Skip to main content
Log in

The transcription factor MYB15 is essential for basal immunity (PTI) in Chinese wild grape

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Main conclusion

MYB15 promoter of Vitis quinquangularis has potential as a target for disease resistance breeding, and its involvement in PTI is associated with a range of defense mechanisms.

China is a center of origin for Vitis and is home to diverse wild Vitis genotypes, some of which show superior pathogen resistance, although the underlying molecular basis for this has not yet been elucidated. In the current study, we identified a transcription factor, MYB15, from the Chinese wild grape, Vitis quinquangularis, whose promoter region (pVqMYB15) was shown to be induced by basal immunity (also called PAMP-triggered immunity, PTI) triggered by flg22, following heterologous expression in Nicotiana benthamiana and homologous expression in grapevine. By analyzing the promoter structure and activity, we identified a unique 283 bp sequence that plays a key role in the activation of basal immunity. In addition, we showed that activation of the MYB15 promoter correlates with differences in the expression of MYB15 and RESVERATROL SYNTHASE (RS) induced by the flg22 elicitor. We further tested whether the MYB15 induction triggered by flg22 was consistent with MYB15 and RS expression following inoculation with Plasmopara viticola in grape (V. quinquangularis and Vitis vinifera) leaves. Mapping upstream signals, we found that calcium influx, an RboH-dependent oxidative burst, an MAPK cascade, and jasmonate and salicylic acid co-contributed to flg22-triggered pVqMYB15 activation. Our data suggest that the MYB15 promoter has potential as a target for disease resistance breeding, and its involvement in PTI is associated with a range of defense mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

DPI:

Diphenylene-iodonium chloride

GUS:

β-Glucuronidase

MeJA:

Methyl jasmonate

PAMP:

Pathogen-associated molecular patterns

PD98059:

2-(2-Amino-3-methoxyphenyl)-4H-1-benzopyran-4-one

PTI:

PAMP-triggered immunity

RS:

Resveratrol synthase

SA:

Salicylic acid

References

  • Arguello-Astorga GR, Herrera-Estrella LR (1996) Ancestral multipartite units in light-responsive plant promoters have structural features correlating with specific phototransduction pathways. Plant Physiol 112:1151–1166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bai R, Luo YY, Wang LX et al (2019) A specific allele of MYB14 in grapevine correlates with high stilbene inducibility triggered by Al3+ and UV-C radiation. Plant Cell Rep 38:37–49

    Article  CAS  PubMed  Google Scholar 

  • Belhadj A, Telef N, Cluzet S et al (2008) Ethephon elicits protection against Erysiphe necator in grapevine. J Agric Food Chem 56:5781–5787

    Article  CAS  PubMed  Google Scholar 

  • Bethke G, Pecher P, Eschen-Lippold L et al (2012) Activation of the Arabidopsis thaliana mitogen-activated protein kinase MPK11 by the flagellin-derived elicitor peptide, flg22. Mol Plant Microbe Interact 25:471–480

    Article  CAS  PubMed  Google Scholar 

  • Borgo M, Pegoraro G, Sartori E (2016) Susceptibility of grape varieties to ESCA disease. In: 39th World congress of vine and wine. BIO web of conferences, vol 7, p 01041

  • Boudsocq M, Willmann MR, McCormack M et al (2010) Differential innate immune signalling via Ca2+ sensor protein kinases. Nature 464:418–422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Browse J (2009) Jasmonate passes muster: a receptor and targets for the defense hormone. Annu Rev Plant Biol 60:183–205

    Article  CAS  PubMed  Google Scholar 

  • Chang XL, Nick P (2012) Defence signalling triggered by Flg22 and Harpin is integrated into a different stilbene output in Vitis cells. PLoS One 7:e40446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chang XL, Heene E, Qiao F et al (2011) The phytoalexin resveratrol regulates the initiation of hypersensitive cell death in Vitis cell. PLoS One 6:e26405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chang XL, Seo M, Takebayashi Y et al (2017) Jasmonates are induced by the PAMP flg22 but not the cell death-inducing elicitor Harpin in Vitis rupestris. Protoplasma 254:271–283

    Article  CAS  PubMed  Google Scholar 

  • Chinchilla D, Bauer Z, Regenass M et al (2006) The Arabidopsis receptor kinase FLS2 binds flg22 and determines the specificity of flagellin perception. Plant Cell 18:465–476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chow CN, Zheng HQ, Wu NY et al (2016) PlantPAN 2.0: an update of plant promoter analysis navigator for reconstructing transcriptional regulatory networks in plants. Nucleic Acids Res 44:D1154–D1160

