Skip to main content
Log in

An egocentric frame of reference in implicit motor sequence learning

  • Original Article
  • Published:
Psychological Research Aims and scope Submit manuscript

Abstract

We investigated which frame of reference is evoked during implicit motor sequence learning. Participants completed a typical serial reaction time task. In the first experiment, we isolated egocentric and allocentric frames of reference and found that learning was solely in an egocentric reference frame. In a second experiment, we isolated hand-centered space from other egocentric frames of reference. We found that for a one-handed sequencing task, the sequence was coded in an egocentric reference frame but not a hand-centered reference frame. Our results are restricted to implicit learning of novel sequences in the early stages of learning. These findings are consistent with claims that the neural mechanisms involved in motor skill learning operate in egocentric coordinates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Andersen, R. A., Snyder, L. H., Bradley, D. C., & Xing, J. (1997). Multimodal representation of space in the posterior parietal cortex and its use in planning movements. Annual Review of Neurosciences, 20, 303–330.

    Article  Google Scholar 

  • Bapi, R. S., Doya, K., & Harner, A. M. (2000). Evidence for effector independent and dependent representations and their differential time course of acquisition during motor sequence learning. Experimental Brain Research, 132, 149–162.

    Article  Google Scholar 

  • Bischoff-Grethe, A., Goedert, K. M., Willingham, D. T., & Grafton, S. T. (2004). Neural substrates of response-based sequence learning using fMRI. Journal of Cognitive Neuroscience, 16, 127–138.

    Article  PubMed  Google Scholar 

  • Buxbaum, L. J., & Coslett, H. B. (1997). Subtypes of optic ataxia: reframing the disconnection account. Neurocase, 3, 159–166.

    Article  Google Scholar 

  • Cohen, A., Ivry, R. I., & Keele, S. W. (1990). Attention and structure in sequence learning. Journal of Experimental Psychology: Learning, Memory, and Cognition, 16, 17–30.

    Article  Google Scholar 

  • Colby, C. L. (1998). Action-oriented spatial reference frames in cortex. Neuron, 20, 15–24.

    Article  PubMed  Google Scholar 

  • Colby, C. L., & Goldberg, M. E. (1999). Space and attention in parietal cortex. Annual Review of Neuroscience, 22, 319–349.

    Article  PubMed  Google Scholar 

  • Culham, J. C., & Kanwisher, N. G. (2001). Neuroimaging of cognitive functions in human parietal cortex. Current Opinion in Neurobiology, 11, 157–163.

    Article  PubMed  Google Scholar 

  • Fendrich, D. W., Healy, A. F., & Bourne, L. E. (1991). Long-term repetition effects for motoric and perceptual procedures. Journal of Experimental Psychology: Learning, Memory, and Cognition, 17, 137–151.

    Article  PubMed  Google Scholar 

  • Gordon, J., Ghilardi, M. F., & Ghez, C. (1994). Accuracy of planar reaching movements. I. Independence of direction and extent variability. Experimental Brain Research, 99, 97–111.

    Google Scholar 

  • Grafton, S. T., Hazeltine, E., & Ivry, R. I. (1998). Abstract and effector-specific representations of motor sequences identified with PET. Journal of Neuroscience, 18, 9420–9428.

    PubMed  Google Scholar 

  • Hazeltine, E. (2002). The representational nature of sequence learning: Evidence for goal-based codes. In W. H. Prinz, & B. Hommel (Eds.), Common Mechanisms in Perception and Action (pp. 673–689). Oxford: Oxford University Press.

    Google Scholar 

  • Heyes, C. M., & Foster, C. L. (2002). Motor learning by observation: Evidence from a serial reaction time task. The Quarterly Journal of Experimental Psychology, 55, 593–607.

    PubMed  Google Scholar 

  • Hikosaka, O., Nakahara, H., Rand, M. K., Sakai, K., Lu, X., Nakamura, K., et al. (1999). Parallel neural networks for learning sequential procedures. Trends in Neuroscience, 22, 465–471.

    Google Scholar 

  • Hoffman, J., Martin, C., & Schilling, A. (2003). Unique transitions between stimuli and responses in SRT tasks: Evidence for the primacy of response predictions. Psychological Research, 67, 160–173.

    Article  Google Scholar 

  • Howard, J. H., Mutter, S. A., & Howard, D. V. (1992). Serial pattern learning by event observation. Journal of Experimental Psychology: Learning, Memory, and Cognition, 18, 1029–1039.

    Article  PubMed  Google Scholar 

  • Japikse, K. C., Negash, S., Howard, J. H., & Howard, D. V. (2003). Intermanual transfer of procedural learning after extended practice of probabilistic sequences. Experimental Brain Research, 148, 38–49.

    Article  Google Scholar 

  • Keele, S. W., Jennings, P., Jones, S., Caulton, D., & Cohen, A. (1995). On the modularity of sequence representation. Journal of Motor Behavior, 27, 17–30.

