Skip to main content
Log in

Movement planning and attentional control of visuospatial working memory: evidence from a grasp-to-place task

  • Original Article
  • Published:
Psychological Research Aims and scope Submit manuscript

Abstract

In this study, we have investigated the influence of available attentional resources on the dual-task costs of implementing a new action plan and the influence of movement planning on the transfer of information into visuospatial working memory. To approach these two questions, we have used a motor–memory dual-task design in which participants grasped a sphere and planned a placing movement toward a left or right target according to a directional arrow. Subsequently, they encoded a centrally presented memory stimulus (4 × 4 symbol matrix). While maintaining the information in working memory, a visual stay/change cue (presented on the left, center or right) either confirmed or reversed the planned movement direction. That is, participants had to execute either the prepared or the re-planned movement and finally reported the symbols at leisure. The results show that both, shifts of spatial attention required to process the incongruent stay/change cues and movement re-planning, constitute processing bottlenecks as they both reduced visuospatial working memory performance. Importantly, the spatial attention shifts and movement re-planning appeared to be independent of each other. Further, we found that the initial preparation of the placing movement influenced the report pattern of the central working memory stimulus. Preparing a leftward movement resulted in better memory performance for the left stimulus side, while the preparation of a rightward movement resulted in better memory performance for the right stimulus side. Hence, movement planning influenced the transfer of information into the capacity-limited working memory store. Therefore, our results suggest complex interactions in that the processes involved in movement planning, spatial attention and visuospatial working memory are functionally correlated but not linked in a mandatory fashion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. Spiegel, Koester, Weigelt & Schack (2012) found no effects of re-planning on execution time. A possible explanation relates to the modality of the stay/change cue which was visuospatial here and auditory in the study by Spiegel, et al. (2012). This higher processing demand in the visuospatial domain (visuospatial WM stimulus and visuospatial stay/change cue) seemed to result in prolonged re-programming times and/or slower placing movements (from the present data it is not possible to differentiate between the two possibilities). Depending on the methodological approach reported in the literature, changing a movement plan sometimes results in longer execution times (e.g., Castiello, Bennett, & Chambers, 1998; Hughes et al., 2012; Paulignan, Jeannerod, MacKenzie, & Marteniuk, 1991; Stelmach, Castiello, & Jeannerod, 1994) and sometimes it does not (e.g., de Jong, 1995; Desmurget et al., 1996; Spiegel, et al., 2012; van Donkelaar & Franks, 1991).

References

  • Allport, D. (1987). Selection for action: Some behavioural and neurophysiological considerations of attention and action. In H. Heuer & A. Sanders (Eds.), Perspectives on perception and action (pp. 395–419). Hillsdale, New York: Erlbaum.

  • Anllo-Vento, L. (1995). Shifting attention in visual space: the effects of peripheral cueing on brain cortical potentials. The International Journal of Neuroscience, 80(1–4), 353–370.

    Article  PubMed  Google Scholar 

  • Awh, E., Anllo-Vento, L., & Hillyard, S. A. (2000). The role of spatial selective attention in working memory for locations: evidence from event-related potentials. Journal of Cognitive Neuroscience, 12(5), 840–847.

    Article  PubMed  Google Scholar 

  • Awh, E., Armstrong, K. M., & Moore, T. (2006). Visual and oculomotor selection: links, causes and implications for spatial attention. Trends in Cognitive Sciences, 10(3), 124–130.

    Article  PubMed  Google Scholar 

  • Awh, E., & Jonides, J. (2001). Overlapping mechanisms of attention and spatial working memory. Trends in Cognitive Sciences, 5(3), 119–126.

    Article  PubMed  Google Scholar 

  • Awh, E., Jonides, J., & Reuter-Lorenz, P. A. (1998). Rehearsal in spatial working memory. Journal of Experimental Psychology, 24(3), 780–790.

