Skip to main content
Log in

The effect of state anxiety on the online and offline control of fast target-directed movements

  • Original Article
  • Published:
Psychological Research Aims and scope Submit manuscript

Abstract

In target-directed aiming, afferent information is used to adjust limb trajectories during movement execution (i.e. online) and to enhance the programming of subsequent trials (i.e. offline). The objective of the present study was to determine the influence of state anxiety on both online and offline afferent information processing for the first time. Participants practiced either a directional aiming task (Experiment 1) or an amplitude aiming task (Experiment 2) without anxiety before being transferred to a high anxiety condition. In both experiments, results revealed that anxiety resulted in a decrement in performance. Furthermore, use of afferent information to adjust movement trajectories online was disrupted when movements were performed with anxiety, whereas there were no differences in the offline processing of afferent information between the low anxiety and high anxiety conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. The analysis between acquisition and transfer did not reveal any significant interactions involving target. As a result, and for brevity, the data within experimental phases were collapsed across targets when conducting the analysis.

  2. The utilisation of kinematic markers in Experiment 2 (as opposed to the movement percentiles used in Experiment 1) to investigate movement variability is in line with previous research (see Khan et al., 2006 for a review). These methodological differences in calculating variability in direction and amplitude tasks stems from the fact that kinematic markers are not readily available in direction aiming tasks where no amplitude component of movement is required. For amplitude aiming tasks, there are distinct acceleration and deceleration phases making the identification of kinematic markers straightforward. The trajectory markers used in both experiments enabled us to assess variability profiles early (25 %, pka), middle (50 %, pkv) and towards the end (75 %, pkna) of the limb trajectories.

  3. The utilisation of the track-way was to ensure that the task did not have any direction requirements.

References

  • Abahnini, K., & Proteau, L. (1999). The role of peripheral and central visual information for the directional control of manual movements. Canadian Journal of Experimental Psychology, 53, 160–175.

    Article  PubMed  Google Scholar 

  • Abahnini, K., Proteau, L., & Temprado, J. J. (1997). Evidence supporting the importance of peripheral visual information for the directional control of aiming movement. Journal of Motor Behavior, 29, 230–242.

    Article  PubMed  Google Scholar 

  • Bard, C., Paillard, J., Fleury, M., Hay, L., & Larue, J. (1990). Positional versus directional control loops in visuomotor pointing. European Bulletin of Cognitive Psychology, 39, 151–161.

    Google Scholar 

  • Baumeister, R. F. (1984). Choking under pressure—self-consciousness and paradoxical effects of incentives on skilful performance. Journal of Personality and Social Psychology, 46(3), 610–620.

    Article  PubMed  Google Scholar 

  • Bédard, P., & Proteau, L. (2003). On the role of peripheral visual afferent information for the control of rapid video-aiming movements. Acta Psychologica, 113, 99–117.

    Article  PubMed  Google Scholar 

  • Bédard, P., & Proteau, L. (2004). On-line vs. off-line utilisation of peripheral visual afferent information to ensure spatial accuracy of goal-directed movements. Experimental Brain Research, 158, 75–85.

    Article  Google Scholar 

  • Beilock, S. L., & Carr, T. H. (2001). On the fragility of skilled performance: what governs choking under pressure? Journal of Experimental Psychology—General, 130(4), 701–725.

    Article  PubMed  Google Scholar 

  • Beilock, S. L., Jellison, W. A., Rydell, R. J., McConnell, A. R., & Carr, T. H. (2006). On the causal mechanisms of stereotype threat: can skills that don’t rely heavily on working memory still be threatened? Personality and Social Psychology Bulletin, 32, 1059–1071.

    Article  PubMed  Google Scholar 

  • Briere, J., & Proteau, L. (2011). Automatic movement error detection and correction processes in reaching movements. Experimental Brain Research, 208(1), 39–50.

    Article  Google Scholar 

  • Carlton, L. G. (1992). Visual processing time and the control of movement. In L. Proteau & D. Elliott (Eds.), Vision and motor control (pp. 3–31). North-Holland: Amsterdam.

