Skip to main content
Log in

Leaf layer-based transcriptome profiling for discovery of epidermal-selective promoters in Medicago truncatula

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Main conclusion

Transcriptomics of manually dissected leaf layers from Medicago truncatula identifies genes with preferential expression in upper and/or lower epidermis. The promoters of these genes confer epidermal-specific expression of transgenes.

Abstract

Improving the quality and quantity of proanthocyanidins (PAs) in forage legumes has potential to improve the nitrogen nutrition of ruminant animals and protect them from the risk of pasture bloat, as well as parasites. However, ectopic constitutive accumulation of PAs in plants by genetic engineering can significantly inhibit growth. We selected the leaf epidermis as a candidate tissue for targeted engineering of PAs or other pathways. To identify gene promoters selectively expressed in epidermal tissues, we performed comparative transcriptomic analyses in the model legume Medicago truncatula, using five tissue samples representing upper epidermis, lower epidermis, whole leaf without upper epidermis, whole leaf without lower epidermis, and whole leaf. We identified 52 transcripts preferentially expressed in upper epidermis, most of which encode genes involved in flavonoid biosynthesis, and 53 transcripts from lower epidermis, with the most enriched category being anatomical structure formation. Promoters of the preferentially expressed genes were cloned from the M. truncatula genome and shown to direct tissue-selective promoter activities in transient assays. Expression of the PA pathway transcription factor TaMYB14 under control of several of the promoters in transgenic alfalfa resulted in only modest MYB14 transcript accumulation and low levels of PA production. Activity of a subset of promoters was confirmed by transcript analysis in field-grown alfalfa plants throughout the growing season, and revealed variable but consistent expression, which was generally highest 3–4 weeks after cutting. We conclude that, although the selected promoters show acceptable tissue-specificity, they may not drive high enough transcription factor expression to activate the PA pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The data that support the findings of in this study are available in the Supplementary Information of this article. Sequence data from this article can be found in the NCBI Sequence Read Archive (SRA) repository, accession number PRJNA804330 (https://dataview.ncbi.nlm.nih.gov/object/PRJNA804330?reviewer=sk6165nsvtpevq1cgeae5h25g5).

References

  • Abeynayake SW, Panter S, Mouradov A, Spangenberg G (2011) A high-resolution method for the localization of proanthocyanidins in plant tissues. Plant Meth 7:13

    CAS  Google Scholar 

  • Aerts RJ, Barry TN, McNabb WC (1999) Polyphenols and agriculture: beneficial effects of proanthocyanidins in forages. Agr Ecosyst Environ 75:1–12

    CAS  Google Scholar 

  • Albert NW, Davies KM, Lewis DH, Zhang H, Montefiori M, Brendolise C, Boase MR, Ngo H, Jameson PE, Schwinn KE (2014) A conserved network of transcriptional activators and repressors regulates anthocyanin pigmentation in eudicots. Plant Cell 26:962–980

    CAS  PubMed  PubMed Central  Google Scholar 

  • Albrecht KA, Muck RE (1991) Proteolysis in ensiled forage legumes that vary in tannin concentration. Crop Sci 31:464

    CAS  Google Scholar 

  • Baudry A, Heim MA, Dubreucq B, Caboche M, Weisshaar B, Lepiniec L (2004) TT2, TT8, and TTG1 synergistically specify the expression of BANYULS and proanthocyanidin biosynthesis in Arabidopsis thaliana. Plant J 39:366–380

    CAS  PubMed  Google Scholar 

  • Berg BP, Majak W, Mcallister TA, Hall JW, Mccartney D, Coulman BE, Goplen BP, Acharya SN, Tait RM, Cheng KJ (2000) Bloat in cattle grazing alfalfa cultivars selected for a low initial rate of digestion: a review. Can J Plant Sci 80:493–502

    Google Scholar 

  • Chan AC, Khan D, Girard IJ, Becker MG, Millar JL, Sytnik D, Belmonte MF (2016) Tissue-specific laser microdissection of the Brassica napus funiculus improves gene discovery and spatial identification of biological processes. J Exp Bot J 67:3561–3571