    PubMed  Google Scholar 

  • Awh, E., Smith, E., & Jonides, J. (1995). Human rehearsal processes and the frontal lobes: PET evidence. In J. Grafman, K. Holyoak, & F. Boller (Eds.), Annals of the New York Academy of Sciences (Vol. 769, pp. 97–119)., Structure and functions of the human prefrontal cortex New York: New York Academy of Sciences.

    Google Scholar 

  • Baddeley, A. D. (1986). Working Memory. Oxford: Clarendon Press.

    Google Scholar 

  • Baddeley, A. (2003). Working memory: looking back and looking forward. Nature Reviews Neuroscience, 4(10), 829–839.

    Article  PubMed  Google Scholar 

  • Baker, K. S., Mattingley, J. B., Chambers, C. D., & Cunnington, R. (2011). Attention and the readiness for action. Neuropsychologia, 49(12), 3303–3313. doi:10.1016/j.neuropsychologia.2011.08.003.

    Article  PubMed  Google Scholar 

  • Baldauf, D., & Deubel, H. (2010). Attentional landscapes in reaching and grasping. Vision Research, 50(11), 999–1013. doi:10.1016/j.visres.2010.02.008.

    Article  PubMed  Google Scholar 

  • Baldauf, D., Wolf, M., & Deubel, H. (2006). Deployment of visual attention before sequences of goal-directed hand movements. Vision Research, 46(26), 4355–4374.

    Article  PubMed  Google Scholar 

  • Bathurst, K., & Kee, D. W. (1994). Finger-tapping interference as produced by concurrent verbal and nonverbal tasks: an analysis of individual differences in left-handers. Brain and Cognition, 24(1), 123–136.

    Article  PubMed  Google Scholar 

  • Belopolsky, A. V., & Theeuwes, J. (2012). Updating the premotor theory: the allocation of attention is not always accompanied by saccade preparation. Journal of Experimental Psychology: Human Perception and Performance, 38(4), 902–914. doi:10.1037/a0028662.

    PubMed  Google Scholar 

  • Benwell, C. S., Harvey, M., Gardner, S., & Thut, G. (2012). Stimulus- and state-dependence of systematic bias in spatial attention: additive effects of stimulus-size and time-on-task. Cortex; a Journal Devoted to the Study of the Nervous System and Behavior,. doi:10.1016/j.cortex.2011.12.007.

    PubMed  Google Scholar 

  • Bleckley, M., Durso, F., Crutchfield, J., Engle, R., & Khanna, M. (2003). Individual differences in working memory capacity predict visual attention allocation. Psychonomic Bulletin & Review, 10(4), 884–889.

    Article  Google Scholar 

  • Bundesen, C. (1990). A theory of visual attention. Psychological Review, 97(4), 523–547.

    Article  PubMed  Google Scholar 

  • Bunting, M. F., & Cowan, N. (2005). Working memory and flexibility in awareness and attention. Psychological Research, 69(5–6), 412–419. doi:10.1007/s00426-004-0204-7.

    Article  PubMed Central  PubMed  Google Scholar 

  • Carrier, L. M., & Pashler, H. (1995). Attentional limits in memory retrieval. Journal of Experimental Psychology. Learning, Memory, and Cognition, 21(5), 1339–1348.

    Article  PubMed  Google Scholar 

  • Castiello, U., Bennett, K., & Chambers, H. (1998). Reach to grasp: the response to a simultaneous perturbation of object position and size. Experimental Brain Research, 120(1), 31–40.

    Article  PubMed  Google Scholar 

  • Chum, M., Bekkering, H., Dodd, M. D., & Pratt, J. (2007). Motor and visual codes interact to facilitate visuospatial memory performance. Psychonomic Bulletin & Review, 14(6), 1189–1193.

    Article  Google Scholar 

  • Chun, M. (2011). Visual working memory as visual attention sustained internally over time. Neuropsychologia, 49(6), 1407–1409. doi:10.1016/j.neuropsychologia.2011.01.029.

    Article  PubMed  Google Scholar 

  • Collins, T., Heed, T., & Roder, B. (2010). Visual target selection and motor planning define attentional enhancement at perceptual processing stages. Frontiers in Human Neuroscience, 4, 14.