    Chapter  Google Scholar 

  • Coombes, S. A., Higgins, T., Gamble, K. M., Cauraugh, J. H., & Janelle, C. M. (2009). Attentional control theory: anxiety, emotion, and motor planning. Journal of Anxiety Disorders, 23(8), 1072–1079.

    Article  PubMed  Google Scholar 

  • Easterbrook, J. A. (1959). The effect of emotion on the utilization and organization of behavior. Psychological Review, 66(3), 183–201.

    Article  PubMed  Google Scholar 

  • Eysenck, M. W., & Calvo, M. G. (1992). Anxiety and performance—the processing efficiency theory. Cognition and Emotion, 6(6), 409–434.

    Article  Google Scholar 

  • Eysenck, M. W., Derakshan, N., Santos, R., & Calvo, M. G. (2007). Anxiety and cognitive performance: attentional control theory. Emotion, 7(2), 336–353.

    Article  PubMed  Google Scholar 

  • Franklin, D. W., & Wolpert, D. M. (2008). Specificity of reflex adaptation for task-relevant variability. Journal of Neuroscience, 28(52), 14165–14175.

    Article  PubMed  Google Scholar 

  • Glover, S. (2004). Separate visual representations in the planning and control of action. Behavioral and Brain Sciences, 27(1), 3–78.

    PubMed  Google Scholar 

  • Gray, R. (2004). Attending to the execution of a complex sensorimotor skill: expertise differences, choking, and slumps. Journal of Experimental Psychology-Applied, 10(1), 42–54.

    Article  PubMed  Google Scholar 

  • Hardy, L., Beattie, S., & Woodman, T. (2007). Anxiety-induced performance catastrophes: investigating effort required as an asymmetry factor. British Journal of Psychology, 98, 15–31.

    Article  PubMed  Google Scholar 

  • Hardy, L., Mullen, R., & Martin, N. (2001). Effect of task-relevant cues and state anxiety on motor performance. Perceptual and Motor Skills, 92(3), 943–946.

    Article  PubMed  Google Scholar 

  • Janelle, C. M., Singer, R. N., & Williams, A. M. (1999). External distraction and attentional narrowing: visual search evidence. Journal of Sport and Exercise Psychology, 21(1), 70–91.

    Google Scholar 

  • Khan, M. A., Franks, I. M., Elliott, D., Lawrence, G. P., Chua, R., Bernier, P. M., et al. (2006). Inferring online and offline processing of visual feedback in target-directed movements from kinematic data. Neuroscience and Biobehavioral Reviews, 30(8), 1106–1121.

    Article  PubMed  Google Scholar 

  • Khan, M. A., Franks, I. M., & Goodman, D. (1998). The effect of practice on the control of rapid aiming movements: evidence for an interdependency between programming and feedback processing. Quarterly Journal of Experimental Psychology Section a-Human Experimental Psychology, 51(2), 425–444.

    Article  Google Scholar 

  • Khan, M. A., & Franks, I. M. (2003). Online versus offline processing of visual feedback in the production of component submovements. Journal of Motor Behavior, 35(3), 285–295.

    Article  PubMed  Google Scholar 

  • Khan, M. A., Lawrence, G., Fourkas, A., Franks, I. M., Elliott, D., & Pembroke, S. (2003a). Online versus offline processing of visual feedback in the control of movement amplitude. Acta Psychologica, 113(1), 83–97.

    Article  PubMed  Google Scholar 

  • Khan, M. A., Lawrence, G. P., Franks, I. M., & Elliott, D. (2003b). The utilization of visual feedback in the control of movement direction: evidence from a video aiming task. Motor Control, 7(3), 290–303.

    PubMed  Google Scholar 

  • Khan, M. A., Lawrence, G. P., Franks, I. M., & Buckloz, E. (2004). The utilization of visual feedback from peripheral and central vision in the control of direction. Experimental Brain Research, 158(2):241–251.

    Google Scholar 

  • Krane, V. (1994). The mental readiness form as a measure of competitive state anxiety. Sport Psychologist, 8(2), 189–202.

