Skip to main content

Advertisement

Log in

Organization of the Hox gene cluster of the silkworm, Bombyx mori: a split of the Hox cluster in a non-Drosophila insect

  • Original Article
  • Published:
Development Genes and Evolution Aims and scope Submit manuscript

Abstract

A bacterial artificial chromosome (BAC) contig was constructed by chromosome walking, starting from the Hox genes of the silkworm, Bombyx mori. Bombyx orthologues of the labial (lab) and zerknült (zen) genes were newly identified. The size of the BAC contig containing the Hox gene cluster—except the lab and Hox 2 genes—was estimated to be more than 2 Mb. The Bombyx Hox cluster was mapped to linkage group (LG) 6. The lab gene was mapped on the same LG, but far apart from the cluster. Fluorescence in situ hybridization analysis confirmed that the major Hox gene cluster and lab were at different locations on the same chromosome in B. mori.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Adams MD, Celniker SE, Holt RA, Evans CA, Goayne JD, et al (2000) The genome sequence of Drosophila melanogaster. Science 287:2185–2195

    Article  PubMed  Google Scholar 

  • Bender WM, Akam E, Karch F, Beachy PA, Peifer M, Spierer P, Lewis EB, Hogness DS (1983) Molecular genetics of the bithorax complex in Drosophila melanogaster. Science 221:23–29

    CAS  Google Scholar 

  • Brown SJ, Fellers JP, Shippy TD, Richardson EA, Maxwell M, Stuart JJ, Denell RE (2002) Sequence of the Tribolium castaneum homeotic complex: the region corresponding to the Drosophila melanogaster Antennapedia complex. Genetics 160:1067–1074

    CAS  PubMed  Google Scholar 

  • Devenport MP, Blass C, Eggleston P (2000) Characterization of the Hox gene cluster in the malaria vector mosquito, Anopheles gambiae. Evol Dev 2:326–339

    Article  CAS  PubMed  Google Scholar 

  • Falciani F, Hausdorf B, Schröder R, Akam M, Tautz D, Denell R, Brown S (1996) Class 3 Hox genes in insects and the origin of the zen. Proc Natl Acad Sci USA 93:8479–8484

    Article  CAS  PubMed  Google Scholar 

  • Ferrier DEK, Akam M (1996) Organization of the Hox gene cluster in the grasshopper, Schistocerca gregaria. Proc Natl Acad Sci USA 93:13024–13029

    Article  CAS  PubMed  Google Scholar 

  • Gage LP (1974) The Bombyx mori genome: analysis by DNA reassociation kinetics. Chromosoma 45:27–42

    Article  CAS  PubMed  Google Scholar 

  • Grenier JK, Garber TL, Warren R, Whitington PM, Carroll S (1997) Evolution of the entire arthropod Hox gene set predated the origin and radiation of the onychophoran/arthropod clade. Curr Biol 7:547–553

    Article  CAS  PubMed  Google Scholar 

  • Hasimoto H (1930) Hereditary superfluous legs in the silkworm (in Japanese with English summary). Jpn J Genet 6:45–54

    Google Scholar 

  • Hasimoto H (1941) Linkage studies in the silkworm. III. Kp multiple alleles (in Japanese with English summary). Bull Sericul Exp Sta 10:328–363

    Google Scholar 

  • Hughes CL, Kaufman TC (2002a) Hox genes and the evolution of the arthropod body plan. Evol Dev 4:459–499

    Article  CAS  PubMed  Google Scholar 

  • Hughes CL, Kaufman TC (2002b) Exploring the myriapod body plan: expression patterns of the ten Hox genes in centipede. Development 129:1225–1238

    CAS  PubMed  Google Scholar 

  • Itikawa N (1952) General and embryological studies on the E-multiple alleles in the silkworm, Bombyx mori L. (in Japanese with English summary). Bull Sericul Exp Sta 14:23–91

    Google Scholar 

  • Kaufman TC, Seeger MA, Olson G (1990) Molecular and genetic organization of the Antennapedia gene complex of Drosophila melanogaster. Adv Genet 27:309–362

    CAS  PubMed  Google Scholar 

  • Kokubo H, Ueno K, Amanai K, Suzuki Y (1997) Involvement of the Bombyx Scr gene in development of the embryonic silk gland. Dev Biol 186:46–57

    Article  CAS  PubMed  Google Scholar 

  • Lewis EB, Pfeiffer BD, Mathong DR, Celinker SE (2003) Evolution of the homeobox complex in the Diptera. Curr Biol 13:557–558

    Article  Google Scholar 

  • Lockwood APM (1961) “Ringer” solutions and some notes on the physiological basis of their ionic composition. Comp Biochem Physiol 2:241–289

    Article  CAS  PubMed  Google Scholar 

  • Nagata T, Suzuki Y, Ueno K, Kokubo H, Xu X, Hui C-C, Hara W, Fukuta M (1996) Developmental expression of the Bombyx Antennapedia homologue and homeotic changes in the Nc mutant. Genes Cells 1:555–568

    Article  CAS  PubMed  Google Scholar 

  • Nagy LM, Booker R, Riddiford LM (1991) Isolation and embryonic expression of an abdominal-A-like gene from the lepidopteran, Manduca sexta. Development 112:119–129