    Article  PubMed Central  PubMed  Google Scholar 

  • Corsi, P. M. (1972). Human memory and the medial temporal region of the brain (Ph.D.). McGill University, Montreal.

  • Cowan, N. (1988). Evolving conceptions of memory storage, selective attention, and their mutual constraints within the human information-processing system. Psychological Bulletin, 104(2), 163–191.

    Article  PubMed  Google Scholar 

  • Cowan, N. (2011). The focus of attention as observed in visual working memory tasks: making sense of competing claims. Neuropsychologia, 49(6), 1401–1406. doi:10.1016/j.neuropsychologia.2011.01.035.

    Article  PubMed Central  PubMed  Google Scholar 

  • de Jong, R. (1995). Perception–action coupling and S–R compatibility. Acta Psychologica, 90(1–3), 287–299.

    Article  PubMed  Google Scholar 

  • Desmurget, M., Prablanc, C., Arzi, M., Rossetti, Y., Paulignan, Y., & Urquizar, C. (1996). Integrated control of hand transport and orientation during prehension movements. Experimental Brain Research, 110(2), 265–278.

    Article  PubMed  Google Scholar 

  • Deubel, H., Schneider, W. X., & Paprotta, I. (1998). Selective Dorsal and Ventral Processing: evidence for a Common Attentional Mechanism in Reaching and Perception. Visual Cognition, 5(1–2), 81–107. doi:10.1080/713756776.

    Article  Google Scholar 

  • Dirnberger, G., Reumann, M., Endl, W., Lindinger, G., Lang, W., & Rothwell, J. C. (2000). Dissociation of motor preparation from memory and attentional processes using movement-related cortical potentials. Experimental Brain Research, 135(2), 231–240.

    Article  PubMed  Google Scholar 

  • Dodd, M. D., & Shumborski, S. (2009). Examining the influence of action on spatial working memory: the importance of selection. The Quarterly Journal of Experimental Psychology, 62(6), 1236–1247.

    Article  PubMed  Google Scholar 

  • Duncan, J. (1984). Selective attention and the organization of visual information. Journal of Experimental Psychology, 113(4), 501–517.

    Article  PubMed  Google Scholar 

  • Essig, K., Maycock, J., Ritter, H., & Schack, T. (2011). The Cognitive Nature of Action—A Bi-Modal Approach towards the Natural Grasping of Known and Unknown Objects. IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2011), September 25, 63–68.

  • Fagioli, S., Hommel, B., & Schubotz, R. I. (2007). Intentional control of attention: action planning primes action-related stimulus dimensions. Psychological Research, 71(1), 22–29.

    Article  PubMed  Google Scholar 

  • Fitts, P. M., & Deininger, R. L. (1954). S–R compatibility: correspondence among paired elements within stimulus and response codes. Journal of Experimental Psychology, 48(6), 483–492.

    Article  PubMed  Google Scholar 

  • Foerster, R. M., Carbone, E., Koesling, H., & Schneider, W. X. (2011). Saccadic eye movements in a high-speed bimanual stacking task: changes of attentional control during learning and automatization. Journal of Vision, 11(7), 9. doi:10.1167/11.7.9.

    Article  PubMed  Google Scholar 

  • Garavan, H. (1998). Serial attention within working memory. Memory & Cognition, 26(2), 263–276.

    Article  Google Scholar 

  • Gazzaley, A., & Nobre, A. C. (2012). Top–down modulation: bridging selective attention and working memory. Trends in Cognitive Sciences, 16(2), 129–135.

    Article  PubMed Central  PubMed  Google Scholar 

  • Hale, S., Myerson, J., Rhee, S. H., Weiss, C. S., & Abrams, R. A. (1996). Selective interference with the maintenance of location information in working memory. Neuropsychology, 10(2), 228–240.

    Article  Google Scholar 

  • Hesse, C., & Franz, V. H. (2009). Memory mechanisms in grasping. Neuropsychologia, 47(6), 1532–1545.

