Skip to main content
Log in

Interference of lateralized distractors on arithmetic problem solving: a functional role for attention shifts in mental calculation

  • Original Article
  • Published:
Psychological Research Aims and scope Submit manuscript

Abstract

Solving arithmetic problems has been shown to induce shifts of spatial attention in simple probe-detection tasks, subtractions orienting attention to the left side and additions to the right side of space. Whether these attentional shifts constitute epiphenomena or are critically linked to the calculation process is still unknown. In the present study, we investigate participants’ performance on addition and subtraction solving while they have to detect central or lateralized targets. The results show that lateralized distractors presented in the hemifield congruent to the operation to be solved interfere with arithmetical solving: participants are slower to solve subtractions or additions when distractors are located on the left or on the right, respectively. These results converge with previous data to show that attentional shifts underlie not only number processing but also mental arithmetic. They extend them as they reveal the reverse effect of the one previously reported by showing that inducing attention shifts interferes with the solving of arithmetic problems. They also demonstrate that spatial attentional shifts are part of the calculation procedure of solving mentally arithmetic problems. Their functional role is to access, from the first operand, the representation of the result in a direction congruent to the operation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Anelli, F., Lugli, L., Baroni, G., Borghi, A. M., & Nicoletti, R. (2014). Walking boosts your performance in making additions and subtractions. Frontiers in Psychology, 5, e1459. doi:10.3389/fpsyg.2014.01459.

    Article  Google Scholar 

  • Ashcraft, M. H. (1992). Cognitive arithmetic: a review of data and theory. Cognition, 44, 75–106.

    Article  PubMed  Google Scholar 

  • Campbell, J. I. D. (2005). Handbook of Mathematical Cognition. New York: Psychology Press.

    Google Scholar 

  • Cappelletti, M., Freeman, E. D., & Cipolotti, L. (2007). The middle house or the middle floor: bisecting horizontal and vertical mental number lines in neglect. Neuropsychologia, 45(13), 2989–3000.

    Article  PubMed  PubMed Central  Google Scholar 

  • Charras, P., Brod, G., & Lupiáñez, J. (2012). Is 26+ 26 smaller than 24+ 28? Estimating the approximate magnitude of repeated versus different numbers. Attention, Perception, & Psychophysics, 74(1), 163–173.

    Article  Google Scholar 

  • Charras, P., Molina, E., & Lupiáñez, J. (2014). Additions are biased by operands: evidence from repeated versus different operands. Psychological Research, 78(2), 248–265.

    Article  PubMed  Google Scholar 

  • Chen, Q., & Verguts, T. (2012). Spatial intuition in elementary arithmetic: a neurocomputational account. PLoS One, 7(2), e31180. doi:10.1371/journal.pone.0031180.

    Article  PubMed  PubMed Central  Google Scholar 

  • Dehaene, S. (1992). Varieties of numerical abilities. Cognition, 4, 1–42.

    Google Scholar 

  • Dormal, V., Schuller, A. M., Nihoul, J., Pesenti, M., & Andres, M. (2014). Causal role of spatial attention in arithmetic problem solving: evidence from left unilateral neglect. Neuropsychologia, 60, 1–9.

    Article  PubMed  Google Scholar 

  • Fischer, M. H., Castel, A. D., Dodd, M. D., & Pratt, J. (2003). Perceiving numbers causes shifts of spatial attention. Nature Neuroscience, 6(6), 555–556.

    Article  PubMed  Google Scholar 

  • Fischer, M. H., & Shaki, S. (2014). Spatial associations in numerical cognition. From single digits to arithmetic. The Quarterly Journal of Experimental Psychology, 67(8), 1461–1483.

    Article  PubMed  Google Scholar 

  • Fischer, M. H., Warlop, N., Hill, R. L., & Fias, W. (2004). Oculomotor bias induced by number perception. Experimental Psychology, 51(2), 91–97.