    CAS  Google Scholar 

  • Cominelli E, Galbiati M, Vavasseur A, Conti L, Sala T, Vuylsteke M, Leonhardt N, Dellaporta SL, Tonelli C (2005) A guard-cell-specific MYB transcription factor regulates stomatal movements and plant drought tolerance. Curr Biol 15:1196–1200

    CAS  PubMed  Google Scholar 

  • Coulman B, Goplen B, Majak W, McAllister T, Cheng KJ, Berg B, Hall J, McCartney D, Acharya S (2000) A review of the development of a bloat-reduced alfalfa cultivar. Can J Plant Sci 80:487–491

    Google Scholar 

  • Dai X, Wang G, Yang DS, Tang Y, Broun P, Marks MD, Sumner LW, Dixon RA, Zhao PX (2010) TrichOME: a comparative omics database for plant trichomes. Plant Physiol 152:44–54

    CAS  PubMed  PubMed Central  Google Scholar 

  • Day TA, Martin G, Vogelmann TC (1993) Penetration of UV-B radiation in foliage: evidence that the epidermis behaves as a non-uniform filter. Plant Cell Environ 16:735–741

    Google Scholar 

  • De Wilde C, Van Houdt H, De Buck S, Angenon G, De Jaeger G, Depicker A (2000) Plants as bioreactors for protein production: avoiding the problem of transgene silencing. Plant Mol Biol 43:347–359

    PubMed  Google Scholar 

  • Denton AK, Maß J, Külahoglu C, Lercher MJ, Bräutigam A, Weber AP (2017) Freeze-quenched maize mesophyll and bundle sheath separation uncovers bias in previous tissue-specific RNA-Seq data. J Exp Bot 68:147–160

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dixon RA, Sarnala S (2020) Proanthocyanidins- a matter of protection. Plant Physiol 184:579–591

    CAS  PubMed  PubMed Central  Google Scholar 

  • Endo M, Shimizu H, Nohales MA, Araki T, Kay SA (2014) Tissue-specific clocks in Arabidopsis show asymmetric coupling. Nature 515:419–422

    CAS  PubMed  PubMed Central  Google Scholar 

  • Endo M, Shimizu H, Araki T (2016) Rapid and simple isolation of vascular, epidermal and mesophyll cells from plant leaf tissue. Nat Protoc 11:1388–1395

    CAS  PubMed  Google Scholar 

  • Fabbri M, Delp G, Schmidt O, Theopold U (2000) Animal and plant members of a gene family with similarity to alkaloid-synthesizing enzymes. Biochem Biophys Res Commun 271:191–196

    CAS  PubMed  Google Scholar 

  • Gao L, Tian Y, Chen M, Wei L, Gao T, Yin H, Zhang J, Kumar T, Liu L, Wang S (2019) Cloning and functional characterization of epidermis-specific promoter MtML1 from Medicago truncatula. J Biotechnol 300:32–39

    CAS  PubMed  Google Scholar 

  • Hancock KR, Collette V, Fraser K, Greig M, Xue H, Richardson K, Jones C, Rasmussen S (2012) Expression of the R2R3-MYB transcription factor TaMYB14 from Trifolium arvense activates proanthocyanidin biosynthesis in the legumes Trifolium repens and Medicago sativa. Plant Physiol 159:1204–1220

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hattori J, Boutilier KA, van Lookeren CM, Miki BL (1998) A conserved BURP domain defines a novel group of plant proteins with unusual primary structures. Mol Gen Genet 259:424–428

    CAS  PubMed  Google Scholar 

  • Heendeniya RG, Gruber MY, Lei Y, Yu P (2019) Biodegradation profiles of proanthocyanidin-accumulating alfalfa plants coexpressing Lc- bHLH and C1-MYB transcriptive flavonoid regulatory genes. J Agric Food Chem 67:4793–4799