    Article  PubMed  Google Scholar 

  • Hollingworth, A., & Henderson, J. M. (2002). Accurate visual memory for previously attended objects in natural scenes. Journal of Experimental Psychology: Human Perception and Performance, 28(1), 113–136. doi:10.1037/0096-1523.28.1.113.

    Google Scholar 

  • Hommel, B. (2011). The Simon effect as tool and heuristic. Acta Psychologica, 136(2), 189–202.

    Article  PubMed  Google Scholar 

  • Hommel, B., Müsseler, J., Aschersleben, G., & Prinz, W. (2001). The Theory of Event Coding (TEC): a framework for perception and action planning. The Behavioral and Brain Sciences, 24(5), 849–78; discussion 878-937.

  • Hughes, C. M. L., Seegelke, C., Spiegel, M. A., Oehmichen, C., Hammes, J., & Schack, T. (2012). Corrections in grasp posture in response to modifications of action goals. PLoS ONE, 7(9), e43015.

    Article  PubMed Central  PubMed  Google Scholar 

  • Ikkai, A., & Curtis, C. (2011). Common neural mechanisms supporting spatial working memory, attention and motor intention. Neuropsychologia, 49(6), 1428–1434.

    Article  PubMed Central  PubMed  Google Scholar 

  • Janczyk, M., & Grabowski, J. (2011). The focus of attention in working memory: evidence from a word updating task. Memory, 19(2), 211–225. doi:10.1080/09658211.2010.546803.

    Article  PubMed  Google Scholar 

  • Jewell, G., & McCourt, M. E. (2000). Pseudoneglect: a review and meta-analysis of performance factors in line bisection tasks. Neuropsychologia, 38(1), 93–110.

    Article  PubMed  Google Scholar 

  • Jha, A. (2002). Tracking the time-course of attentional involvement in spatial working memory: an event-related potential investigation. Brain Research, 15(1), 61–69.

    PubMed  Google Scholar 

  • Jonides, J. (1981). Voluntary versus automatic control over the mind’s eye’s movement. In J. B. Long & A. D. Baddeley (Eds.), Attention and performance: IX (pp. 187–203). Hillsdale, NJ: Erlbaum.

  • Juan, C.-H., Shorter-Jacobi, S. M., & Schall, J. D. (2004). Dissociation of spatial attention and saccade preparation. Proceedings of the National Academy of Sciences of the United States of America, 101(43), 15541–15544. doi:10.1073/pnas.0403507101.

    Article  PubMed Central  PubMed  Google Scholar 

  • Kessels, R. P., van Zandvoort, M. J., Postma, A., Kappelle, L. J., & de Haan, E. H. (2000). The Corsi Block-Tapping Task: standardization and normative data. Applied Neuropsychology, 7(4), 252–258. doi:10.1207/S15324826AN0704_8.

    Article  PubMed  Google Scholar 

  • Kirsch, W., & Hennighausen, E. (2010). ERP correlates of linear hand movements: distance dependent changes. Clinical Neurophysiology, 121(8), 1285–1292. doi:10.1016/j.clinph.2010.02.151.

    Article  PubMed  Google Scholar 

  • Kirsch, W., Hennighausen, E., & Rösler, F. (2009). Dissociating cognitive and motor interference effects on kinesthetic short-term memory. Psychological Research, 73(3), 380–389.

    Article  PubMed  Google Scholar 

  • Klein, R. M. (1980). Does oculomotor readiness mediate cognitive control of visual attention? In R. S. Nickerson (Ed.), Attention and performance. VIII (pp. 259–276). Hillsdale, NJ: Lawrence Erlbaum.

  • Klein, R., & Pontefract, A. (1994). Does oculomotor readiness mediate cognitive control of visual attention? Revisited! In C. Umiltà & M. Moscovitch (Eds.), Attention and performance: XV. Conscious and nonconscious information processing (pp. 333–350). Cambridge, Mass. [u.a.]: MIT Press.

