Skip to main content
Log in

Spatial–numerical associations in first-graders: evidence from a manual-pointing task

  • Original Article
  • Published:
Psychological Research Aims and scope Submit manuscript

Abstract

The current study investigated whether children’s mental representations of numbers are organized spatially at the onset of formal schooling using a manual-pointing task. First-graders (N = 77) saw four numbers (1, 3, 7, 9) presented randomly in four spatial positions (extreme left, left, right, extreme right) on a touch screen. In a Go/No-Go task, children were asked to press the appearing numbers as fast and accurately as possible, but only when the numbers were “smaller” (or “larger” in a different block) than 5. Results indicated that response times were significantly affected by the spatial position in which the different numbers were presented. Response times for small numbers (1 and 3) increased and response times for large numbers (7 and 9) decreased, the more they were presented towards the right side of the screen. These findings suggested that first-graders spontaneously employed a spatial number representation that was oriented from left to right. Furthermore, this left-to-right organization could not be easily changed by priming a different direction. Our findings indicate that even young children map numbers continuously onto space.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adachi, I. (2014). Spontaneous spatial mapping of learned sequence in chimpanzees: Evidence for a SNARC-like effect. PLoS One, 9, e90373.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bächtold, D., Baumüller, M., & Brugger, P. (1998). Stimulus–response compatibility in representational space. Neuropsychologia, 36, 731–735.

    Article  PubMed  Google Scholar 

  • Berch, D. B., Foley, E. J., Hill, R. J., & Ryan, P. M. (1999). Extracting parity and magnitude from Arabic numerals: Developmental changes in number processing and mental representation. Journal of Experimental Child Psychology, 74, 286–308.

    Article  PubMed  Google Scholar 

  • Briars, D., & Siegler, R. S. (1984). A featural analysis of preschoolers’ counting knowledge. Developmental Psychology, 20, 607–618.

    Article  Google Scholar 

  • Bruner, J. S., Olver, R. O., & Greenfield, P. M. (1966). Studies in cognitive growth. New York: Wiley.

    Google Scholar 

  • Bulf, H., de Hevia, M. D., & Macchi-Cassia, V. (2016). Small on the left, large on the right: Numbers orient preverbal infants’ visual attention onto space. Developmental Science, 19, 394–401.

    Article  PubMed  Google Scholar 

  • Calabria, M., & Rossetti, Y. (2005). Interference between number processing and line bisection: A methodology. Neuropsychologia, 43, 779–783.

    Article  PubMed  Google Scholar 

  • de Hevia, M. D., Girelli, L., Addabbo, M., & Macchi Cassia, V. (2014). Human infants’ preference for left-to-right oriented increasing numerical sequences. PLoS One, 9, e96412.

    Article  PubMed  PubMed Central  Google Scholar 

  • Dehaene, S., Bossini, S., & Giraux, P. (1993). The mental representation of parity and number magnitude. Journal of Experimental Psychology: General, 122, 371.

    Article  Google Scholar 

  • Drucker, C. B., & Brannon, E. M. (2014). Rhesus monkeys (Macaca mulatta) map number onto space. Cognition, 132, 57–67.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ebersbach, M. (2015). Evidence for a spatial–numerical association in kindergartners using a number line task. Journal of Cognition and Development, 16, 118–128.

    Article  Google Scholar 

  • Fias, W. (2001). Two routes for the processing of verbal numbers: Evidence from the SNARC effect. Psychological Research, 65, 250–259.

    Article  PubMed  Google Scholar 

  • Fias, W., Brysbaert, M., Geypens, F., & d’Ydewalle, G. (1996). The importance of magnitude information in numerical processing: Evidence from the SNARC effect. Mathematical Cognition, 2, 95–110.

    Article  Google Scholar 

  • Fischer, M. H. (2001). Number processing induces spatial performance biases. Neurology, 57, 822–826.