    CAS  PubMed  Google Scholar 

  • Hooker TS, Millar AA, Kunst L (2002) Significance of the expression of the CER6 condensing enzyme for cuticular wax production in Arabidopsis. Plant Physiol 129:1568–1580

    CAS  PubMed  PubMed Central  Google Scholar 

  • Huang Q, Liu X, Zhao G, Hu T, Wang Y (2018) Potential and challenges of tannins as an alternative to in-feed antibiotics for farm animal production. Anim Nutr 4:137–150

    PubMed  Google Scholar 

  • Huchelmann A, Boutry M, Hachez C (2017) Plant glandular trichomes: Natural cell factories of high biotechnological interest. Plant Physiol 175:6–22

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jindal S, Longchar B, Singh A, Gupta V (2015) Promoters of AaGL2 and AaMIXTA-Like1 genes of Artemisia annua direct reporter gene expression in glandular and non-glandular trichomes. Plant Signal Behav 10:e1087629

    PubMed  PubMed Central  Google Scholar 

  • Jones MA, Raymond MJ, Smirnoff N (2006) Analysis of the root-hair morphogenesis transcriptome reveals the molecular identity of six genes with roles in root-hair development in Arabidopsis. Plant J 45:83–100

    CAS  PubMed  Google Scholar 

  • Jores T, Tonnies J, Wrightsman T, Buckler ES, Cuperus JT, Fields S, Queitsch C (2021) Synthetic promoter designs enabled by a comprehensive analysis of plant core promoters. Nat Plants 7:842–855

    CAS  PubMed  Google Scholar 

  • Jun JH, Xiao X, Rao X, Dixon RA (2018) Proanthocyanidin subunit composition determined by functionally diverged dioxygenases. Nat Plants 4:1034–1043

    CAS  PubMed  Google Scholar 

  • Jun JH, Lu N, Docampo-Palacios M et al (2021) Dual activity of anthocyanidin reductase supports the dominant plant proanthocyanidin extension unit pathway. Sci Adv. https://doi.org/10.1126/sciadv.abg4682

    Article  PubMed  PubMed Central  Google Scholar 

  • Kay R, Chan A, Daly M, McPherson J (1987) Duplication of CaMV 35S promoter sequences creates a strong enhancer for plant genes. Science 236:1299–1302

    CAS  PubMed  Google Scholar 

  • Kudapa H, Garg V, Chitikineni A, Varshney RK (2018) The RNA-Seq-based high resolution gene expression atlas of chickpea (Cicer arietinum L.) reveals dynamic spatio-temporal changes associated with growth and development. Plant Cell Environ 41:2209–2225

    CAS  PubMed  Google Scholar 

  • Leonhardt N, Kwak JM, Robert N, Waner D, Leonhardt G, Schroeder JI (2004) Microarray expression analyses of Arabidopsis guard cells and isolation of a recessive abscisic acid hypersensitive protein phosphatase 2C mutant. Plant Cell 16:596–615

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li J, Ou-Lee TM, Raba R, Amundson RG, Last RL (1993) Arabidopsis flavonoid mutants are hypersensitive to UV-B irradiation. Plant Cell 5:171–179

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li P, Chen B, Zhang G, Chen L, Dong Q, Wen J, Mysore KS, Zhao J (2016) Regulation of anthocyanin and proanthocyanidin biosynthesis by Medicago truncatula bHLH transcription factor MtTT8. New Phytol 210:905–921

    CAS  PubMed  Google Scholar 

  • Liu C, Jun JH, Dixon RA (2014a) MYB5 and MYB14 play pivotal roles in seed coat polymer biosynthesis in Medicago truncatula. Plant Physiol 165:1424–1439

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu X, Tian J, Zhou X, Chen R, Wang L, Zhang C, Zhao J, Fan Y (2014b) Identification and characterization of promoters specifically and strongly expressed in maize embryos. Plant Biotechnol J 12:1286–1296

    CAS  PubMed  Google Scholar 

  • Liu C, Wang X, Shulaev V, Dixon RA (2016) A role for leucoanthocyanidin reductase in the extension of proanthocyanidins. Nat Plants. https://doi.org/10.1038/nplants.2016.182