  • Lawrence, B. M., Myerson, J., Oonk, H. M., & Abrams, R. A. (2001). The effects of eye and limb movements on working memory. Memory (Hove, England), 9(4), 433–444.

    Google Scholar 

  • Logan, S. W., & Fischman, M. G. (2011). The relationship between end-state comfort effects and memory performance in serial and free recall. Acta Psychologica, 137(3), 292–299.

    Article  PubMed  Google Scholar 

  • Luck, S. J., & Hillyard, S. A. (2000). The operation of selective attention at multiple stages of processing: Evidence from human and monkey electrophysiology. In M. S. Gazzaniga (Ed.), The New Cognitive Neurosciences (2nd ed., pp. 687–700). Cambridge: MIT Press.

    Google Scholar 

  • Luck, S. J., & Vogel, E. K. (1997). The capacity of visual working memory for features and conjunctions. Nature, 390(6657), 279–281. doi:10.1038/36846.

    Article  PubMed  Google Scholar 

  • Memelink, J., & Hommel, B. (2012). Intentional weighting: a basic principle in cognitive control. Psychological Research,. doi:10.1007/s00426-012-0435-y.

    PubMed Central  PubMed  Google Scholar 

  • Miyake, A., & Shah, P. (Eds.). (1999). Models of Working Memory: Mechanisms of Active Maintenance and Executive Control. New York: Cambridge University Press.

    Google Scholar 

  • Montagnini, A., & Castet, E. (2007). Spatiotemporal dynamics of visual attention during saccade preparation: Independence and coupling between attention and movement planning. Journal of Vision, 7(14), 8.1–16. doi:10.1167/7.14.8.

  • Murray, A. M., Nobre, A. C., & Stokes, M. G. (2011). Markers of preparatory attention predict visual short-term memory performance. Neuropsychologia, 49(6), 1458–1465.

    Article  PubMed Central  PubMed  Google Scholar 

  • Oberauer, K. (2003). Selective attention to elements in working memory. Experimental Psychology, 50(4), 257–269.

    Article  PubMed  Google Scholar 

  • Ohbayashi, M., Ohki, K., & Miyashita, Y. (2003). Conversion of working memory to motor sequence in the monkey premotor cortex. Science 301(5630), 233–236.

    Google Scholar 

  • Okon-Singer, H., Podlipsky, I., Siman-Tov, T., Ben-Simon, E., Zhdanov, A., Neufeld, M. Y., et al. (2011). Spatio-temporal indications of sub-cortical involvement in leftward bias of spatial attention. NeuroImage, 54(4), 3010–3020. doi:10.1016/j.neuroimage.2010.10.078.

    Article  PubMed  Google Scholar 

  • Pashler, H. (1991). Shifting visual attention and selecting motor responses: distinct attentional mechanisms. Journal of Experimental Psychology: Human Perception and Performance, 17(4), 1023–1040.

    PubMed  Google Scholar 

  • Paulignan, Y., Jeannerod, M., MacKenzie, C., & Marteniuk, R. (1991). Selective perturbation of visual input during prehension movements. 2. The effects of changing object size. Experimental Brain Research, 87(2), 407–420.

    Article  PubMed  Google Scholar 

  • Posner, M. I. (1980). Orienting of attention. The Quarterly Journal of Experimental Psychology, 32(1), 3–25.

    Article  PubMed  Google Scholar 

  • Posner, M. I., Snyder, C. R., & Davidson, B. J. (1980). Attention and the detection of signals. Journal of Experimental Psychology: General, 109(2), 160–174. doi:10.1037/0096-3445.109.2.160.

    Article  Google Scholar 

  • Postle, B. R., Awh, E., Jonides, J., Smith, E. E., & D’Esposito, M. (2004). The where and how of attention-based rehearsal in spatial working memory. Brain Research, 20(2), 194–205.

    PubMed  Google Scholar 

  • Postle, B. R., Idzikowski, C., Della Sala, S., Logie, R. H., & Baddeley, A. D. (2006). The selective disruption of spatial working memory by eye movements. Quarterly Journal of Experimental Psychology (2006), 59(1), 100–120.