    Google Scholar 

  • Lawrence, G. P., Khan, M. A., Buckolz, E., & Oldham, A. R. H. (2006). The contribution of peripheral and central vision in the control of movement amplitude. Human Movement Science, 25(3), 326–338.

    Article  PubMed  Google Scholar 

  • Lawrence, G. P., Khan, M. A., Mourton, S., & Bernier, P.-M. (2011). The reliance on visual feedback for online and offline processing. Motor Control, 15(2), 232–246.

    PubMed  Google Scholar 

  • Lewis, B. P., & Linder, D. E. (1997). Thinking about choking? Attentional processes and paradoxical performance. Personality and Social Psychology Bulletin, 23(9), 937–944.

    Article  Google Scholar 

  • Masters, R. S. W. (1992). Knowledge, knerves and know-how—the role of explicit versus implicit knowledge in the breakdown of a complex motor skill under pressure. British Journal of Psychology, 83, 343–358.

    Article  Google Scholar 

  • Masters, R. S. W., & Maxwell, J. P. (2008). The theory of reinvestment. International Review of Sport and Exercise Psychology, 1(2), 160–183.

    Article  Google Scholar 

  • Mullen, R., Hardy, L., & Tattersall, A. (2005). The effects of anxiety on motor performance: a test of the conscious processing hypothesis. Journal of Sport & Exercise Psychology, 27(2), 212–225.

    Google Scholar 

  • Murray, N. P., & Janelle, C. M. (2003). Anxiety and performance: a visual search examination of the processing efficiency theory. Journal of Sport and Exercise Psychology, 25(2), 171–187.

    Google Scholar 

  • Paillard, J., & Amblard, B. (1985). Static versus kinetic visual cues for the processing of spatial relationships. In D. J. Ingle, M. Jeannerod, & D. N. Lee (Eds.), Brain mechanism in spatial vision (pp. 367–385). La Haye: Martinus Nijhoff.

    Google Scholar 

  • Parfitt, G., & Hardy, L. (1993). The effects of competitive anxiety on memory span and rebound shooting tasks in basketball players. Journal of Sports Sciences, 11(6), 517–524.

    Article  PubMed  Google Scholar 

  • Proteau, L., Marteniuk, R. G., Girouard, Y., & Dugas, C. (1987). On the type of information used to control and learn an aiming movement after moderate and extensive training. Human Movement Science, 6(2), 181–199.

    Article  Google Scholar 

  • Proteau, L., Roujoula, A., & Messier, J. (2009). Evidence for continuous processing of visual information in a manual video-aiming task. Journal of Motor Behavior, 41(3), 219–231.

    Article  PubMed  Google Scholar 

  • Schmidt, R. A., Zelaznik, H., Hawkins, B., Frank, J. S., & Quinn, J. T. (1979). Motor-output variability—theory for the accuracy of rapid motor acts. Psychological Review, 86(5), 415–451.

    Article  Google Scholar 

  • Temprado, J. J., Vieilledent, S., & Proteau, L. (1996). Afferent information for motor control: the role of visual information in different portions of the movement. Journal of Motor Behavior, 28(3), 280–287.

    Article  PubMed  Google Scholar 

  • Wilson, M. (2008). From processing efficiency to attentional control: a mechanistic account of the anxiety-performance relationship. International Review of Sport and Exercise Psychology, 1(2), 184–201.

    Article  Google Scholar 

  • Wine, J. (1971). Test anxiety and direction of attention. Psychological Bulletin, 76(2), 92–104.

    Article  PubMed  Google Scholar 

  • Zijlstra, F. R. H. (1993) Efficiency in work behaviour: A design approach for modern tools. Delft: Delft University Press (Doctoral dissertation, Technical University Delft).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gavin P. Lawrence.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lawrence, G.P., Khan, M.A. & Hardy, L. The effect of state anxiety on the online and offline control of fast target-directed movements. Psychological Research 77, 422–433 (2013). https://doi.org/10.1007/s00426-012-0440-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00426-012-0440-1

Keywords

Navigation