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu W, Mazarei M, Ye R, Peng Y, Shao Y, Baxter HL, Sykes RW, Turner GB, Davis MF, Wang ZY, Dixon RA, Stewart CJ (2018) Switchgrass (Panicum virgatum L.) promoters for green tissue-specific expression of the MYB4 transcription factor for reduced-recalcitrance transgenic switchgrass. Biotechnol Biofuels 11:122

    PubMed  PubMed Central  Google Scholar 

  • Lu N, Roldan M, Dixon RA (2017) Characterization of two TT2-type MYB transcription factors regulating proanthocyanidin biosynthesis in tetraploid cotton, Gossypium hirsutum. Planta 246:323–335

    CAS  PubMed  Google Scholar 

  • Lu Y, Ishimaru CA, Glazebrook J, Samac DA (2018) Comparative genomic analyses of Clavibacter michiganensis subsp. insidiosus and pathogenicity on Medicago truncatula. Phytopathology 108:172–185

    CAS  PubMed  Google Scholar 

  • Mandaci S, Dobres MS (1997) A promoter directing epidermal expression in transgenic alfalfa. Plant Mol Biol 34:961–965

    CAS  PubMed  Google Scholar 

  • Matas AJ, Agustí J, Tadeo FR, Talón M, Rose JKC (2010) Tissue-specific transcriptome profiling of the citrus fruit epidermis and subepidermis using laser capture microdissection. J Exp Bot 61:3321–3330

    CAS  PubMed  PubMed Central  Google Scholar 

  • Matas AJ, Yeats TH, Buda GJ, Zheng Y, Chatterjee S, Tohge T, Ponnala L, Adato A, Aharoni A, Stark R, Fernie AR, Fei Z, Giovannoni JJ, Rose JKC (2012) Tissue- and cell-type specific transcriptome profiling of expanding tomato fruit provides insights into metabolic and regulatory specialization and cuticle formation. Plant Cell 23:3893–3910

    Google Scholar 

  • Motomu E, Hanako S, Nohales MA, Takashi A, Kay SA (2014) Tissue-specific clocks in Arabidopsis show asymmetric coupling. Nature 515:419–422

    Google Scholar 

  • Naumann HD, Muir JP, Lambert BD, Tedeschi LO, Kothmann MM (2013) Condensed tannins in the ruminant environment: a perspective on biological activity. J Ag Sci 1:8–20

    Google Scholar 

  • Pang Y, Peel GJ, Wright E, Wang Z, Dixon RA (2007) Early steps in proanthocyanidin biosynthesis in the model legume Medicago truncatula. Plant Physiol 145:601–615

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pang Y, Peel GJ, Sharma SB, Tang Y, Dixon RA (2008) A transcript profiling approach reveals an epicatechin-specific glucosyltransferase expressed in the seed coat of Medicago truncatula. Proc Natl Acad Sci USA 105:14210–14215

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pecrix Y, Staton SE, Sallet E et al (2018) Whole-genome landscape of Medicago truncatula symbiotic genes. Nat Plants 4:1017–1025

    CAS  PubMed  Google Scholar 

  • Porto MS, Pinheiro MP, Batista VG, Dos SR, Filho PA, de Lima LM (2014) Plant promoters: an approach of structure and function. Mol Biotechnol 56:38–49

    CAS  PubMed  Google Scholar 

  • Quan W, Hu Y, Mu Z, Shi H, Chan Z (2018) Overexpression of AtPYL5 under the control of guard cell specific promoter improves drought stress tolerance in Arabidopsis. Plant Physiol Biochem 129:150–157

    CAS  PubMed  Google Scholar 

  • Ramsay NA, Glover BJ (2005) MYB-bHLH-WD40 protein complex and the evolution of cellular diversity. Trends Plant Sci 10:63–70

    CAS  PubMed  Google Scholar 

  • Rao X, Krom N, Tang Y, Widiez T, Havkin-Frenkel D, Belanger FC, Dixon RA, Chen F (2014) A deep transcriptomic analysis of pod development in the vanilla orchid (Vanilla planifolia). BMC Genomics 15:964

