Skip to main content
Log in

The tomato IQD gene SUN24 regulates seed germination through ABA signaling pathway

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Main conclusion

Gene expression and functional analysis of the tomato IQD gene SUN24 revealed that it regulates seed germination through ABA signaling pathway.

Ca2+ signaling plays crucial roles in diverse biological processes including ABA-mediated seed germination. The plant-specific IQ67-Domain (IQD) proteins are hypothesized to regulate Ca2+ signaling and plant development through interactions with calmodulins (CaMs). Despite a few IQD genes have been identified to regulate herbivore resistance and plant growth and development, the molecular functions of most members in this gene family are not known. In this study, we characterized the role of the tomato IQD gene SUN24 in seed germination. Using pSUN24::GUS reporter lines and by quantitative reverse transcription PCR analysis, we show that SUN24 is mainly expressed in the roots, flowers, young fruits, seeds, and other young developing tissues, and its expression is repressed by ABA treatments. Functional analysis shows that knockdown of SUN24 expression by RNA interference delays seed germination, whereas overexpression of this IQD gene promotes germination. Further gene expression analysis reveals that SUN24 negatively regulates expression of two key ABA signaling genes Solanum lycopersicum ABA-insensitive 3 (SlABI3) and SlABI5 in germinating seeds. Moreover, SUN24, targeting to microtubule and nuclear bodies, can interact with four tomato CaMs (SlCaM1, 2, 3, and 6) in yeast cells. Our results demonstrate that SUN24 regulates seed germination through ABA signaling pathway, expanding our understanding of the roles of the IQD protein family members in plant physiological processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

CaM:

Calmodulin

IQD:

IQ67-domain

OE lines:

Overexpression lines

SlABI3(15):

Solanum lycopersicum ABA-insensitive 3(5)

SlCaMs:

Solanum lycopersicum CaM

References

  • Abel S, Savchenko T, Levy M (2005) Genome-wide comparative analysis of the IQD gene families in Arabidopsis thaliana and Oryza sativa. BMC Evol Biol 5:72

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Abel S, Bürstenbinder K, Müller J (2013) The emerging function of IQD proteins as scaffolds in cellular signaling and trafficking. Plant Signal Behav 8:e24369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Allen G, Kuchitsu K, Chu S, Murata Y, Schroeder J (1999) Arabidopsis abi1-1 and abi2-1 phosphatase mutations reduce abscisic acid-induced cytoplasmic calcium rises in guard cells. Plant Cell 11:1785–1798

    CAS  PubMed  PubMed Central  Google Scholar 

  • Asano T, Hayashi N, Kikuchi S, Ohsugi R (2012) CDPK-mediated abiotic stress signaling. Plant Signal Behav 7:817–821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bassel G, Mullen R, Bewley J (2006) ABI3 expression ceases following, but not during, germination of tomato and Arabidopsis seeds. J Exp Bot 57:1291–1297

    Article  CAS  PubMed  Google Scholar 

  • Bentsink L, Koornneef M (2008) Seed dormancy and germination. Arabidopsis Book 6:e0119

    Article  PubMed  PubMed Central  Google Scholar 

  • Bewley J (1997) Seed germination and dormancy. Plant Cell 9:1055–1066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brandt B, Munemasa S, Wang C et al (2015) Calcium specificity signaling mechanisms in abscisic acid signal transduction in Arabidopsis guard cells. eLife 4:e03599

    Article  PubMed Central  Google Scholar 

  • Brocard I, Lynch T, Finkelstein R (2002) Regulation and role of the Arabidopsis abscisic acid-insensitive 5 gene in abscisic acid, sugar, and stress response. Plant Physiol 129:1533–1543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bürstenbinder K, Savchenko T, Müller J, Adamson A, Stamm G, Kwong R, Zipp B, Dinesh D, Abel S (2013) Arabidopsis calmodulin-binding protein IQ67-domain 1 localizes to microtubules and interacts with kinesin light chain-related protein-1. J Biol Chem 288:1871–1882

    Article  CAS  PubMed  Google Scholar 

  • Bürstenbinder K, Möller B, Plötner R, Stamm G, Hause G, Mitra D, Abel S (2017) The IQD family of calmodulin-binding proteins links calcium signaling to microtubules, membrane subdomains, and the nucleus. Plant Physiol 173:1692–1708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cai R, Zhang C, Zhao Y, Zhu K, Wang Y, Jiang H, Xiang Y, Cheng B (2016) Genome-wide analysis of the IQD gene family in maize. Mol Genet Genom 291:543–558