    Article  CAS  PubMed  Google Scholar 

  • Ding JP, Pickard BG (1993) Mechanosensory calcium-selective cation channels in epidermal cells. Plant J 3:83–110

    Article  CAS  PubMed  Google Scholar 

  • Duan D, Halter D, Baltenweck R et al (2015) Genetic diversity of stilbene metabolism in Vitis sylvestris. J Exp Bot 66:3243–3257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duan D, Fischer S, Merz P et al (2016) An ancestral allele of grapevine transcription factor MYB14 promotes plant defence. J Exp Bot 67:1795–1804

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ellstrand NC, Heredia SM, Leak-Garcia JA et al (2010) Crops gone wild: evolution of weeds and invasives from domesticated ancestors. Evol Appl 3:494–504

    Article  PubMed  PubMed Central  Google Scholar 

  • Eurostat (2007) The use of plant protection products in the European Union. Data 1992–1999. http://ec.europa.eu/eurostat/documents/3217494/5611788/KS-76-06-669-EN.PDF

  • Feechan A, Kocsis M, Riaz S et al (2015) Strategies for RUN1 deployment using RUN2 and REN2 to manage grapevine powdery mildew informed by studies of race specificity. Phytopathology 105:1104–1113

    Article  CAS  PubMed  Google Scholar 

  • Felix G, Duran JD, Volko S et al (1999) Plants have a sensitive perception system for the most conserved domain of bacterial flagellin. Plant J 18:265–276

    Article  CAS  PubMed  Google Scholar 

  • Feng F, Zhou JM (2012) Plant-bacterial pathogen interactions mediated by type III effectors. Annu Rev Plant Biol 15:469–476

    Google Scholar 

  • Galet P (1999) Précis de Pathologie Viticole, 3e édition. JF Impression

  • Gaspero GD, Cipriani G (2003) Nucleotide biding site/leucine-rich repeats, Pto-like and receptor-like kinases related to disease resistance in grapevine. Mol Gen Genom 269:612–623

    Article  CAS  Google Scholar 

  • Genet JL, Steva H, Vincent O et al (1997) A method for measuring the level of sensitivity of Plasmopara viticola populations to cymoxanil. Bull OEPP EPPO Bull 27:217–225

    Article  Google Scholar 

  • Giri P, Kumar A, Taj G (2014) In silico-prediction of downstream WRKY interacting partners of MAPK3 in Arabidopsis. Bioinformation 10:721–725

    Article  PubMed  PubMed Central  Google Scholar 

  • Glazebrook J (2005) Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Annu Rev Phytopathol 43:205–227

    Article  CAS  PubMed  Google Scholar 

  • Goldsborough AP, Albrecht H, Stratford R et al (1993) Salicylic acid-inducible binding of a tobacco nuclear protein to a 10 bp sequence which is highly conserved amongst stress-inducible genes. Plant J 3:563–571

    Article  Google Scholar 

  • Gomez-Gomez L, Boller T (2000) FLS2: an LRR receptor-like kinase involved in the perception of the bacterial elicitor flagellin in Arabidopsis. Mol Cell 5:1003–1011

    Article  CAS  PubMed  Google Scholar 

  • Gómez-Zeledón J, Zipper R, Spring O (2013) Assessment of phenotypic diversity of Plasmopara viticola on Vitis genotypes with different resistance. Crop Prot 54:221–228

    Article  Google Scholar 

  • Hana K, Lucie T, Tetiana K et al (2018) Can actin depolymerization actually result in increased plant resistance to pathogens? BioRxiv. https://doi.org/10.1101/278986

    Article  Google Scholar 

  • He PC (1999) Viticulture. China Agriculture Press, Beijing

    Google Scholar 

  • Höll J, Vannozzi A, Czemmel S et al (2013) The R2R3-MYB transcription factors MYB14 and MYB15 regulate stilbene biosynthesis in Vitis vinifera. Plant Cell 25:4135–4149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Howe GA, Jander G (2008) Plant immunity to insect herbivores. Annu Rev Plant Biol 59:41–66

    Article  CAS  PubMed  Google Scholar 

  • Jiao YT, Xu WR, Dong D et al (2016) A stilbene synthase allele from a Chinese wild grapevine confers resistance to powdery mildew by recruiting salicylic acid signalling for efficient defence. J Exp Bot 67:5841–5856

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jones JD, Dangl JL (2006) The plant immune system. Nature 444:323–329

    Article  CAS  PubMed  Google Scholar 

  • Kadota Y, Shirasu K, Zipfe Z (2015) Regulation of the NADPH oxidase RBOHD during plant immunity. Plant Cell Physiol 56:1472–1480

