Skip to main content
Log in

Experiments on the Fehrer–Raab effect and the ‘Weather Station Model’ of visual backward masking

  • Original Article
  • Published:
Psychological Research Aims and scope Submit manuscript

Abstract

The Fehrer–Raab effect (simple reaction time is unaffected by metacontrast masking of the test stimulus) seems to imply that a stimulus can trigger a voluntary reaction without reaching a conscious representation. However, it is also possible that the mask triggers the reaction, and that the masked test stimulus causes a focussing of attention from which processing of the mask profits, thus reaching conscious representation earlier. This is predicted by the Weather Station Model of visual masking. Three experiments tested this explanation. Experiment 1 showed that the masked test stimulus caused a temporal shift of the mask. Experiment 2 showed that the reaction in the Fehrer–Raab effect was not exclusively triggered by a conscious representation of the test stimulus: the mask was involved in evoking the reaction. Experiment 3 again revealed a temporal shift of the mask. However, the shift was only about half as large as the Fehrer–Raab effect. The psychometric functions suggested that the observers used two different cues for their temporal order judgments. The results cast doubts on whether judged temporal order yields a direct estimate of the time of conscious perception. Some methodological alternatives are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Alpern, M. (1953). Metacontrast. Journal of the Optical Society of America, 43, 648–657.

    Article  PubMed  Google Scholar 

  • Bernstein, I. H., Amundson, V. E., & Schurman, D. L. (1973). Metacontrast inferred from reaction time and verbal report: Replication and comment on the Fehrer–Biederman experiment. Journal of Experimental Psychology, 100, 195–201.

    Article  PubMed  Google Scholar 

  • Breitmeyer, B. G., & Ganz, L. (1976). Implications of sustained and transient channels for theories of visual pattern masking, saccadic suppression, and information processing. Psychological Review, 83, 1–36.

    Article  PubMed  Google Scholar 

  • Cornsweet, T. (1970). Visual perception. New York: Academic.

    Google Scholar 

  • Efron, R. (1973). Conservation of temporal information by perceptual systems. Perception & Psychophysics, 14, 518–530.

    Google Scholar 

  • Eriksen, C. W. (1956). Subception: Fact or artifact? Psychological Review, 63, 74–80.

    Article  PubMed  Google Scholar 

  • Fehrer, E., & Biederman, I. (1962). A comparison of reaction time and verbal report in the detection of masked stimuli. Journal of Experimental Psychology, 64, 126–130.

    Article  PubMed  Google Scholar 

  • Fehrer, E., & Raab, E. (1962). Reaction time to stimuli masked by metacontrast. Journal of Experimental Psychology, 63, 143–147.

    Article  PubMed  Google Scholar 

  • Hildreth, J. D. (1973). Bloch’s law and a temporal integration model for simple reaction time to light. Perception & Psychophysics, 14, 421–432.

    Google Scholar 

  • Lefton, L. A. (1972). Metacontrast: A review. Psychonomic Monograph Supplements, 4, No. 14 (Whole No. 62), 245–255.

  • Legge, G. (1978). Sustained and transient mechanisms in human vision: Temporal and spatial properties. Vision Research, 18, 69–81.

    Article  PubMed  Google Scholar 

  • Münsterberg, H. (1889). Beiträge zur experimentellen Psychologie. Heft 1, Freiburg: Akademische Verlagsbuchhandlung Mohr.

  • Neisser, U. (1967). Cognitive psychology. New York: Appleton-Century-Crofts.

    Google Scholar 

  • Neumann, O. (1978). Visuelle Aufmerksamkeit und der Mechanismus des Metakontrasts. [Visual attention and the mechanism of metacontrast.] Report No. 6/1978, Department of Psychology at the Ruhr-University of Bochum, Cognitive Psychology Unit. published as Neumann, O., & Scharlau, I. (2006). Visual attention and the mechanism of metacontrast. Psychological Research (this volume).

