Skip to main content
Log in

Attentional control and competition between episodic representations

  • Original Article
  • Published:
Psychological Research Aims and scope Submit manuscript

Abstract

The relationship between attentional control and episodic representation was investigated in six experiments that employed a variant of the classic attentional blink paradigm. We introduced a task-irrelevant (unpredictive) color match between the first and second target stimulus in a three-stream rapid serial visual presentation task. When this match was present, the first target reliably elicited a priming benefit to the identification of the second, lateralized target. However, this was only the case when the identities of the targets did not belong to the same category (digits, letters, or symbols). When targets did belong to the same category, interference was observed instead of priming, particularly at Lag 1. Furthermore, when color was the target-defining feature, interference at Lag 1 gave way to priming at longer lags. The interference effect is attributed to partial overlap between competing episodic target representations, which affects the availability of their overlapping features for successive attentional selection in rapid serial visual presentation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Akyürek, E. G., Eshuis, S. A. H., Nieuwenstein, M. R., Saija, J. D., Başkent, D., & Hommel, B. (2012). Temporal target integration underlies performance at Lag 1 in the attentional blink. Journal of Experimental Psychology: Human Perception and Performance. (in press).

  • Akyürek, E. G., & Hommel, B. (2005). Target integration and the attentional blink. Acta Psychologica, 119, 305–314.

    Article  PubMed  Google Scholar 

  • Akyürek, E. G., & Hommel, B. (2007). Stimulus and response priming in rapid serial visual presentation: Evidence for a dissociation. Perception & Psychophysics, 69, 1152–1161.

    Article  Google Scholar 

  • Akyürek, E. G., Riddell, P. M., Toffanin, P., & Hommel, B. (2007). Adaptive control of event integration: Evidence from event-related potentials. Psychophysiology, 44, 383–391.

    Article  PubMed  Google Scholar 

  • Akyürek, E. G., Toffanin, P., & Hommel, B. (2008). Adaptive control of event integration. Journal of Experimental Psychology: Human Perception and Performance, 34, 569–577.

    Article  PubMed  Google Scholar 

  • Balani, A. B., Soto, D., & Humphreys, G. W. (2010). Working memory and target-related distractor effects on visual search. Memory & Cognition, 38, 1058–1076.

    Article  Google Scholar 

  • Bargh, J. A. (1989). Conditional automaticity: Varieties of automatic influence in social perception and cognition. In J. S. Uleman & J. A. Bargh (Eds.), Unintended thought (pp. 3–51). London: Guilford Press.

    Google Scholar 

  • Bowman, H., & Wyble, B. (2007). The simultaneous type, serial token model of temporal attention and working memory. Psychological Review, 114, 38–70.

    Article  PubMed  Google Scholar 

  • Broadbent, D. E., & Broadbent, M. H. (1987). From detection to identification: Response to multiple targets in rapid serial visual presentation. Perception & Psychophysics, 42, 105–113.

    Article  Google Scholar 

  • Bundesen, C. (1990). A theory of visual attention. Psychological Review, 97, 523–547.

    Article  PubMed  Google Scholar 

  • Chun, M. M., & Potter, M. C. (1995). A two-stage model for multiple target detection in rapid serial visual presentation. Journal of Experimental Psychology: Human Perception and Performance, 21, 109–127.

    Article  PubMed  Google Scholar 

  • Desimone, R., & Duncan, J. (1995). Neural mechanisms of selective visual attention. Annual Review of Neuroscience, 18, 193–222.

    Article  PubMed  Google Scholar 

  • Di Lollo, V., Kawahara, J.-I., Ghorashi, S. M. S., & Enns, J. T. (2005). The attentional blink: resource depletion or temporary loss of control? Psychological Research, 69, 191–200.

  • Downing, P. E. (2000). Interactions between visual working memory and selective attention. Psychological Science, 11, 467–473.

    Article  PubMed  Google Scholar 

  • Downing, P. E., & Dodds, C. M. (2004). Competition in visual working memory for control of search. Visual Cognition, 11, 689–703.