    Article  PubMed  Google Scholar 

  • Fischer, M. H., Castel, A. D., Dodd, M. D., & Pratt, J. (2003). Perceiving numbers causes spatial shifts of attention. Nature Neuroscience, 6, 555–556.

    Article  PubMed  Google Scholar 

  • Fischer, M. H., & Shaki, S. (2014). Spatial associations in numerical cognition: From single digits to arithmetic. Quarterly Journal of Experimental Psychology, 67, 1461–1483.

    Article  Google Scholar 

  • Fischer, M. H., Shaki, S., & Cruise, A. (2009). It takes just one word to quash a SNARC. Experimental Psychology, 56, 361–366.

    Article  PubMed  Google Scholar 

  • Galfano, G., Rusconi, E., & Umiltà, C. (2006). Number magnitude orients attention, but not against one’s will. Psychonomic Bulletin and Review, 13, 869–874.

    Article  PubMed  Google Scholar 

  • Gevers, W., Verguts, T., Reynvoet, B., Caessens, B., & Fias, W. (2006). Numbers and space: A computational model of the SNARC effect. Journal of Experimental Psychology: Human Perception and Performance, 32, 32–44.

    PubMed  Google Scholar 

  • Göbel, S. M., Shaki, S., & Fischer, M. H. (2011). The cultural number line: a review of cultural and linguistic influences on the development of number processing. Journal of Cross-Cultural Psychology, 42, 543–565.

    Article  Google Scholar 

  • Hoffmann, D., Hornung, C., Martin, R., & Schiltz, C. (2013). Developing number–space associations: SNARC effects using a color discrimination task in 5-year-olds. Journal of Experimental Child Psychology, 116, 775–791.

    Article  PubMed  Google Scholar 

  • Hubbard, E. M., Piazza, M., Pinel, P., & Dehaene, S. (2005). Interactions between number and space in parietal cortex. Nature Reviews Neuroscience, 6, 435–448.

    Article  PubMed  Google Scholar 

  • Ishihara, M., Jacquin-Courtois, S., Flory, V., Salemme, R., Imanaka, K., & Rossetti, Y. (2006). Interaction between space and number representations during motor preparation in manual aiming. Neuropsychologia, 44, 1009–1016.

    Article  PubMed  Google Scholar 

  • Kamawar, D., LeFevre, J., Bisanz, J., Fast, L., Skwarchuk, S. L., Smith-Chant, B. L., & Penner-Wilger, M. (2010). Knowledge of counting principles: How relevant is order irrelevance? Journal of Experimental Child Psychology, 105, 138–145.

    Article  PubMed  Google Scholar 

  • Knudsen, B., Fischer, M. H., & Aschersleben, G. (2015). Development of spatial preferences for counting and picture naming. Psychological Research, 79, 939–949.

    Article  PubMed  Google Scholar 

  • Kosslyn, S. M. (1978). The representational-development hypothesis. In P. A. Ornstein (Ed.), Memory development in children (pp. 157–189). Hillsdale, NJ: Erlbaum.

    Google Scholar 

  • McCrink, K., Caldera, C., & Shaki, S. (2017). The early construction of spatial attention: Culture, space, and gesture in parent–child interactions. Child Development. doi:10.1111/cdev.12781.

    Article  PubMed  PubMed Central  Google Scholar 

  • McCrink, K., & Opfer, J. E. (2014). Development of spatial–numerical associations. Current Directions in Psychological Science, 23, 439–445.

    Article  PubMed  PubMed Central  Google Scholar 

  • Mills, K. J., Rousseau, B. R., & Gonzalez, C. L. (2014). A cross-sectional developmental examination of the SNARC effect in a visually-guided grasping task. Neuropsychologia, 58, 99–106.

    Article  PubMed  Google Scholar 

  • Nuerk, H.-C., Patro, K., Cress, U., Schild, U., Friedrich, C. K., & Goebel, S. M. (2015). How space-number associations may be created in preliterate children: six distinct mechanisms. Frontiers in Psychology, 6, 215.