  • Perenin, M. F., & Jeannerod, M. (1978). Visual function within the hemianopic field following early cerebral hemidecortication in man. 1. Spatial localization. Neuropsychologia, 16, 1–13.

    Article  PubMed  Google Scholar 

  • Piéron, H. (1923). Les problèmes psycho-physiologiques de la perception du temps. Année Psychologique, 24, 1–25.

    Google Scholar 

  • Schiller, P. H., & Smith, M. C. (1966). Detection in metacontrast. Journal of Experimental Psychology, 71, 32–39.

    Article  PubMed  Google Scholar 

  • Servière, J., Miceli, D., & Galifert, Y. (1977). A psychophysical study of the visual perception of ‘instantaneous’ and ‘durable’. Vision Research, 17, 57–64.

    Article  PubMed  Google Scholar 

  • Teichner, W. H., & Krebs, M. J. (1972). Laws of the simple visual reaction time. Psychological Review, 79, 344–358.

    Article  PubMed  Google Scholar 

  • Weiskrantz, L., Warrington, E. K., Sanders, M. D., & Marshall, J. (1974). Visual capacity in the hemianopic field following a restricted occipital ablation. Brain, 97, 709–728.

    Article  PubMed  Google Scholar 

  • Weiskrantz, L., Cowey, A., & Passingham, C. (1977). Spatial responses to brief stimuli by monkeys with striate cortex ablations. Brain, 100, 655–670.

    Article  PubMed  Google Scholar 

  • Weisstein, N. (1972). Metacontrast. In J. Jameson, & L. M. Hurvich (Eds.), Handbook of sensory physiology, Vol. VII/4; Visual psychophysics. Berlin Heidelberg New York: Springer.

  • Yund, E. W., & Efron, R. (1974). Dichoptic and dichotic micropattern discrimination. Perception & Psychophysics, 15, 383–390.

    Google Scholar 

Editorial References

  • Ansorge, U., & Heumann, M. (2006). Shifts of visuospatial attention to invisible (metacontrast-masked) singletons: Clues from reaction times and event-related potentials. Advances in Cognitive Psychology (in press).

  • Ansorge, U., & Neumann, O. (2005). Intentions determine the effect of invisible metacontrast-masked primes: Evidence for top-down contingencies in a peripheral cueing task. Journal of Experimental Psychology: Human Perception and Performance, 31, 762–777.

    Article  PubMed  Google Scholar 

  • Aschersleben, G. (1999a). Aufgabenabhängige Datierung von Ereignissen [Task-dependent timing of events]. Aachen: Shaker.

  • Aschersleben, G. (1999b). Task-dependent timing of perceptual events. In G. Aschersleben, T. Bachmann, & J. Müsseler (Eds.), Cognitive contributions to the perception of spatial and temporal events (pp. 293–318). Amsterdam: Elsevier.

    Chapter  Google Scholar 

  • Breitmeyer, B. G., Ogmen, H., & Chen, J. (2004). Unconscious priming by color and form: Different processes and levels. Consciousness and Cognition, 13, 138–157.

    Article  PubMed  Google Scholar 

  • Carbone, E. (2006). Motion misperception caused by attentional feedback connections: A neural model simulating the Fröhlich effect. Psychological Research (this volume).

  • Eimer, M., & Schlaghecken, F. (2003). Response facilitation and inhibition in subliminal priming. Biological Psychology, 64, 7–26.

    Article  PubMed  Google Scholar 

  • Jaśkowski, P. (1999). Reaction time and temporal-order judgment as measures of perceptual latency: The problem of dissociations. In G. Aschersleben, T. Bachmann, & J. Müsseler (Eds.), Cognitive contributions to the perception of spatial and temporal events (pp. 265–283). Amsterdam: Elsevier.

    Chapter  Google Scholar 

  • Jaśkowski, P., van der Lubbe, R. H. J., Schlotterbeck, E., & Verleger, R. (2002). Traces left on visual selective attention by stimuli that are not consciously identified. Psychological Science, 13, 48–54.