    Article  Google Scholar 

  • Duncan, J. (1980). The locus of interference in the perception of simultaneous stimuli. Psychological Review, 87, 272–300.

    Article  PubMed  Google Scholar 

  • Duncan, J., & Humphreys, G. W. (1989). Visual search and stimulus similarity. Psychological Review, 96, 433–458.

    Article  PubMed  Google Scholar 

  • Duncan, J., Ward, R., & Shapiro, K. (1994). Direct measurement of attentional dwell time in human vision. Nature, 369, 313–315.

    Article  PubMed  Google Scholar 

  • Folk, C. L., Leber, A. B., & Egeth, H. E. (2002). Made you blink! Contingent attentional capture produces a spatial blink. Perception & Psychophysics, 64, 741–753.

    Article  Google Scholar 

  • Folk, C. L., Leber, A. B., & Egeth, H. E. (2008). Top-down control settings and the attentional blink: Evidence for non-spatial attentional capture. Visual Cognition, 16, 616–642.

    Article  Google Scholar 

  • Folk, C. L., & Remington, R. W. (1998). Selectivity in distraction by irrelevant featural singletons: Evidence for two forms of attentional capture. Journal of Experimental Psychology: Human Perception and Performance, 24, 847–858.

    Article  PubMed  Google Scholar 

  • Folk, C. L., Remington, R. W., & Johnston, J. C. (1992). Involuntary covert orienting is contingent on attentional control settings. Journal of Experimental Psychology: Human Perception and Performance, 18, 1030–1044.

    Article  PubMed  Google Scholar 

  • Folk, C. L., Remington, R. W., & Wright, J. H. (1994). The structure of attentional control: Contingent attentional capture by apparent motion, abrupt onset and colour. Journal of Experimental Psychology: Human Perception and Performance, 20, 317–329.

    Article  PubMed  Google Scholar 

  • Ghorashi, S., Spalek, T. M., Enns, J. T., & Di Lollo, V. (2009). Are spatial selection and identity extraction separable when attention is controlled endogenously? Attention, Perception, and Psychophysics, 71, 1233–1240.

    Article  Google Scholar 

  • Hommel, B. (2002). Responding to object files: Automatic integration of spatial information revealed by stimulus-response compatibility effects. Quarterly Journal of Experimental Psychology, 55A, 567–580.

    Google Scholar 

  • Hommel, B. (2004). Event files: Feature binding in and across perception and action. Trends in Cognitive Sciences, 8, 494–500.

    Article  PubMed  Google Scholar 

  • Hommel, B., & Akyürek, E. G. (2005). Lag 1 sparing in the attentional blink: Benefits and costs of integrating two events into a single episode. Quarterly Journal of Experimental Psychology, 58A, 1415–1433.

    Google Scholar 

  • Hommel, B., Müsseler, J., Aschersleben, G., & Prinz, W. (2001). The theory of event coding (TEC): A framework for perception and action planning. Behavioral and Brain Sciences, 24, 849–878.

    Article  PubMed  Google Scholar 

  • Jolicœur, P., & Dell’Acqua, R. (1998). The demonstration of short-term consolidation. Cognitive Psychology, 36, 138–202.

    Article  PubMed  Google Scholar 

  • Juola, J. F., Botella, J., & Palacios, A. (2004). Task- and location-switching effects on visual attention. Perception & Psychophysics, 66, 1303–1317.

    Article  Google Scholar 

  • Kanwisher, N. G. (1987). Repetition blindness: Type recognition without token individuation. Cognition, 27, 117–143.

    Article  PubMed  Google Scholar 

  • Kanwisher, N. G. (1991). Repetition blindness and illusory conjunctions: Errors in binding visual types with visual tokens. Journal of Experimental Psychology: Human Perception and Performance, 17, 404–421.

