Skip to main content
Log in

Auditory and visual temporal sensitivity: evidence for a hierarchical structure of modality-specific and modality-independent levels of temporal information processing

  • Original Article
  • Published:
Psychological Research Aims and scope Submit manuscript

Abstract

The present study investigated modality-specific differences in processing of temporal information in the subsecond range. For this purpose, participants performed auditory and visual versions of a rhythm perception and three different duration discrimination tasks to allow for a direct, systematic comparison across both sensory modalities. Our findings clearly indicate higher temporal sensitivity in the auditory than in the visual domain irrespective of type of timing task. To further evaluate whether there is evidence for a common modality-independent timing mechanism or for multiple modality-specific mechanisms, we used structural equation modeling to test three different theoretical models. Neither a single modality-independent timing mechanism, nor two independent modality-specific timing mechanisms fitted the empirical data. Rather, the data are well described by a hierarchical model with modality-specific visual and auditory temporal processing at a first level and a modality-independent processing system at a second level of the hierarchy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Allan, L. G., & Kristofferson, A. B. (1974). Psychophysical theories of duration discrimination. Perception & Psychophysics, 16, 26–34.

    Article  Google Scholar 

  • Allan, L. G., Kristofferson, A. B., & Wiens, E. W. (1971). Duration discrimination of brief light flashes. Perception & Psychophysics, 9, 327–334.

    Article  Google Scholar 

  • Brebner, J. M. T., & Welford, A. T. (1980). Introduction: An historical background sketch. In A. T. Welford (Ed.), Reaction times. London: Academic Press.

    Google Scholar 

  • Browne, M. W., & Cudeck, R. (1993). Alternative ways of assessing model fit. In K. A. Bollen & J. S. Long (Eds.), Testing structural equation models (pp. 136–162). Newbury Park, CA: Sage.

    Google Scholar 

  • Carroll, J. B. (1993). Human cognitive abilities. A survey of factoranalytical studies. New York: Cambridge University Press.

    Book  Google Scholar 

  • Chen, Y. G., Huang, X. T., Luo, Y. M., Peng, C. H., & Liu, C. X. (2010). Differences in the neural basis of automatic auditory and visual time perception: ERP evidence from an across-modal delayed response oddball task. Brain Research, 1325, 100–111.

    Article  PubMed  Google Scholar 

  • Church, R. M. (1984). Properties of the internal clock. In J. Gibbon & L. Allan (Eds.), Timing and time perception. New York: Academy of Sciences.

    Google Scholar 

  • Collier, G. L., & Logan, G. (2000). Modality differences in short-term memory for rhythms. Memory & Cognition, 28, 529–538.

    Article  Google Scholar 

  • Craig, J. C. (1973). Constant error in perception of brief temporal intervals. Perception & Psychophysics, 13, 99–104.

    Article  Google Scholar 

  • Creelman, C. D. (1962). Human discrimination of auditory duration. Journal of the Acoustical Society of America, 34, 582–593.

    Article  Google Scholar 

  • Demany, L., McKenzie, B., & Vurpillot, E. (1977). Rhythm perception in early infancy. Nature, 266, 718–719.

    Article  PubMed  Google Scholar 

  • Exner, S. (1875). Experimentelle Untersuchung der einfachsten psychischen Processe. Archiv für die gesammte Physiologie des Menschen und der Thiere, 11, 403–432.

    Article  Google Scholar 

  • Fraisse, P. (1985). Psychologie der Zeit. München: Ernst Reinhardt.

    Google Scholar 

  • Garlick, D. (2002). Understanding the nature of the general factor of intelligence: The role of individual differences in neural plasticity as an explanatory mechanism. Psychological Review, 109, 116–136.

    Article  PubMed  Google Scholar 

  • Gibbon, J., & Church, R. M. (1984). Sources of variance in an information processing theory of timing. In H. L. Roitblat, T. G. Bever, & H. S. Terrace (Eds.), Animal cognition (pp. 465–488). Hillsdale, NJ: Erlbaum.