    Article  PubMed  Google Scholar 

  • Hartmann, M., Mast, F. W., & Fischer, M. H. (2015). Spatial biases during mental arithmetic: evidence from eye movements on blank screen. Frontiers in Psychology, 6, 12. doi:10.3389/fpsyg.2015.00012.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hoeckner, S. H., Moeller, K., Zauner, H., Wood, G., Haider, C., Gabner, A., & Nuerk, H. C. (2008). Impairments of the mental line for two-digits numbers in neglect. Cortex, 44(4), 429–438.

    Article  PubMed  Google Scholar 

  • Klein, E., Huber, S., Nuerk, H.-C., & Moeller, K. (2014). Operational momentum affects eye fixation behavior. The Quarterly Journal of Experimental Psychology, 67(8), 1614–1625.

    Article  PubMed  Google Scholar 

  • Knops, A., Dehaene, S., Berteletti, I., & Zorzi, M. (2014). Can approximate mental calculation account for operational momentum in addition and subtraction? Quarterly Journal of Experimental Psychology, 67(8), 1541–1556.

    Article  Google Scholar 

  • Knops, A., Thirion, B., Hubbard, E. M., Michel, V., & Dehaene, S. (2009a). Recruitment of an area involved in eye movements during mental arithmetic. Science, 324, 1583–1585.

    Article  PubMed  Google Scholar 

  • Knops, A., Viarouge, A., & Dehaene, S. (2009b). Dynamic representations underlying symbolic and nonsymbolic calculation: evidence from the operational momentum effect. Attention, Perception, & Psychophysics, 71(4), 803–821.

    Article  Google Scholar 

  • Knops, A., Zitzmann, S., & McCrink, K. (2013). Examining the presence and determinants of operational momentum in childhood. Frontiers in Psychology, 4, 325. doi:10.3389/fpsyg.2013.00325.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lindemann, O., & Tira, M. (2011). Operational momentum in numerosity production judgments of mutli-digit number problems. Journal of Psychology, 219(1), 50–57.

    Google Scholar 

  • Lugli, L., Baroni, G., Anelli, F., Borghi, A. M., & Nicoletti, R. (2013). Counting is easier while experiencing a congruent motion. PLoS One, 8(5), e64500.

    Article  PubMed  PubMed Central  Google Scholar 

  • Marghetis, T., Nunez, R., & Bergen, B. (2014). Hand movements during exact arithmetic reveal systematic, dynamic spatial processing. The Quarterly Journal of Experimental Psychology, 67(8), 1579–1596.

    Article  PubMed  Google Scholar 

  • Masson, N., & Pesenti, M. (2014). Attentional bias induced by solving simple and complex addition and subtraction problems. The Quarterly Journal of Experimental Psychology, 67(8), 1514–1526.

    Article  PubMed  Google Scholar 

  • Masson, N., Pesenti, M., & Dormal, V. (2013). Spatial bias in symbolic and non-symbolic numerical comparison in neglect. Neuropsychologia, 51, 1925–1932.

    Article  PubMed  Google Scholar 

  • McCrink, K., Dehaene, S., & Dehaene-Lambertz, G. (2007). Moving along the number line: operational momentum in nonsymbolic arithmetic. Perception and Psychophysics, 69(8), 1324–1333.

    Article  PubMed  Google Scholar 

  • McCrink, K., & Wynn, K. (2009). Operational momentum in large number addition and subtraction by 9-month-olds. Journal of Experimental Child Psychology, 103(4), 400–408.

    Article  PubMed  Google Scholar 

  • Pinhas, M., & Fischer, M. H. (2008). Mental movements without magnitude? A study of spatial biases in symbolic arithmetic. Cognition, 109, 408–415.

    Article  PubMed  Google Scholar 

  • Pinhas, M., Shaki, S., & Fischer, M. H. (2014). Heed the signs: operation signs have spatial associations. The Quarterly Journal of Experimental Psychology, 67(8), 1527–1540.