    Article  PubMed  Google Scholar 

  • Kawahara, J.-I., Zuvic, S. M., Enns, J. T., & Di Lollo, V. (2003). Task switching mediates the attentional blink even without backward masking. Perception & Psychophysics, 65, 339–351.

    Article  Google Scholar 

  • Lin, P.-H., & Luck, S. J. (2009). The influence of similarity on visual working memory representations. Visual Cognition, 17, 356–372.

    Article  PubMed  Google Scholar 

  • Logan, G. D., & Gordon, R. D. (2001). Executive control of visual attention in dual-task situations. Psychological Review, 108, 393–434.

    Article  PubMed  Google Scholar 

  • Logie, R. H., Brockmole, J. R., & Jaswal, S. (2011). Feature binding in visual short-term memory is unaffected by task-irrelevant changes of location, shape, and color. Memory & Cognition, 39, 24–36.

    Article  Google Scholar 

  • Norman, D. A., & Shallice, T. (1986). Attention to action: Willed and automatic control of behavior. In R. J. Davidson, G. E. Schwartz, & D. Shapiro (Eds.), Consciousness and self-regulation (Vol. 4, pp. 1–18). New York: Plenum.

    Chapter  Google Scholar 

  • Olivers, C. N. L. (2009). What drives memory-driven attentional capture? The effects of memory type, display type, and search type. Journal of Experimental Psychology: Human Perception and Performance, 35, 1275–1291.

    Article  PubMed  Google Scholar 

  • Olivers, C. N. L., Hilkenmeier, F., & Scharlau, I. (2011a). Prior entry explains order reversals in the attentional blink. Attention, Perception, & Psychophysics, 73, 53–67.

    Article  Google Scholar 

  • Olivers, C. N. L., & Meeter, M. (2008). A boost and bounce theory of temporal attention. Psychological Review, 115, 836–863.

    Article  PubMed  Google Scholar 

  • Olivers, C. N. L., Peters, J., Houtkamp, R., & Roelfsema, P. R. (2011b). Different states in visual working memory: When it guides attention and when it does not. Trends in Cognitive Sciences, 15, 327–334.

    PubMed  Google Scholar 

  • Pashler, H., & Shiu, L.-P. (1999). Do images involuntarily trigger search? A test of Pillsbury’s hypothesis. Psychonomic Bulletin & Review, 6, 445–448.

    Article  Google Scholar 

  • Potter, M. C., Staub, A., & O’Connor, D. H. (2002). The time course of competition for attention: Attention is initially labile. Journal of Experimental Psychology: Human Perception and Performance, 28, 1149–1162.

    Article  PubMed  Google Scholar 

  • Pratt, J., & Hommel, B. (2003). Symbolic control of visual attention: The role of working memory and attentional control settings. Journal of Experimental Psychology: Human Perception and Performance, 29, 835–845.

    Article  PubMed  Google Scholar 

  • Raymond, J. E., Shapiro, K. L., & Arnell, K. M. (1992). Temporary suppression of visual processing in an RSVP task: An attentional blink? Journal of Experimental Psychology: Human Perception and Performance, 18, 849–860.

    Article  PubMed  Google Scholar 

  • Shapiro, K. L., Driver, J., Ward, R., & Sorensen, R. E. (1997). Priming from the attentional blink: A failure to extract visual tokens but not visual types. Psychological Science, 8, 95–100.

    Article  Google Scholar 

  • Soto, D., Heinke, D., Humphreys, G. W., & Blanco, M. J. (2005). Early, involuntary top-down guidance of attention from working memory. Journal of Experimental Psychology: Human Perception and Performance, 31, 248–261.

    Article  PubMed  Google Scholar 

  • Soto, D., Hodsoll, J., Rotshtein, P., & Humphreys, G. W. (2008). Automatic guidance of attention from working memory. Trends in Cognitive Sciences, 12, 342–348.

    Article  PubMed  Google Scholar 

  • Soto, D., Humphreys, G. W., & Heinke, D. (2006). Working memory can guide pop-out search. Vision Research, 46, 1010–1018.