    Google Scholar 

  • Prinzmetal, W., Presti, D. E., & Posner, M. I. (1986). Does attention affect visual feature integration? Journal of Experimental Psychology, 12(3), 361–369.

    PubMed  Google Scholar 

  • Proctor, R. W. (2011). Playing the Simon game: use of the Simon task for investigating human information processing. Acta Psychologica, 136(2), 182–188. doi:10.1016/j.actpsy.2010.06.010.

    Article  PubMed  Google Scholar 

  • Quinn, J. G., & Ralston, G. E. (1986). Movement and attention in visual working memory. The Quarterly Journal of Experimental Psychology, 38(4), 689–703.

    Article  PubMed  Google Scholar 

  • Quinn, J. T., & Sherwood, D. E. (1983). Time requirements of changes in program and parameter variables in rapid ongoing movements. Journal of Motor Behavior, 15(2), 163–178.

    Article  PubMed  Google Scholar 

  • Rizzolatti, G., & Craighero, L. (1998). Spatial attention: Mechanisms and theories. In M. Sabourin, F. Craick, & M. Robert (Eds.), Advances in psychological science. Biological and Cognitive Aspects (pp. 171–198). Montreal: Psychology Press.

  • Rizzolatti, G., Riggio, L., Dascola, I., & Umilta, C. (1987). Reorienting attention across the horizontal and vertical meridians: evidence in favor of a premotor theory of attention. Neuropsychologia, 25(1A), 31–40.

    Google Scholar 

  • Rizzolatti, G., Riggio, L., & Sheliga, B. M. (1994). Space and Selective Attention. In C. Umiltà & M. Moscovitch (Eds.), Attention and performance: XV. Conscious and nonconscious information processing (pp. 231–265). Cambridge, Mass. [u.a.]: MIT Press.

  • Schall, J. D., & Woodman, G. F. (2012). A Stage Theory of Attention and Action. In G. R. Mangun (Ed.), The neuroscience of attention. Attentional control and selection (pp. 187–208). New York [u.a.]: Oxford Univ. Press.

  • Schiegg, A., Deubel, H., & Schneider, W. X. (2003). Attentional selection during preparation of prehension movements. Visual Cognition, 4, 409–431.

    Article  Google Scholar 

  • Schmidt, B., Vogel, E., Woodman, G., & Luck, S. (2002). Voluntary and automatic attentional control of visual working memory. Perception & Psychophysics, 64(5), 754–763.

    Article  Google Scholar 

  • Schneider, W. X. (1995). VAM: a neuro-cognitive model for visual attention control of segmentation, object recognition, and space-based motor action. Visual Cognition, 2(2–3), 331–376.

    Article  Google Scholar 

  • Simon, J. R. (1990). The effects of an irrelevant directional cue on human information processing. In R. W. Proctor & T. G. Reeve (Eds.), Stimulusresponse compatibility. An integrated perspective (pp. 31–86). Amsterdam: North Holland.

  • Smith, D. T., & Schenk, T. (2012). The Premotor theory of attention: time to move on? Neuropsychologia, 50(6), 1104–1114. doi:10.1016/j.neuropsychologia.2012.01.025.

    Article  PubMed  Google Scholar 

  • Smith, D. T., Schenk, T., & Rorden, C. (2012). Saccade preparation is required for exogenous attention but not endogenous attention or IOR. Journal of Experimental Psychology: Human Perception and Performance, 38(6), 1438–1447. doi:10.1037/a0027794.

    PubMed  Google Scholar 

  • Smyth, M. M., Pearson, N. A., & Pendleton, L. R. (1988). Movement and working memory: patterns and positions in space. The Quarterly Journal of Experimental Psychology Section A, 40(3), 497–514. doi:10.1080/02724988843000041.

    Article  Google Scholar 

  • Smyth, M. M., & Scholey, K. A. (1994). Interference in immediate spatial memory. Memory & Cognition, 22(1), 1–13.

    Article  Google Scholar 

  • Sperling, G. (1960). The information available in brief visual presentations. Psychological Monographs, 74, 1–29.

