Skip to main content
Log in

Weber’s law in 2D and 3D grasping

  • Original Article
  • Published:
Psychological Research Aims and scope Submit manuscript

Abstract

Visually guided grasping movements directed to real, 3D objects are characterized by a distinguishable trajectory pattern that evades the influence of Weber’s law, a basic principle of perception. Conversely, grasping trajectories directed to 2D line drawings of objects adhere to Weber’s law. It can be argued, therefore, that during 2D grasping, the visuomotor system fails at operating in analytic mode and is intruded by irrelevant perceptual information. Here, we explored the visual and tactile cues that enable such analytic processing during grasping. In Experiment 1, we compared grasping directed to 3D objects with grasping directed to 2D object photos. Grasping directed to photos adhered to Weber’s law, suggesting that richness in visual detail does not contribute to analytic processing. In Experiment 2, we tested whether the visual presentation of 3D objects could support analytic processing even when only partial object-specific tactile information is provided. Surprisingly, grasping could be performed in an analytic fashion, violating Weber’s law. In Experiment 3, participants were denied of any haptic feedback at the end of the movement and grasping trajectories again showed adherence to Weber’s law. Taken together, the findings suggest that the presentation of real objects combined with indirect haptic information at the end of the movement is sufficient to allow analytic processing during grasp.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Bingham, G., Coats, R., & Mon-Williams, M. (2007). Natural prehension in trials without haptic feedback but only when calibration is allowed. Neuropsychologia, 45(2), 288–294.

    Article  PubMed  Google Scholar 

  • Bruno, N., Uccelli, S., Viviani, E., & de’Sperati, C. (2016). Both vision-for-perception and vision-for-action follow Weber’s law at small object sizes, but violate it at larger sizes. Neuropsychologia, 91, 327–334.

    Article  PubMed  Google Scholar 

  • Christiansen, J. H., Christensen, J., Grünbaum, T., & Kyllingsbæk, S. (2014). A common representation of spatial features drives action and perception: grasping and judging object features within trials. PloS one, 9(5), e94744.

    Article  PubMed  PubMed Central  Google Scholar 

  • De-Wit, L. H., Kubilius, J., de Beeck, H. P. O., & Wagemans, J. (2013). Configural gestalts remain nothing more than the sum of their parts in visual agnosia. I-Perception, 4(8), 493–497.

    Article  PubMed  PubMed Central  Google Scholar 

  • Eloka, O., Feuerhake, F., Janczyk, M., & Franz, V. H. (2015). Garner-interference in left-handed awkward grasping. Psychological Research, 79(4), 579–589.

    Article  PubMed  Google Scholar 

  • Freud, E., & Ganel, T. (2015). Visual control of action directed toward two-dimensional objects relies on holistic processing of object shape. Psychonomic Bulletin & Review, 2003, 1377–1382.

    Article  Google Scholar 

  • Freud, E., Macdonald, S. N., Chen, J., Quinlan, D. J., Goodale, M. A., & Culham, J. C. (2017). Getting a grip on reality: Grasping movements directed to real objects and images rely on dissociable neural representations. Cortex. doi:10.1016/j.cortex.2017.02.020.

  • Ganel, T. (2015). Weber's law in grasping. Journal of vision , 15(8), 18.

    Article  PubMed  Google Scholar 

  • Ganel, T., Chajut, E., & Algom, D. (2008a). Visual coding for action violates fundamental psychophysical principles. Current Biology, 18(14), 599–601.

    Article  Google Scholar 

  • Ganel, T., Chajut, E., Tanzer, M., & Algom, D. (2008). Response: When does grasping escape Weber's law?. Current Biology, 18(23), R1090–R1091.

    Article  Google Scholar 

  • Ganel, T., Freud, E., & Meiran, N. (2014). Action is immune to the effects of Weber’s law throughout the entire grasping trajectory. Journal of Vision, 14(7), 1–11.

    Article  Google Scholar 

  • Ganel, T., Namdar, G., & Mirsky, A. (2017). Bimanual grasping does not adhere to Weber’s law. Scientific Reports. doi:10.1038/s41598-017-06799-4.

  • Gerhard, T. M., Culham, J. C., & Schwarzer, G. (2016). Distinct visual processing of real objects and pictures of those objects in 7-to 9-month-old infants. Frontiers in Psychology, 7, 827. doi:10.3389/fpsyg.2016.00827.