    PubMed  PubMed Central  Google Scholar 

  • Rao X, Lu N, Li G, Nakashima J, Tang Y, Dixon RA (2016) Comparative cell-specific transcriptomics reveals differentiation of C4 photosynthesis pathways in switchgrass and other C4 lineages. J Exp Bot 67:1649

    CAS  PubMed  PubMed Central  Google Scholar 

  • Roldan M, Cousins G, Muetzel S, Zeller W, Frasera K, Salminen JP, Blanca A, Kaur R, Richardson K, Maher D, Jahufer Z, Woodfield D, Caradus J, Voisey C (2022) Condensed tannins in white clover (Trifolium repens) foliar tissues expressing the transcription factor TaMYB14-1 bind to forage protein and reduce ammonia and methane emissions in vitro. Front Plant Sci SCI. https://doi.org/10.3389/fpls.2021.777354

    Article  Google Scholar 

  • Ryu H, Laffont C, Frugier F, Hwang I (2017) MAP kinase-mediated negative regulation of symbiotic nodule formation in Medicago truncatula. Mol Cell 40:17–23

    CAS  Google Scholar 

  • Samac D, Temple SJ (2004) Development and utilization of transformation in Medicago species. In: Liang G, Skinner DZ (eds) Genetically modified crops: their development, uses, and risks. The Haworth Press, Binghampton, pp 165–202

    Google Scholar 

  • Sharma SB, Dixon RA (2005) Metabolic engineering of proanthocyanidins by ectopic expression of transcription factors in Arabidopsis thaliana. Plant J 44:62–75

    CAS  PubMed  Google Scholar 

  • Shen C, Du H, Chen Z, Lu H, Zhu F, Chen H, Meng X, Liu Q, Liu P, Zheng L, Li X, Dong J, Liang C, Wang T (2020) The chromosome-level genome sequence of the autotetraploid alfalfa and resequencing of core germplasms provide genomic resources for alfalfa research. Mol Plant 13:1250–1261

    CAS  PubMed  Google Scholar 

  • Shi P, Fu X, Shen Q, Liu M, Pan Q, Tang Y, Jiang W, Lv Z, Yan T, Ma Y, Chen M, Hao X, Liu P, Li L, Sun X, Tang K (2018) The roles of AaMIXTA1 in regulating the initiation of glandular trichomes and cuticle biosynthesis in Artemisia annua. New Phytol 217:261–276

    CAS  PubMed  Google Scholar 

  • Shinozaki Y, Nicolas P, Fernandez-Pozo N, Ma Q, Evanich DJ, Shi Y, Xu Y, Zheng Y, Snyder SI, Martin LBB, Ruiz-May E, Thannhauser TW, Chen K, Domozych DS, Catalá C, Fei Z, Mueller LA, Giovannoni JJ, Rose JKC (2018) High-resolution spatiotemporal transcriptome mapping of tomato fruit development and ripening. Nat Commun 9:313–364

    Google Scholar 

  • Sivakumaran S, Rumball W, Lane GA, Fraser K, Foo LY, Yu M, Meagher LP (2006) Variation of proanthocyanidins in Lotus species. J Chem Ecol 32:1797–1816

    CAS  PubMed  Google Scholar 

  • Stracke R, Ishihara H, Huep G, Barsch A, Mehrtens F, Niehaus K, Weisshaar B (2007) Differential regulation of closely related R2R3-MYB transcription factors controls flavonol accumulation in different parts of the Arabidopsis thaliana seedling. Plant J 50:660–677

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tohge T, de Souza LP, Fernie AR (2017) Current understanding of the pathways of flavonoid biosynthesis in model and crop plants. J Exp Bot 68:4013–4028

    CAS  PubMed  Google Scholar 

  • Trapnell C, Roberts A, Goff L, Pertea G, Kim D, Kelley DR, Pimentel H, Salzberg SL, Rinn JL, Pachter L (2012) Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat Protoc 7:562–578