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi Y, Kobayashi I (2007) Depolymerization of the actin cytoskeleton induces defense responses in tobacco plants. J Gen Plant Pathol 73:360–364

    Article  CAS  Google Scholar 

  • Kobayashi M, Ohura I, Kawakita K et al (2007) Calcium-dependent protein kinases regulate the production of reactive oxygen species by potato NADPH oxidase. Plant Cell 19:1065–1080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu RQ, Wang L, Zhu JL et al (2015) Histological responses to downy mildew in resistant and susceptible grapevines. Protoplasma 252:259–270

    Article  CAS  PubMed  Google Scholar 

  • Lu DP, Wu SJ, Gao XQ et al (2010) A receptor-like cytoplasmic kinase, BIK1, associates with a flagellin receptor complex to initiate plant innate immunity. Proc Natl Acad Sci USA 107:496–501

    Article  PubMed  Google Scholar 

  • Ma H, Xiang G, Li Z (2018) Grapevine VpPR10.1 functions in resistance to Plasmopara viticola through triggering a cell death-like defence response by interacting with VpVDAC3. Plant Biotechnol J 16:1488–1501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • MAPK-Group (Kazuya Ichimura et al) (2002) Mitogen-activated protein kinase cascades in plants: a new nomenclature. Trends Plant Sci 7:301–308

    Article  Google Scholar 

  • Matoušková J, Janda M, Fišer R et al (2014) Changes in actin dynamics are involved in salicylic acid signaling pathway. Plant Sci 223:36–44

    Article  CAS  PubMed  Google Scholar 

  • Meng XZ, Zhang SQ (2013) MAPK cascades in plant disease resistance signaling. Annu Rev Phytopathol 51:245–266

    Article  CAS  PubMed  Google Scholar 

  • Merdinoglu D, Schneider C, Prado E et al (2018) Breeding for durable resistance to downy and powdery mildew in grapevine. OENO One 1:1. https://doi.org/10.20870/oeno-one.2018.52.3.2116

    Article  Google Scholar 

  • Mersereau M, Pazour G, Das A (1990) Efficient transformation of Agrobacterium tumefaciens by electroporation. Gene 90:149–151

    Article  CAS  PubMed  Google Scholar 

  • Nühse TS, Peck SC, Hirt H et al (2000) Microbial elicitors induce activation and dual phosphorylation of the Arabidopsis thaliana MAPK 6. J Biol Chem 275:7521–7526

    Article  PubMed  Google Scholar 

  • Nühse TS, Bottrill AR, Jones AM et al (2007) Quantitative phosphoproteomic analysis of plasma membrane proteins reveals regulatory mechanisms of plant innate immune responses. Plant J 51:931–940

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nürnberger T (1999) Signal perception in plant pathogen defense. Cell Mol Life Sci 55:167–182

    Article  PubMed  Google Scholar 

  • Nürnberger T, Brunner F, Kemmerling B et al (2004) Innate immunity in plants and animals: striking similarities and obvious differences. Immunol Rev 198:249–266

    Article  PubMed  Google Scholar 

  • Ogasawara Y, Kaya H, Hiraoka G et al (2008) Synergistic activation of the Arabidopsis NADPH oxidase AtrbohD by Ca2+ and phosphorylation. J Biol Chem 283:8885–8892

    Article  CAS  PubMed  Google Scholar 

  • Peressotti E, Wiedemann-Merdinoglu S, Delmotte F et al (2010) Breakdown of resistance to grapevine downy mildew upon limited deployment of a resistant variety. BMC Plant Biol 10:147

    Article  PubMed  PubMed Central  Google Scholar 

  • Pieterse CM, Van der Does D, Zamioudis C et al (2012) Hormonal modulation of plant immunity. Annu Rev Cell Dev Biol 28:489–521

    Article  CAS  PubMed  Google Scholar 

  • Ramming DW, Gabler F, Smilanick JL et al (2012) Identification of race-specific resistance in North American Vitis spp. limiting Erysiphe necator hyphal growth. Phytopathology 102:83–93

    Article  PubMed  Google Scholar 

  • Ranf S, Eschen-Lippold L, Pecher P et al (2011) Interplay between calcium signalling and early signalling elements during defence responses to microbe or damage-associated molecular patterns. Plant J 68:100–113

    Article  CAS  PubMed  Google Scholar 

  • Rentel MC, Knight MR (2004) Oxidative stress-induced calcium signaling in Arabidopsis. Plant Physiol 135:1471–1479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reynolds A (2015) Grapevine breeding programs for the wine industry. Elsevier, Cambridge