    Google Scholar 

  • Goldstone, S. (1968). Reaction time to onset and termination of lights and sounds. Perceptual and Motor Skills, 27, 1023–1029.

    Article  Google Scholar 

  • Grondin, S. (1993). Duration discrimination of empty and filled intervals marked by auditory and visual signals. Perception & Psychophysics, 54, 383–394.

    Article  Google Scholar 

  • Grondin, S. (2001). From physical time to the first and second moments of psychological time. Psychological Bulletin, 127, 22–44.

    Article  PubMed  Google Scholar 

  • Grondin, S., Meilleur-Wells, G., Ouellette, C., & Macar, F. (1998). Sensory effects on judgments of short time-intervals. Psychological Research, 61, 261–268.

    Article  PubMed  Google Scholar 

  • Grondin, S., & Rammsayer, T. (2003). Variable foreperiods and temporal discrimination. Quarterly Journal of Experimental Psychology, Section A: Human Experimental Psychology, 56, 731–765.

    Article  Google Scholar 

  • Haier, R. J. (1993). Cerebral glucose metabolism and intelligence. In P. A. Vernon (Ed.), Biological approaches to the study of human intelligence (pp. 317–332). Norwood, NJ: Ablex.

    Google Scholar 

  • Hirsh, I. J., & Fraisse, P. (1964). Simultanéité et succession de stimuli hétérogènes. Année Psychologique, 64, 1–19.

    Article  PubMed  Google Scholar 

  • Jensen, A. R. (1982). Reaction time and psychometric g. In H. J. Eysenck (Ed.), A model for intelligence (pp. 93–132). New York: Springer.

    Chapter  Google Scholar 

  • Jensen, A. R. (2006). Clocking the mind. Mental chronometry and individual differences. Amsterdam: Elsevier.

    Google Scholar 

  • Jokiniemi, M., Raisamo, R., Lylykangas, J., & Surakka, V. (2008). Crossmodal rhythm perception. Haptic and Audio Interaction Design, 5270, 111–119.

    Article  Google Scholar 

  • Kaernbach, C. (1991). Simple adaptive testing with the weighted up-down method. Perception & Psychophysics, 49, 227–229.

    Article  Google Scholar 

  • Kanabus, M., Szelag, E., Rojek, E., & Pöppel, E. (2002). Temporal order judgement for auditory and visual stimuli. Acta Neurobiologiae Experimentalis, 62, 263–270.

    PubMed  Google Scholar 

  • Klapproth, F. (2002). The effect of study-test modalities on the remembrance of subjective duration from long-term memory. Behavioural Processes, 59, 37–46.

    Article  PubMed  Google Scholar 

  • Kline, R. B. (1998). Principles and practice of structural equation modeling. New York: Guilford Press.

    Google Scholar 

  • Lapid, E., Ulrich, R., & Rammsayer, T. (2008). On estimating the difference limen in duration discrimination tasks: A comparison of the 2AFC and the reminder task. Perception & Psychophysics, 70, 291–305.

    Article  Google Scholar 

  • Lapid, E., Ulrich, R., & Rammsayer, T. H. (2009). Perceptual learning in auditory temporal discrimination: No evidence for a cross-modal transfer to the visual modality. Psychonomic Bulletin & Review, 16, 382–389.

    Article  Google Scholar 

  • Levine, M. W. (2001). Principles of neural processing. In E. B. Goldstein (Ed.), Blackwell handbook of perception (pp. 24–52). Oxford: Blackwell.

    Google Scholar 

  • Li, L., Huang, J., Wu, X. H., Qi, J. G., & Schneider, B. A. (2009). The effects of aging and interaural delay on the detection of a break in the interaural correlation between two sounds. Ear and Hearing, 30, 273–286.

    Article  PubMed  Google Scholar 

  • Luce, R. D., & Galanter, E. (1963). Discrimination. In R. D. Luce, R. R. Bush, & E. Galanter (Eds.), Handbook of mathematical psychology (Vol. 1). New York: Wiley.

    Google Scholar 

  • Luck, S. J. (2005). An introduction to the event-related potential technique. Cambridge: MIT Press.