    CAS  PubMed  Google Scholar 

  • Negre B, Ranz JM, Casals F, Cáceres M, Ruiz A (2003) A new split of the Hox gene complex in Drosophila: relocation and evolution of the gene labial. Mol Biol Evol 20:2042–2054

    Article  CAS  PubMed  Google Scholar 

  • Powers TP, Hogan J, Ke Z, Dymbrowski K, Wang X, Clollins FH, Kaufman TC (2000) Characterization of the Hox cluster from the mosquito Anopheles gambiae (Diptera: culicidae). Evol Dev 2:311–325

    Article  CAS  PubMed  Google Scholar 

  • Sahara K, Marec F, Traut W (1999) TTAGG telomeric repeats in chromosomes of some insects and other arthropods. Chromosome Res 7:449–460

    Article  CAS  PubMed  Google Scholar 

  • Sahara K, Marec F, Eickhoff U, Traut W (2003a) Moth sex chromatin probed by comparative genomic hybridization (CGH). Genome 46:339–342

    Article  CAS  PubMed  Google Scholar 

  • Sahara K, Yoshido A, Kawamura N, Ohnuma A, Abe H, Mita K, Oshiki T, Shimada T, Asano S, Band H, Yasukochi Y (2003b) W-derived BAC probes as a new tool for identification of the W chromosome and its aberrations in Bombyx mori. Chromosoma 112:48–55

    Article  CAS  PubMed  Google Scholar 

  • Soderlund C, Humphrey S, Dunhum A, French L (2000) Contigs built with fingerprints, markers and FPC V4.7. Genome Res 10:1772–1787

    Article  CAS  PubMed  Google Scholar 

  • Stauber M, Jäckle H, Schmidt-Ott U (1999) The anterior bicoid of Drosophila is a derived Hox class 3 gene. Proc Natl Acad Sci USA 96:3786–3789

    Article  CAS  PubMed  Google Scholar 

  • Stauber M, Prell A, Schmidt-Ott U (2002) A single Hox3 gene with composite bicoid and zerknült expression characteristics in non-Cyclorrhaphan flies. Proc Natl Acad Sci USA 99:274–279

    Article  CAS  PubMed  Google Scholar 

  • Telford MJ, Thomas RH (1998) Of mites and zen: expression studies in a chelicerate arthpod confirm zen is a divergent Hox gene. Dev Genes Evol 208:591–594

    Article  CAS  PubMed  Google Scholar 

  • Traut W (1976) Pachytene mapping in the female silkworm, Bombyx mori L. (Lepidoptera). Chromosoma 58:275–284

    CAS  PubMed  Google Scholar 

  • Ueno K, Hui C-C, Fukuta M, Suzuki Y (1992) Molecular analysis of the deletion mutants in the E homeotic complex of the silkworm Bombyx mori. Development 114:553–563

    Google Scholar 

  • Von Allmen G, Hogga I, Spierer A, Karch F, Bender W, Gyurkovics H, Lewis E (1996) Splits in fruitfly Hox gene complexes. Nature 380:116

    Article  PubMed  Google Scholar 

  • Wu C, Asakawa S, Shimizu N, Kawasaki S, Yasukochi Y (1999) Construction and characterization of bacterial artificial chromosome libraries from the silkworm, Bombyx mori. Mol Gen Genet 261:698–706

    Article  CAS  PubMed  Google Scholar 

  • Xu X, Xu P, Amanai K, Suzuki Y (1997) Double-segment defining role of even-skipped homologs along the evolution of insect pattern formation. Dev Growth Differ 39(4):515–522

    Article  CAS  PubMed  Google Scholar 

  • Yasukochi Y (1998) A dense genetic map of the silkworm, Bombyx mori, covering all chromosomes based on 1,018 molecular markers. Genetics 150:1513–1525

    CAS  PubMed  Google Scholar 

  • Yasukochi Y (1999) A simple and accurate method for generating co-dominant markers: an application of conformation-sensitive gel electrophoresis to linkage analysis in the silkworm. Mol Gen Genet 261:796–802

    Article  CAS  PubMed  Google Scholar 

  • Yasukochi Y (2002) PCR-based screening for bacterial artificial chromosome libraries. In: Chen B-Y, Janes HW (eds) Methods in molecular biology, vol 192, PCR cloning protocols, 2nd edn. Humana, Totowa, pp 401–410

  • Zhen Z, Khoo A, Fambrough D, Garza L, Booker R (1999) Homeotic gene expression in the wild-type and a homeotic mutant of the moth Manduca sexta. Dev Genes Evol 209:460–472

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to Dr. M.R. Goldsmith and Dr. S.J. Brown for critical reading of the manuscript. We also thank Mrs. H. Takahashi, Mrs. E. Igari, Mrs. H. Hoshida, and Mrs. T. Maeda for their technical assistance. This work was supported in part by a Grant-in-Aid for Scientific Research (no. 15380227) and Enhancement of Center of Excellence, Special Coordination Funds for Promoting Science and Technology from the Ministry of Education, Culture, Sports, Science and Technology of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuji Yasukochi.

Additional information

Edited by M. Akam

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yasukochi, Y., Ashakumary, L.A., Wu, C. et al. Organization of the Hox gene cluster of the silkworm, Bombyx mori: a split of the Hox cluster in a non-Drosophila insect. Dev Genes Evol 214, 606–614 (2004). https://doi.org/10.1007/s00427-004-0441-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00427-004-0441-1

Keywords

Navigation