    Article  PubMed  PubMed Central  Google Scholar 

  • Opfer, J. E., Thompson, C. A., & Furlong, E. E. (2010). Early development of spatial numeric associations: Evidence from spatial and quantitative performance of preschoolers. Developmental Science, 13, 761–771.

    Article  PubMed  Google Scholar 

  • Patro, K., Fischer, U., Nuerk, H.-C., & Cress, U. (2016). How to rapidly construct a spatial–numerical representation in preliterate children (at least temporarily). Developmental Science, 19, 126–144.

    Article  PubMed  Google Scholar 

  • Patro, K., & Haman, M. (2012). The spatial–numerical congruity effect in preschoolers. Journal of Experimental Child Psychology, 111, 534–542.

    Article  PubMed  Google Scholar 

  • Piaget, J., & Inhelder, B. (1956). The child’s conception of space (F. J. Langdon & J. L. Lunzer, Trans.). New York: Norton. (Original work published 1948).

    Google Scholar 

  • Ranzini, M., Dehaene, S., Piazza, M., & Hubbard, E. (2009). Neural mechanisms of attentional shifts due to irrelevant spatial and numerical cues. Neuropsychologia, 47, 2615–2624.

    Article  PubMed  Google Scholar 

  • Ristic, J., Wright, A., & Kingstone, A. (2006). The number line reflects top-down control. Psychonomic Bulletin and Review, 13, 862–868.

    Article  PubMed  Google Scholar 

  • Rugani, R., Vallortigara, G., Priftis, K., & Regolin, L. (2015). Number-space mapping in the newborn chick resembles humans’ mental number line. Science, 347(6221), 534–536.

    Article  PubMed  Google Scholar 

  • Shaki, S., & Fischer, M. H. (2008). Reading space into numbers—a cross-linguistic comparison of the SNARC effect. Cognition, 108, 590–599.

    Article  PubMed  Google Scholar 

  • Shaki, S., Fischer, M. H., & Petrusic, W. M. (2009). Reading habits for both words and numbers contribute to the SNARC effect. Psychonomic Bulletin and Review, 16, 328–331.

    Article  PubMed  Google Scholar 

  • van Galen, M. S., & Reitsma, P. (2008). Developing access to number magnitude: A study of the SNARC effect in 7-to 9-year-olds. Journal of Experimental Child Psychology, 101, 99–113.

    Article  PubMed  Google Scholar 

  • Walsh, V. (2003). A theory of magnitude: Common cortical metrics of time, space, and quantity. Trends in Cognitive Sciences, 7, 483–488.

    Article  PubMed  Google Scholar 

  • Wood, G., Nuerk, H.-C., Willmes, K., & Fischer, M. H. (2008). On the link between space and number: A meta-analysis of the SNARC effect. Psychology Science, 50, 489–525.

    Google Scholar 

  • Wynn, K. (1990). Children’s understanding of counting. Cognition, 36, 155–193.

    Article  PubMed  Google Scholar 

  • Zebian, S. (2005). Linkages between number concepts, spatial thinking, and directionality of writing: The SNARC effect and the reverse SNARC effect in English and Arabic monoliterates, biliterates, and illiterate Arabic speakers. Journal of Cognition and Culture, 5, 165–190.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenke Möhring.

Ethics declarations

Ethical approval

All procedures performed in the current study involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

This research was supported by a Research Grant from the Swiss National Science Foundation # PP00P1_150486. We are grateful to Lisa Heid and Sarah Dubach for their support with data collection.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Möhring, W., Ishihara, M., Curiger, J. et al. Spatial–numerical associations in first-graders: evidence from a manual-pointing task. Psychological Research 83, 885–893 (2019). https://doi.org/10.1007/s00426-017-0904-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00426-017-0904-4

Navigation