    Google Scholar 

  • Macmillan, N. A., & Creelman, C. D. (2005). Detection theory: A user’s guide. Mahwah, NJ: Erlbaum.

    Google Scholar 

  • McCormack, T., Brown, G. D. A., Maylor, E. A., Darby, R. J., & Green, D. (1999). Developmental changes in time estimation: Comparing childhood and old age. Developmental Psychology, 35, 1143–1155.

    Article  PubMed  Google Scholar 

  • McCormack, T., Brown, G. D. A., Maylor, E. A., Richardson, L. B. N., & Darby, R. J. (2002). Effects of aging on absolute identification of duration. Psychology and Aging, 17, 363–378.

    Article  PubMed  Google Scholar 

  • Merchant, H., Zarco, W., & Prado, L. (2008). Do we have a common mechanism for measuring time in the hundreds of millisecond range? Evidence from multiple-interval timing tasks. Journal of Neurophysiology, 99, 939–949.

    Article  PubMed  Google Scholar 

  • Miller, E. M. (1994). Intelligence and brain myelination: A hypothesis. Personality and Individual Differences, 17, 803–832.

    Article  Google Scholar 

  • Muthén, L. K., & Muthén, B. O. (2009). Mplus user’s guide. Los Angeles: Muthén & Muthén.

    Google Scholar 

  • Neubauer, A. C., & Fink, A. (2005). Basic information processing and the psychophysiology of intelligence. In R. J. Sternberg & J. E. Pretz (Eds.), Cognition and intelligence. Identifying the mechanisms of the mind (pp. 68–87). Cambridge: Cambridge University Press.

    Google Scholar 

  • Ortega, L., Lopez, F., & Church, R. M. (2009). Modality and intermittency effects on time estimation. Behavioural Processes, 81, 270–273.

    Article  PubMed  Google Scholar 

  • Penney, T. B. (2003). Modality differences in interval timing: Attention, clock speed, and memory. In W. H. Meck (Ed.), Functional and neural mechanisms of internal timing (pp. 209–228). Boca Raton, FL: CRC Press.

    Google Scholar 

  • Penney, T. B. (2004). Electrophysiological correlates of interval timing in the stop-reaction-time task. Cognitive Brain Research, 21, 234–249.

    Article  PubMed  Google Scholar 

  • Penney, T. B., Gibbon, J., & Meck, W. H. (2000). Differential effects of auditory and visual signals on clock speed and temporal memory. Journal of Experimental Psychology-Human Perception and Performance, 26, 1770–1787.

    Article  PubMed  Google Scholar 

  • Penney, T. B., & Tourret, S. (2005). Les effets de la modalité sensorielle sur la perception du temps. Psychologie Française, 50, 131–143.

    Article  Google Scholar 

  • Pinel, P. J. (2006). Biopsychology. Boston: Allyn and Bacon.

    Google Scholar 

  • Pöppel, E. (1978). Time perception. In R. Held, H. W. Leibowitz, & H.-L. Teuber (Eds.), Handbook of sensory physiology (Vol. 8, pp. 713–729). Heidelberg: Springer.

    Google Scholar 

  • Rammsayer, T. H. (1989). Dopaminergic and serotoninergic influence on duration discrimination and vigilance. Pharmacopsychiatry, 22, 39–43.

    Article  PubMed  Google Scholar 

  • Rammsayer, T. H. (1992). Die Wahrnehmung kurzer Zeitdauern. Allgemeinpsychologische und psychobiologische Ergebnisse zur Zeitdauerdiskrimination im Millisekundenbereich. Münster: Waxmann.

    Google Scholar 

  • Rammsayer, T. H. (1994). A cognitive-neuroscience approach for elucidation of mechanisms underlying temporal information processing. Neuroscience, 77, 61–76.

    PubMed  Google Scholar 

  • Rammsayer, T. H. (2010). Differences in duration discrimination of filled and empty auditory intervals as a function of base duration. Attention, Perception, & Psychophysics, 72, 1591–1600.