    Article  Google Scholar 

  • Spiegel, M. A., Koester, D., & Schack, T. (2013). The Functional Role of Working Memory in the (Re-)Planning and Execution of Grasping Movements. Journal of Experimental Psychology. Human Perception and Performance, 39(1).

  • Spiegel, M. A., Koester, D., Weigelt, M., & Schack, T. (2012). The costs of changing an intended action: movement planning, but not execution, interferes with verbal working memory. Neuroscience Letters, 509, 82–86. doi:10.1016/j.neulet.2011.12.033.

    Article  PubMed  Google Scholar 

  • Stelmach, G. E., Castiello, U., & Jeannerod, M. (1994). Orienting the finger opposition space during prehension movements. Journal of Motor Behavior, 26(2), 178–186.

    Article  PubMed  Google Scholar 

  • Stoffer, T. H. (1991). Attentional focussing and spatial stimulus–response compatibility. Psychological Research, 53(2), 127–135.

    Article  PubMed  Google Scholar 

  • Theeuwes, J., Kramer, A., & Irwin, D. (2011). Attention on our mind: the role of spatial attention in visual working memory. Acta Psychologica, 137(2), 248–251. doi:10.1016/j.actpsy.2010.06.011.

    Article  PubMed  Google Scholar 

  • Tipper, S. P., Howard, L. A., & Houghton, G. (1998). Action-based mechanisms of attention. Philosophical Transactions of the Royal Society of London. Series B, Biological sciences, 353(1373), 1385–1393. doi:10.1098/rstb.1998.0292.

    Article  PubMed Central  PubMed  Google Scholar 

  • Tipper, S. P., Lortie, C., & Baylis, G. C. (1992). Selective reaching: evidence for action-centered attention. Journal of Experimental Psychology: Human Perception and Performance, 18(4), 891–905.

    PubMed  Google Scholar 

  • Umiltà, C., & Nicoletti, R. (1992). An integrated model of the Simon effect. In J. Alegria, D. Holender, J. Junca de Morais, & M. Radeau (Eds.), Analytic approaches to human cognition (xv, pp. 331–350). Oxford: North-Holland.

  • van Donkelaar, P., & Franks, I. M. (1991). The effects of changing movement velocity and complexity on response preparation: evidence from latency, kinematic, and EMG measures. Experimental Brain Research, 83(3), 618–632.

    Article  PubMed  Google Scholar 

  • Velzen, J., Gherri, E., & Eimer, M. (2006). ERP effects of movement preparation on visual processing: attention shifts to the hand, not the goal. Cognitive Processing, 7(S1), 100–101.

    Google Scholar 

  • Vogel, E. K., Woodman, G. F., & Luck, S. J. (2001). Storage of features, conjunctions and objects in visual working memory. Journal of Experimental Psychology: Human Perception and Performance, 27(1), 92–114.

    PubMed  Google Scholar 

  • Weigelt, M., Rosenbaum, D. A., Huelshorst, S., & Schack, T. (2009). Moving and memorizing: motor planning modulates the recency effect in serial and free recall. Acta Psychologica, 132(1), 68–79.

    Article  PubMed  Google Scholar 

  • Westerholz, J., Schack, T. & Koester, D. (2013). Event-related brain potentials for goal-related power grips. PLOS ONE.

  • Wheeler, M. E., & Treisman, A. M. (2002). Binding in short-term visual memory. Journal of Experimental Psychology: General, 131(1), 48–64.

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by the German Research Foundation Grant DFG EXC 277 ‘‘Cognitive Interaction Technology” (CITEC). We thank the two anonymous reviewers for helpful comments on this article and Patricia Land for proofreading.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Spiegel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Spiegel, M.A., Koester, D. & Schack, T. Movement planning and attentional control of visuospatial working memory: evidence from a grasp-to-place task. Psychological Research 78, 494–505 (2014). https://doi.org/10.1007/s00426-013-0499-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00426-013-0499-3

Keywords

Navigation