    Google Scholar 

  • Sheard LB, Tan X, Mao H et al (2010) Jasmonate perception by inositol-phosphate-potentiated COI1-JAZ co-receptor. Nature 468:400–405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Su H, Jiao YT, Wang FF (2018) Overexpression of VpPR10.1 by an efficient transformation method enhances downy mildew resistance in V. vinifera. Plant Cell Rep 37:819–832

    Article  CAS  PubMed  Google Scholar 

  • Takken FL, Tameling WI (2009) To nibble at plant resistance proteins. Science 324:744–746

    Article  CAS  PubMed  Google Scholar 

  • Tatulian SA, Steczko J, Minor W (1998) Uncovering a calcium-regulated membrane-binding mechanism for soybean lipoxygenase-1. Biochemistry 37:15481–15490

    Article  CAS  PubMed  Google Scholar 

  • Thines B, Katsir L, Melotto M et al (2007) JAZ repressor proteins are targets of the SCF(COI1) complex during jasmonate signalling. Nature 448:661–665

    Article  CAS  PubMed  Google Scholar 

  • Thomma BP, Nürnberger T, Joosten MH (2011) Of PAMPs and effectors: the blurred PTI-ETI dichotomy. Plant Cell 23:4–15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsuda K, Sato M, Glazebrook J et al (2008) Interplay between MAMP-triggered and SA-mediated defense responses. Plant J 53:763–775

    Article  CAS  PubMed  Google Scholar 

  • Tsuda K, Sato M, Stoddard T et al (2009) Network properties of robust immunity in plants. PLoS Genet 5:e1000772

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vlot AC, Dempsey DA, Klessig DF (2009) Salicylic acid, a multifaceted hormone to combat disease. Annu Rev Phytopathol 47:177–206

    Article  CAS  PubMed  Google Scholar 

  • Wan Y, Schwaninger H, He P et al (2007) Comparison of resistance to powdery mildew and downy mildew in Chinese wild grapes. Vitis 46:132–136

    Google Scholar 

  • Wang YJ, Liu Y, He P et al (1998) Resistance of Chinese Vitis species to Elsinoe ampelina (de Bary) Shear. Hortic Sci 33:123–126

    Google Scholar 

  • Wang L, Tsuda K, Sato M et al (2009) Arabidopsis CaM binding protein CBP60 g contributes to MAPM-induced SA accumulation and is involved in disease resistance against Pseudomonas syringae. PLoS Pathog 5:e1000301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu WR, Yu YH, Ding JH et al (2010) Characterization of a novel stilbene synthase promoter involved in pathogen-and stress-inducible expression from Chinese wild Vitis pseudoreticulata. Planta 231:475–487

    Article  CAS  PubMed  Google Scholar 

  • Xu J, Xie J, Yan C et al (2014) A chemical genetic approach demonstrates that MPK3/MPK6 activation and NADPH oxidase-mediated oxidative burst are two independent signaling events in plant immunity. Plant J 77:222–234

    Article  CAS  PubMed  Google Scholar 

  • Yan SP, Dong XN (2014) Perception of the plant immune signal salicylic acid. Curr Opin Plant Biol 20:64–68

    Article  CAS  PubMed  Google Scholar 

  • Yin J, Li X, Zhan YG et al (2017a) Cloning and expression of BpMYC4 and BpbHLH9 genes and the role of BpbHLH9 in triterpenoid synthesis in birch. BMC Plant Biol 17:214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yin X, Liu RQ, Su H et al (2017b) Pathogen development and host responses to Plasmopara viticola in resistant and susceptible grapevines: an ultrastructural study. Hortic Res 4:17033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang MX, Li Q, Liu TL et al (2015) Two cytoplasmic effectors of Phytophthora sojae regulate plant cell death via interactions with plant catalases. Plant Physiol 167:164–175

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Natural Science Foundation of China (31600256), the Young Academic Talent Support Program of Northwest University (for Dong Duan), the Scientific Research Program Funded by Shaanxi Provincial Education Department (18JK0769), the Natural Science Basic Research Plan in Shaanxi Province of China (2017JQ3005), the Open Foundation of Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education) (ZSK2017003), the Graduate Student Independent Innovation Project of Northwest University (YZZ17168), and the Northwest University Training Program of Innovation and Entrepreneurship for Undergraduate (2018330 and 2018306).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong Duan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, Y., Bai, R., Li, J. et al. The transcription factor MYB15 is essential for basal immunity (PTI) in Chinese wild grape. Planta 249, 1889–1902 (2019). https://doi.org/10.1007/s00425-019-03130-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-019-03130-5

Keywords

Navigation