    Article  PubMed  PubMed Central  Google Scholar 

  • Gibson, J. J. (1979). The Ecological Approach to the Visual Perception. Boston: Houghton Mifflin.

    Google Scholar 

  • Gonzalez, C. L. R., Ganel, T., Whitwell, R. L., Morrissey, B., & Goodale, M. A. (2008). Practice makes perfect, but only with the right hand: Sensitivity to perceptual illusions with awkward grasps decreases with practice in the right but not the left hand. Neuropsychologia, 46(2), 624–631.

    Article  PubMed  Google Scholar 

  • Goodale, M. A., & Ganel, T. (2015). Different modes of visual organization for perception and for action. Oxford Handbook of Perceptual Organization, 3(1), 1–19.

    Google Scholar 

  • Goodale, M. A., Jakobson, L. S., & Keillor, J. M. (1994). Differences in the visual control of pantomimed and natural grasping movements. Neuropsychologia, 32(94), 1159–1178.

    Article  PubMed  Google Scholar 

  • Goodale, M. A., & Milner, A. D. (1992). Separate visual pathways for perception and action. Trends in Neurosciences, 15(I), 20–25.

    Article  PubMed  Google Scholar 

  • Goodale, M. A., & Milner, A. D. (1991). A neurological dissociation between perceiving objects and grasping them. Nature, 349(6305), 154.

    Article  PubMed  Google Scholar 

  • Heath, M., Manzone, J., Khan, M., & Jazi, S. D. (2017). Vision for action and perception elicit dissociable adherence to Weber’s law across a range of ‘graspable’ target objects. Experimental Brain Research. doi:10.1007/s00221-017-5025-1.

    Article  PubMed  Google Scholar 

  • Hesse, C., Ball, K., & Schenk, T. (2012). Visuomotor performance based on peripheral vision is impaired in the visual form agnostic patient DF. Neuropsychologia, 50(1), 90–97.

    Article  PubMed  Google Scholar 

  • Himmelbach, M., Boehme, R., & Karnath, H. O. (2012). 20 years later: A second look on DF’s motor behaviour. Neuropsychologia, 50(1), 139–144.

    Article  PubMed  Google Scholar 

  • Holmes, S. A., & Heath, M. (2013). Goal-directed grasping: The dimensional properties of an object influence the nature of the visual information mediating aperture shaping. Brain and Cognition, 82(1), 18–24.

    Article  PubMed  Google Scholar 

  • Hosang, S., Chan, J., Jazi, S. D., & Heath, M. (2016). Grasping a 2D object: terminal haptic feedback supports an absolute visuo-haptic calibration. Experimental Brain Research, 234(4), 945–954.

  • Jakobson, L. S., & Goodale, M. A. (1991). Factors affecting higher-order movement planning: A kinematic analysis of human prehension. Experimental Brain Research, 86(1), 199–208.

    Article  PubMed  Google Scholar 

  • Janczyk, M., Franz, V. H., & Kunde, W. (2010). Grasping for parsimony: Do some motor actions escape dorsal processing? Neuropsychologia, 48(12), 3405–3415.

    Article  PubMed  Google Scholar 

  • Jarmasz, J., & Hollands, J. G. (2009). Confidence intervals in repeated-measures designs: The number of observations principle. Canadian Journal of Experimental Psychology (Revue canadienne de psychologie expérimentale), 63(2), 124.

    Article  Google Scholar 

  • Jeannerod, M. (1984). The timing of natural prehension movements. Journal of Motor Behavior, 16(3), 235–254.

    Article  PubMed  Google Scholar 

  • Johansson, R. S., & Flanagan, J. R. (2009). Sensory control of object manipulation. Sensorimotor Control of Grasping: Physiology and Pathophysiology, 141–160.

  • Kwok, R. M., & Braddick, O. J. (2003). When does the Titchener Circles illusion exert an effect on grasping? Two- and three-dimensional targets. Neuropsychologia, 41(8), 932–940.

    Article  PubMed  Google Scholar 

  • Löwenkamp, C., Gärtner, W., Haus, I. D., & Franz, V. H. (2015). Semantic grasping escapes Weber’s law. Neuropsychologia, 70, 235–245.

    Article  PubMed  Google Scholar 

  • Manzone, J., Jazi, S. D., Whitwell, R. L., & Heath, M. (2017). Biomechanical constraints do not influence pantomime-grasping adherence to Weber’s law: A reply to Utz et al. (2015). Vision Research, 130, 31–35.