    Article  Google Scholar 

  • Kelly, S. W., & Burton, A. M. (2001). Learning complex sequences: No role for observation? Psychological Research, 65, 15–23.

    Article  PubMed  Google Scholar 

  • Kelly, S. W., Burton, A. M., Riedel, B., & Lynch, E. (2003). Sequence learning by action and observation: Evidence for separate mechanisms. British Journal of Psychology, 94, 355–372.

    Article  PubMed  Google Scholar 

  • Knee, R., Thomason, S., Ashe, J., & Willingham, D. T. (2007). The representation of explicit motor sequence knowledge. Memory & Cognition, 35, 326–333.

    Google Scholar 

  • Liu, T., Lungu, O. V., Waechter, T., Willingham, D. T., & Ashe, J. (2007). Frames of reference during implicit and explicit learning. Experimental Brain Research, 180, 273–280.

    Article  Google Scholar 

  • Moscovitch, M., & Behrmann, M. (1994). Coding of spatial information in the somatosensory system: Evidence from patients with neglect following parietal lobe damage. Journal of Cognitive Neuroscience, 6, 151–155.

    Article  Google Scholar 

  • Nattkemper, D., & Prinz, W. (1997). Stimulus and response anticipation in a serial reaction time task. Psychological Research, 60, 98–112.

    Article  Google Scholar 

  • Nissen, M. J., & Bullemer, P. (1987). Attentional requirements of learning: Evidence from performance measures. Cognitive Psychology, 19, 1–32.

    Article  Google Scholar 

  • Park, J., & Shea, C. (2003). Effect of practice on effector independence. Journal of Motor Behavior, 35, 33–40.

    Article  PubMed  Google Scholar 

  • Remillard, G. (2003). Pure perceptual-based sequence learning. Journal of Experimental Psychology: Learning, Memory, and Cognition, 29, 581–597.

    Article  PubMed  Google Scholar 

  • Rizzolatti, G., Fogassi, L., & Gallese, V. (1997). Parietal cortex: from sight to action. Current Opinion in Neurobiology, 7, 562–567.

    Article  PubMed  Google Scholar 

  • Russeler, J., & Rosler, F. (2000). Implicit and explicit learning of event sequences: Evidence for distinct coding of perceptual and motor representations. Acta Psychologia, 104, 45–67.

    Article  Google Scholar 

  • Snyder, L. H., Grieve, K. L., Brotchie, P., & Andersen, R. A. (1998). Separate body- and world- referenced representations of visual space in parietal cortex. Nature, 394, 887–891.

    Article  PubMed  Google Scholar 

  • Verwey, W. B., & Wright, D. (2004). Effector-independent and effector-dependent learning in the discrete sequence production task. Psychological Research, 68, 64–70.

    Article  PubMed  Google Scholar 

  • Verwey, W. B., & Clegg, B. (2005). The serial RT task: Indications for components with different learning rates. Psychological Research, 69, 242–251.

    Article  PubMed  Google Scholar 

  • Vindras, P., & Viviani, P. (1998). Frames of reference and control parameters in visuomanual pointing. Journal of Experimental Psychology: Human Perception and Performance, 24, 569–591.

    Article  PubMed  Google Scholar 

  • Willingham, D. B. (1998). A neuropsychological theory of motor skill learning. Psychological Review, 105, 558–584.

    Article  PubMed  Google Scholar 

  • Willingham, D. B. (1999). Implicit motor sequence learning is not purely perceptual. Memory & Cognition, 27, 561–572.

    Google Scholar 

  • Willingham, D. B., Nissen, M. J., & Bullemer, P. (1989). On the development of procedural knowledge. Journal of Experimental Psychology: Learning, Memory, and Cognition, 15, 1047–1060.

    Article  PubMed  Google Scholar 

  • Willingham, D. B., Wells, L. A., Farrell, J. M., & Stemwedel, M. E. (2000). Implicit motor sequence learning is represented in response locations. Memory & Cognition, 28, 366–375.

    Google Scholar 

  • Witt, J. K., Ashe, J., & Willingham, D. T. (2007). No evidence for hand-centered frame of reference in early implicit motor learning. Unpublished raw data.

  • Ziessler, M. (1994). The impact of motor responses on serial-pattern learning. Psychological Research, 57, 30–41.

    Article  PubMed  Google Scholar 

  • Ziessler, M., & Nattkemper, D. (2001). Learning of event sequences is based on response-effect learning: Further evidence from a serial reaction task. Journal of Experimental Psychology: Learning, Memory, and Cognition, 27, 595–613.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jessica K. Witt.

Additional information

This research was supported by National Institute of Health grants R01 MH065598-01A1, R01 NS040106-05, and R01 AG 24106-01A1 to Daniel T. Willingham.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Witt, J.K., Ashe, J. & Willingham, D.T. An egocentric frame of reference in implicit motor sequence learning. Psychological Research 72, 542–552 (2008). https://doi.org/10.1007/s00426-007-0129-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00426-007-0129-z

Keywords

Navigation