    Article  Google Scholar 

  • Rammsayer, T. H., & Brandler, S. (2002). On the relationship between general fluid intelligence and psychophysical indicators of temporal resolution in the brain. Journal of Research in Personality, 36, 507–530.

    Article  Google Scholar 

  • Rammsayer, T. H., & Brandler, S. (2007). Performance on temporal information processing as an index of general intelligence. Intelligence, 35, 123–139.

    Article  Google Scholar 

  • Rammsayer, T. H., & Lima, S. D. (1991). Duration discrimination of filled and empty auditory intervals: Cognitive and perceptual factors. Perception & Psychophysics, 50, 565–574.

    Article  Google Scholar 

  • Rammsayer, T. H., & Ulrich, R. (2001). Counting models of temporal discrimination. Psychonomic Bulletin & Review, 8, 270–277.

    Article  Google Scholar 

  • Rousseau, L., & Rousseau, R. (1996). Stop-reaction time and the internal clock. Perception & Psychophysics, 58, 434–448.

    Article  Google Scholar 

  • Schermelleh-Engel, K., Moosbrugger, H., & Müller, H. (2003). Evaluating the fit of structural equation models: Tests of significance and descriptive goodness-of-fit measures. Methods of Psychological Research Online, 8, 23–74.

    Google Scholar 

  • Shih, L. Y. L., Kuo, W. J., Yeh, T. C., Tzen, O. J. L., & Hsieh, J. C. (2009). Common neural mechanisms for explicit timing in the sub-second range. Neuroreport, 20, 897–901.

    Article  PubMed  Google Scholar 

  • Stöhr, M., Dichgans, J., Buettner, U. W., & Hess, C. W. (2005). Evozierte Potentiale. Heidelberg: Springer.

    Google Scholar 

  • ten Hoopen, G., Hartsuiker, R., Sasaki, T., Nakajima, Y., Tanaka, M., & Tsumura, T. (1995). Auditory isochrony: Time shrinking and temporal patterns. Perception, 24, 577–593.

    Article  PubMed  Google Scholar 

  • Treisman, M. (1963). Temporal discrimination and the indifference interval: Implications for a model of the internal clock. Psychological Monographs, 77, 1–31.

    PubMed  Google Scholar 

  • Ulrich, R. (1987). Threshold models of temporal-order judgments evaluated by a ternary response task. Perception & Psychophysics, 42, 224–239.

    Article  Google Scholar 

  • Ulrich, R., Nitschke, J., & Rammsayer, T. (2006). Crossmodal temporal discrimination: Assessing the predictions of a general pacemaker-counter model. Perception & Psychophysics, 68, 1140–1152.

    Article  Google Scholar 

  • Ulrich, R., & Stapf, K. H. (1984). A double-response paradigm to study stimulus intensity effects upon the motor system in simple reaction time experiments. Perception & Psychophysics, 36, 545–558.

    Article  Google Scholar 

  • van Wassenhove, V. (2009). Minding time in an amodal representational space. Philosophical Transactions of the Royal Society B, Biological Sciences, 364, 1815–1830.

    Article  PubMed  Google Scholar 

  • Walker, J. T., & Scott, K. J. (1981). Auditory-visual conflicts in the perceived duration of lights, tones, and gaps. Journal of Experimental Psychology: Human Perception and Performance, 7, 1327–1339.

    Article  PubMed  Google Scholar 

  • Wearden, J. H., Edwards, H., Fakhri, M., & Percival, A. (1998). Why “sounds are judged longer than lights”: Application of a model of the internal clock in humans. Quarterly Journal of Experimental Psychology, Section B: Comparative and Physiological Psychology, 51, 97–120.

    Google Scholar 

  • Woodworth, R. S., & Schlosberg, H. (1954). Experimental psychology. New York: Holt, Rinehart and Winston.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas H. Rammsayer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stauffer, C.C., Haldemann, J., Troche, S.J. et al. Auditory and visual temporal sensitivity: evidence for a hierarchical structure of modality-specific and modality-independent levels of temporal information processing. Psychological Research 76, 20–31 (2012). https://doi.org/10.1007/s00426-011-0333-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00426-011-0333-8

Keywords

Navigation