    Article  PubMed  Google Scholar 

  • Pinhas, M., Shaki, S., & Fischer, M. H. (2015). Addition goes where the big numbers are: evidence for a reversed operational momentum effect. Psychonomic Bulletin & Review,. doi:10.3758/s13423-014-0786-z. (in press).

    Google Scholar 

  • Priftis, K., Pitteri, M., Meneghello, F., Umiltà, C., & Zorzi, M. (2012). Optokinetic stimulation modulates neglect for the number space: evidence from mental number interval bisection. Frontiers in Human Neuroscience, 6, 23. doi:10.3389/fnhum.2012.00023.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ranzini, M., Lisi, M., Blini, E., Pitteri, M., Treccani, B., Priftis, K., & Zorzi, M. (2015) Larger, smaller, odd or even? Task-specific effects of optokinetic stimulation on the mental number space. Journal of Cognitive Psychology, 27(4), 459–470.

    Article  Google Scholar 

  • Rossetti, Y., Jacquin-Courtois, S., Rode, G., Ota, H., Michel, C., & Boisson, D. (2004). Does action make the link between number and space representation? Visual-manual adaptation improves number line bisection in unilateral neglect. Psychological Science, 15(6), 426–430.

    Article  PubMed  Google Scholar 

  • Salillas, E., Granà, A., Juncadella, M., Rico, I., & Semenza, C. (2009). Leftward motion restores number space in neglect. Cortex, 45(6), 730–737.

    Article  PubMed  Google Scholar 

  • Schneider, W., Eschman, A., & Zuccolotto, A. (2002). E-Prime user’s guide. Pittsburgh: Psychology Software Tools Inc.

    Google Scholar 

  • Stoianov, I., Kramer, P., Umiltà, C., & Zorzi, M. (2008). Visuospatial priming of the mental number line. Cognition, 106, 770–779.

    Article  PubMed  Google Scholar 

  • van Dijck, J.-P., Gevers, W., Lafosse, C., & Fias, W. (2012). The heterogeneous nature of number-space interactions. Frontiers in Human Neuroscience, 5, 182. doi:10.3389/fnhum.2011.00182.

    PubMed  PubMed Central  Google Scholar 

  • Vuilleumier, P., Ortigue, S., & Brugger, P. (2004). The number space and neglect. Cortex, 40(2), 399–410.

    Article  PubMed  Google Scholar 

  • Werner, K., & Raab, M. (2014). Moving your eyes to solution: effects of movement on the perception of problem-solving task. The Quarterly Journal of Experimental Psychology, 67(8), 1571–1578.

    Article  PubMed  Google Scholar 

  • Wiemers, M., Bekkering, H., & Lindemann, O. (2014). Spatial interferences in mental arithmetic: evidence from the motion-arithmetic compatibility effect. The Quarterly Journal of Experimental Psychology, 67(8), 1557–1570.

    Article  PubMed  Google Scholar 

  • Zorzi, M., Bonato, M., Treccani, B., Scalambrin, G., Marenzi, R., & Priftis, K. (2012). Neglect impairs explicit processing of the mental number line. Frontiers in Human Neuroscience, 6, 125. doi:10.3389/fnhum.2012.00125.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zorzi, M., Priftis, K., & Umiltà, C. (2002). Brain damage: neglect disrupts the mental number line. Nature, 417, 138–139.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by Grant 1.A.057.12 from the National Fund for Scientific Research (Belgium). NM is a research fellow and MP a research associate at the National Fund for Scientific Research (Belgium). We thank Sarah Urbain for her help in data collection.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mauro Pesenti.

Appendix

Appendix

See Table 1.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Masson, N., Pesenti, M. Interference of lateralized distractors on arithmetic problem solving: a functional role for attention shifts in mental calculation. Psychological Research 80, 640–651 (2016). https://doi.org/10.1007/s00426-015-0668-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00426-015-0668-7

Keywords

Navigation