    Article  PubMed  Google Scholar 

  • Stoet, G., & Hommel, B. (1999). Action planning and the temporal binding of response codes. Journal of Experimental Psychology: Human Perception and Performance, 25, 1625–1640.

    Article  Google Scholar 

  • Theeuwes, J. (1991). Cross-dimensional perceptual selectivity. Perception & Psychophysics, 50, 184–193.

    Article  Google Scholar 

  • Theeuwes, J. (1994). Stimulus-driven capture and attentional set: Selective search for color and visual abrupt onsets. Journal of Experimental Psychology: Human Perception and Performance, 20, 799–806.

    Article  PubMed  Google Scholar 

  • Theeuwes, J., & Burger, R. (1998). Attentional control during visual search: The effect of irrelevant singletons. Journal of Experimental Psychology: Human Perception and Performance, 24, 1342–1353.

    Article  PubMed  Google Scholar 

  • Thompson, C., Underwood, G., & Crundall, D. (2007). Previous attentional set can induce an attentional blink with task-irrelevant initial targets. Quarterly Journal of Experimental Psychology, 60, 1603–1609.

    Article  Google Scholar 

  • Treisman, A. (1996). The binding problem. Current Opinion in Neurobiology, 6, 171–178.

    Article  PubMed  Google Scholar 

  • van Zoest, W., Donk, M., & Theeuwes, J. (2004). The role of stimulus-driven and goal-driven control in saccadic visual selection. Journal of Experimental Psychology: Human Perception and Performance, 30, 746–759.

    Article  PubMed  Google Scholar 

  • Visser, T. A. W., Bischof, W. F., & Di Lollo, V. (1999). Attentional switching in spatial and non-spatial domains: Evidence from the attentional blink. Psychological Bulletin, 125, 458–469.

    Article  Google Scholar 

  • Waszak, F., Hommel, B., & Allport, A. (2003). Task-switching and long-term priming: Role of episodic stimulus-task bindings in task-shift costs. Cognitive Psychology, 46, 361–413.

    Article  PubMed  Google Scholar 

  • Wolfe, J. M. (1998). Visual search. In H. Pashler (Ed.), Attention (pp. 13–73). Hove, UK: Psychology Press.

    Google Scholar 

  • Woodman, G. F., & Luck, S. J. (2007). Do the contents of visual working memory automatically influence attentional selection during visual search? Journal of Experimental Psychology: Human Perception and Performance, 33, 363–377.

    Article  PubMed  Google Scholar 

  • Woodman, G. F., & Vogel, E. K. (2008). Selective storage and maintenance of an object’s features in visual working memory. Psychonomic Bulletin & Review, 15, 223–229.

    Article  Google Scholar 

  • Wyble, B., Bowman, H., & Nieuwenstein, M. R. (2009). The attentional blink provides episodic distinctiveness: Sparing at a cost. Journal of Experimental Psychology: Human Perception and Performance, 35, 787–807.

    Article  PubMed  Google Scholar 

  • Wyble, B., Potter, M. C., Bowman, H., & Nieuwenstein, M. R. (2011). Attentional episodes in visual perception. Journal of Experimental Psychology: General, 140, 488–505.

    Article  Google Scholar 

  • Yamada, Y., & Kawahara, J.-I. (2007). Dividing attention between two different categories and locations in rapid serial visual presentations. Perception & Psychophysics, 69, 1218–1229.

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by the German Research Foundation (DFG) as part of the excellence cluster “Cognition for Technical Systems” (CoTeSys), project #148. The authors would like to thank Ali Abedian-Amiri, Jelena Pobrić, Carmen de Weerd, and Lea Wicke for their help with data collection, and Brad Wyble for valuable comments on an earlier draft.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elkan G. Akyürek.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Akyürek, E.G., Schubö, A. & Hommel, B. Attentional control and competition between episodic representations. Psychological Research 77, 492–507 (2013). https://doi.org/10.1007/s00426-012-0445-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00426-012-0445-9

Keywords

Navigation