    Article  PubMed  Google Scholar 

  • Pavese, A., Buxbaum, L. J., & Laurel, J. (2002). Action matters : The role of action plans and object affordances in selection for action. Visual Cognition, 9, 559–590.

    Article  Google Scholar 

  • Rossit, S., Harvey, M., Butler, S. H., Szymanek, L., Morand, S., Monaco, S., & McIntosh, R. D. (2017). Impaired peripheral reaching and on-line corrections in patient DF: Optic ataxia with visual form agnosia. Cortex. doi:10.1016/j.cortex.2017.04.004.

    Article  PubMed  Google Scholar 

  • Schenk, T. (2012). No dissociation between perception and action in patient DF when haptic feedback is withdrawn. Journal of Neuroscience, 32(6), 2013–2017.

    Article  PubMed  Google Scholar 

  • Smeets, J. B., & Brenner, E. (2008). Grasping Weber’s law. Current Biology, 18(23), R1089–R1090.

    Article  PubMed  Google Scholar 

  • Snow, J. C., Pettypiece, C. E., McAdam, T. D., McLean, A. D., Stroman, P. W., Goodale, M. A., & Culham, J. C. (2011). Bringing the real world into the fMRI scanner: Repetition effects for pictures versus real objects. Scientific Reports, 1, 1–10.

    Article  Google Scholar 

  • Snow, J. C., Strother, L., & Humphreys, G. W. (2014). Haptic shape processing in visual cortex. Journal of Cognitive Neuroscience, 26(5), 1154–1167.

    Article  PubMed  Google Scholar 

  • Tucker, M., & Ellis, R. (1998). On the relations between seen objects and components of potential actions. Journal of Experimental Psychology: Human Perception and Performance, 24(3), 830–846.

    PubMed  Google Scholar 

  • Tucker, M., & Ellis, R. (2004). Action priming by briefly presented objects. Acta Psychologica, 116(2), 185–203.

    Article  PubMed  Google Scholar 

  • Ungerleider, L. G., & Mishkin, M. (1982). Two cortical visual systems. In D. J. Ingle, M. A. Goodale, & R. J. W. Mansfield (Eds.), Analysis of visual behavior (pp. 549-586). Cambridge: MIT Press.

  • Utz, K. S., Hesse, C., Aschenneller, N., & Schenk, T. (2015). Biomechanical factors may explain why grasping violates Weber’s law. Vision Research, 111, 22–30.

    Article  PubMed  Google Scholar 

  • Westwood, D. A., Danckert, J., Servos, P., & Goodale, M. A. (2002). Grasping two-dimensional images and three-dimensional objects in visual-form agnosia. Experimental Brain Research, 144(2), 262–267.

    Article  PubMed  Google Scholar 

  • Whitwell, R. L., Ganel, T., Byrne, C. M., & Goodale, M. A. (2015). Real-time vision, tactile cues, and visual form agnosia: Removing haptic feedback from a “natural” grasping task induces pantomime-like grasps. Frontiers in Human Neuroscience, 9, 216.

    Article  PubMed  PubMed Central  Google Scholar 

  • Whitwell, R. L., Milner, A. D., Cavina-Pratesi, C., Byrne, C. M., & Goodale, M. A. (2014). DF’s visual brain in action: the role of tactile cues. Neuropsychologia, 55, 41–50.

    Article  PubMed  Google Scholar 

  • Wood, D. K., Chouinard, P. A., Major, A. J., & Goodale, M. A. (2016). Sensitivity to biomechanical limitations during postural decision-making depends on the integrity of posterior superior parietal cortex. Cortex. doi:10.1016/j.cortex.2016.07.005.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by an Israel Science Foundation (ISF) Grant 274/15 to Tzvi Ganel and to Daniel Algom.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tzvi Ganel.

Ethics declarations

Conflict of interest

Tzvi Ganel declares that he has no conflict of interest. Aviad Ozana declares that he has no conflict of interest.

Ethical approval

All procedures performed in this study were in accordance with the ethical standards of the Psychology department research committee in BGU and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ozana, A., Ganel, T. Weber’s law in 2D and 3D grasping. Psychological Research 83, 977–988 (2019). https://doi.org/10.1007/s00426-017-0913-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00426-017-0913-3

Navigation