[GAL4] lines reveals origins of olfactory interneurons. J Neurobiol 32:443–456

    Article  PubMed  CAS  Google Scholar 

  • Tautz D, Pfeifle C (1989) A non-radioactive in situ hybridization method for the localization of specific RNAs in Drosophila embryos reveals translational control of the segmentation gene hunchback. Chromosoma 98:81–85

    Article  PubMed  CAS  Google Scholar 

  • Thompson JD et al (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  PubMed  CAS  Google Scholar 

  • Tsai RY, Reed RR (1997) Cloning and functional characterization of Roaz, a zinc finger protein that interacts with O/E-1 to regulate gene expression: implications for olfactory neuronal development. J Neurosci 17:4159–4169

    PubMed  CAS  Google Scholar 

  • Tsai RY, Reed RR (1998) Identification of DNA recognition sequences and protein interaction domains of the multiple-Zn-finger protein Roaz. Mol Cell Biol 18:6447–6456

    PubMed  CAS  Google Scholar 

  • Walldorf U, Gehring WJ (1992) Empty spiracles, a gap gene containing a homeobox involved in Drosophila head development. EMBO J 11:2247–2259

    PubMed  CAS  Google Scholar 

  • Wang MM, Reed RR (1993) Molecular cloning of the olfactory neuronal transcription factor Olf-1 by genetic selection in yeast. Nature 364:121–126

    Article  PubMed  CAS  Google Scholar 

  • Warming S, Liu P, Suzuki T, Akagi K, Lindtner S, Pavlakis GN, Jenkins NA, Copeland NG (2003) Evi3, a common retroviral integration site in murine B-cell lymphoma, encodes an EBFAZ-related Krüppel-like zinc finger protein. Blood 101:1934–1940

    Article  PubMed  CAS  Google Scholar 

  • Warming S, Suzuki T, Yamaguchi TP, Jenkins NA, Copeland NG (2004) Early B-cell factor-associated zinc-finger gene is a frequent target of retroviral integration in murine B-cell lymphomas. Oncogene 23:2727–2731

    Article  PubMed  CAS  Google Scholar 

  • Wharton KA, Ray RP, Gelbart WM (1993) An activity gradient of decapentaplegic is necessary for the specification of dorsal pattern elements in the Drosophila embryo. Development 117:807–822

    PubMed  CAS  Google Scholar 

  • Whitten J (1980) The tracheal system. In: Ashburner M, Wright TRF (eds) The genetics and biology of Drosophila, vol 2d. Academic, London, 499–540

    Google Scholar 

Download references

Acknowledgment

This work was supported by the Swiss National Funds (grants No. 3100A0-105517 [RFS] and 3234-069273.02 [AR]), Roche Research Foundation, and Fondation Aetas. We are very grateful to Dr. James Castelli-Gair (Centro Andaluz de Biologia del Desarrollo, Universidad Pablo de Olavide, Spain) for providing numerous D. melanogaster strains. We also thank Dr. L.-F. Bersier (Université de Fribourg) for help with statistics and survival analysis, Dr. G. Heimbeck for advice, and J. Meuwly and S. Vuichard for complementation tests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reinhard F. Stocker.

Additional information

Communicated by P. Simpson

Electronic supplementary material

Below is the image is a link to a low resolution version

Figure S1

Complete amino acid sequence alignment of DmOAZ with OAZ, EBFAZ and ROAZ. The ZFs of OAZ and DmOAZ are shown in blue and red, respectively. Asterisks (*) indicate an entirely conserved column, a colon (:) indicates columns where all residues have roughly the same size and hydropathy level, and a period (.) indicates columns where either the size or the hydropathy level has been conserved during evolution (JPEG 1.2 mb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krattinger, A., Gendre, N., Ramaekers, A. et al. DmOAZ, the unique Drosophila melanogaster OAZ homologue is involved in posterior spiracle development. Dev Genes Evol 217, 197–208 (2007). https://doi.org/10.1007/s00427-007-0134-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00427-007-0134-7

Keywords

Navigation