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tripathi S, Pohl MO, Zhou Y, Rodriguez-Frandsen A, Wang G, Stein DA, Moulton HM, DeJesus P, Che J, Mulder LC, Yanguez E, Andenmatten D, Pache L, Manicassamy B, Albrecht RA, Gonzalez MG, Nguyen Q, Brass A, Elledge S, White M, Shapira S, Hacohen N, Karlas A, Meyer TF, Shales M, Gatorano A, Johnson JR, Jang G, Johnson T, Verschueren E, Sanders D, Krogan N, Shaw M, Konig R, Stertz S, Garcia-Sastre A, Chanda SK (2015) Meta- and orthogonal integration of influenza “OMICs” data defines a role for UBR4 in virus budding. Cell Host Microbe 18:723–735

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vilela D, Basigalup DH, Juntolli FV, Ferreira RP (2018) Research priorities and future of alfalfa in Latin America. In: Proceedings of 2nd world alfalfa congress—global interaction for alfalfa innovation. 2018, 12/04.

  • Waghorn G (2008) Beneficial and detrimental effects of dietary condensed tannins for sustainable sheep and goat production—progress and challenges. Anim Feed Sci Technol 147:116–139

    CAS  Google Scholar 

  • Wagner GJ, Wang E, Shepherd RW (2004) New approaches for studying and exploiting an old protuberance, the plant trichome. Ann Bot 93:3–11

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xie DY, Sharma SB, Paiva NL, Ferreira D, Dixon RA (2003) Role of anthocyanidin reductase, encoded by BANYULS in plant flavonoid biosynthesis. Science 299:396–399

    CAS  PubMed  Google Scholar 

  • Xie DY, Sharma SB, Wright E, Wang ZY, Dixon RA (2006) Metabolic engineering of proanthocyanidins through co-expression of anthocyanidin reductase and the PAP1 MYB transcription factor. Plant J 45:895–907

    CAS  PubMed  Google Scholar 

  • Xu XM, Wang J, Xuan Z, Goldshmidt A, Borrill PGM, Hariharan N, Kim JY, Jackson D (2011) Chaperonins facilitate KNOTTED1 cell-to-cell trafficking and stem cell function. Science 333:1141

    CAS  PubMed  Google Scholar 

  • Xu W, Lepiniec L, Dubos C (2014) New insights toward the transcriptional engineering of proanthocyanidin biosynthesis. Plant Signal Behav 9:e28736

    PubMed  PubMed Central  Google Scholar 

  • Yang Y, Costa A, Leonhardt N, Siegel RS, Schroeder JI (2008) Isolation of a strong Arabidopsis guard cell promoter and its potential as a research tool. Plant Meth 4:6

    Google Scholar 

  • Young ND, Debellé F, Oldroyd GED et al (2011) The Medicago genome provides insight into the evolution of rhizobial symbioses. Nature 480:520–524. https://doi.org/10.1038/nature10625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang F, Gonzalez A, Zhao M, Payne CT, Lloyd A (2003) A network of redundant bHLH proteins functions in all TTG1-dependent pathways of Arabidopsis. Development 130:4859–4869

    CAS  PubMed  Google Scholar 

  • Zhao J, Pang Y, Dixon RA (2010) The mysteries of proanthocyanidin transport and polymerization. Plant Physiol 153:437–443

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Drs Chenggang Liu, Nan Lu and Keji Yu for their suggestions on plant transformation, Tracy Kim at the UNT Genomics Facility for help with sampling and sequencing, and Wendy Rossi from the Texas Academy of Mathematics and Science for assistance on this project.

Funding

This work was supported by Forage Genetics International and the University of North Texas (UNT).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard A. Dixon.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 1707 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cui, X., Jun, J.H., Rao, X. et al. Leaf layer-based transcriptome profiling for discovery of epidermal-selective promoters in Medicago truncatula. Planta 256, 31 (2022). https://doi.org/10.1007/s00425-022-03920-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00425-022-03920-4

Keywords

Navigation