    Article  PubMed  Google Scholar 

  • Jaśkowski, P., Skalska, B., & Verleger, R. (2003). How the self controls its “automatic pilot” when processing subliminal information. Journal of Cognitive Neuroscience, 15, 911–920.

    Article  PubMed  Google Scholar 

  • Klotz, W., & Neumann, O. (1999). Motor activation without conscious discrimination in metacontrast masking. Journal of Experimental Psychology: Human Perception and Performance, 25, 976–992.

    Article  Google Scholar 

  • Klotz, W., & Wolff, P. (1995). The effect of a masked stimulus on the response to the masking stimulus. Psychological Research, 58, 92–101.

    Article  Google Scholar 

  • Lingnau, A., & Vorberg, D. (2005). The time course of response inhibition in masked priming. Perception & Psychophysics, 67, 545–557.

    Google Scholar 

  • Lleras, A., & Enns, J. T. (2004). Updating a cautionary tale of masked priming: Reply to Klapp (2005). Journal of Experimental Psychology: General, 134, 475–493.

    Article  Google Scholar 

  • Müsseler, J., & Aschersleben, G. (1998). Localizing the first position of a moving stimulus: The Fröhlich effect and an attention-shifting explanation. Perception & Psychophysics, 60, 683–695.

    Google Scholar 

  • Müsseler, J., & Neumann, O. (1992). Apparent distance reduction with moving stimuli (tandem effect): Evidence for an attentional-shifting model. Psychological Research, 54, 246–266.

    Article  PubMed  Google Scholar 

  • Neumann, O. (1990). Direct parameter specification and the concept of perception. Psychological Research, 52, 207–215.

    Article  PubMed  Google Scholar 

  • Neumann, O., Esselmann, U., & Klotz, W. (1993). Differential effects of visual-spatial attention on response latency and temporal-order judgment. Psychological Research, 56, 26–34.

    Article  PubMed  Google Scholar 

  • Scharlau, I., & Ansorge, U. (2003). Direct parameter specification of an attention shift: Evidence from perceptual latency priming. Vision Research, 43, 1351–1363.

    Article  PubMed  Google Scholar 

  • Scharlau, I., & Horstmann, G. (2006). Perceptual latency priming and illusory line motion: Facilitation by gradients of attention? Advances in Cognitive Psychology (this volume).

  • Scharlau, I., & Neumann, O. (2003a). Perceptual latency priming by masked and unmasked stimuli: Evidence for an attentional explanation. Psychological Research, 67, 184–197.

    Article  PubMed  Google Scholar 

  • Scharlau, I., & Neumann, O. (2003b). Temporal parameters and time course of perceptual latency priming. Acta Psychologica, 113, 185–203.

    Article  PubMed  Google Scholar 

  • Schlaghecken, F., & Sisman, R. (2005). Low-level motor inhibition in children: Evidence from the negative compatibility effect. Advances in Experimental Psychology (in press).

  • Skalska, B., Jaśkowski, P., & van der Lubbe, R. H. J. (2006). The role of direct parameter specification and attentional capture in near-threshold priming of motor reactions. Advances in Experimental Psychology (in press).

  • Steglich, C., & Neumann, O. (2000). Temporal, but not spatial, context modulates a masked prime’s effect on temporal order judgment, but not on response latency. Psychological Research, 63, 36–47.

    Article  PubMed  Google Scholar 

  • Vorberg, D., Mattler, U., Heinecke, A., Schmidt, T., & Schwarzbach, J. (2003). Different time courses for visual perception and action priming. Proceedings of the National Academy of Sciences (USA), 100, 6275–6280.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Odmar Neumann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Neumann, O., Scharlau, I. Experiments on the Fehrer–Raab effect and the ‘Weather Station Model’ of visual backward masking. Psychological Research 71, 667–677 (2007). https://doi.org/10.1007/s00426-006-0055-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00426-006-0055-5

Keywords

Navigation