    Article  CAS  Google Scholar 

  • Chinnusamy V, Gong Z, Zhu J (2008) Abscisic acid-mediated epigenetic processes in plant development and stress responses. J Integr Plant Biol 50:1187–1195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Diaz M, Sanchez-Barrena M, Gonzalez-Rubio J et al (2016) Calcium-dependent oligomerization of CAR proteins at cell membrane modulates ABA signaling. Proc Natl Acad Sci USA 113:E396–E405

    Article  CAS  PubMed  Google Scholar 

  • Duan P, Xu J, Zeng D, Zhang B, Geng M, Zhang G, Huang K, Huang L, Xu R, Ge S, Qian Q, Li Y (2017) Natural variation in the promoter of GSE5 contributes to grain size diversity in rice. Mol Plant 10:685–694

    Article  CAS  PubMed  Google Scholar 

  • Feng L, Chen Z, Ma H, Chen X, Li Y, Wang Y, Xiang Y (2014) The IQD gene family in soybean: structure, phylogeny, evolution and expression. PLoS One 9:e110896

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Filiz E, Tombuloglu H, Ozyigit II (2013) Genome-wide analysis of IQ67 domain (IQD) gene families in Brachypodium distachyon. Plant Omics 6:425–432

    CAS  Google Scholar 

  • Finkelstein R (1994) Maternal effects govern variable dominance of two abscisic acid response mutations in Arabidopsis thaliana. Plant Physiol 105:1203–1208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Finkelstein R, Lynch T (2000) The Arabidopsis abscisic acid response gene ABI5 encodes a basic leucine zipper transcription factor. Plant Cell 12:599–609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Finkelstein R, Wang M, Lynch T, Rao S, Goodman H (1998) The Arabidopsis abscisic acid response locus ABI4 encodes an APETALA 2 domain protein. Plant Cell 10:1043–1054

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fujita Y, Fujita M, Shinozaki K, Yamaguchi-Shinozaki K (2011) ABA-mediated transcriptional regulation in response to osmotic stress in plants. J Plant Res 124:509–525

    Article  CAS  PubMed  Google Scholar 

  • Galon Y, Finkler A, Fromm H (2010) Calcium-regulated transcription in plants. Mol Plant 3:653–669

    Article  CAS  PubMed  Google Scholar 

  • Gao Y, Liu J, Zhang Z, Sun X, Zhang N, Fan J, Niu X, Xiao F, Liu Y (2013) Functional characterization of two alternatively spliced transcripts of tomato ABSCISIC ACID INSENSITIVE3 (ABI3) gene. Plant Mol Biol 82:131–145

    Article  CAS  PubMed  Google Scholar 

  • Goodin M, Dietzgen R, Schichnes D, Ruzin S, Jackson A (2002) pGD vectors: versatile tools for the expression of green and red fluorescent protein fusions in agroinfiltrated plant leaves. Plant J 31:375–383

    Article  CAS  PubMed  Google Scholar 

  • Guo Y, Xiong L, Song C, Gong D, Halfter U, Zhu J (2002) A calcium sensor and its interacting protein kinase are global regulators of abscisic acid signaling in Arabidopsis. Dev Cell 3:233–244

    Article  CAS  PubMed  Google Scholar 

  • Hamilton D, Hills A, Köhler B, Blatt M (2000) Ca2+ channels at the plasma membrane of stomatal guard cells are activated by hyperpolarization and abscisic acid. Proc Natl Acad Sci USA 97:4967–4972

    Article  CAS  PubMed  Google Scholar 

  • Higo K, Ugawa Y, Iwamoto M, Korenaga T (1999) Plant cis-acting regulatory DNA elements (PLACE) database. Nucleic Acids Res 27:297–300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Holdsworth M, Bentsink L, Soppe W (2008) Molecular networks regulating Arabidopsis seed maturation, after-ripening, dormancy and germination. New Phytol 179:33–54

    Article  CAS  PubMed  Google Scholar 

  • Huang Z, Van Houten J, Gonzalez G, Xiao H, van der Knaap E (2013) Genome-wide identification, phylogeny and expression analysis of SUN, OFP and YABBY gene family in tomato. Mol Genet Genom 288:111–129

    Article  CAS  Google Scholar 

  • Huang Y, Feng C, Ye Q, Wu W, Chen Y (2016) Arabidopsis WRKY6 transcription factor acts as a positive regulator of abscisic acid signaling during seed germination and early seedling development. PLoS Genet 12:e1005833

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Israelsson M, Siegel R, Young J, Hashimoto M, Iba K, Schroeder J (2006) Guard cell ABA and CO2 signaling network updates and Ca2+ sensor priming hypothesis. Curr Opin Plant Biol 9:654–663

    Article  CAS  PubMed  Google Scholar 

  • Jefferson R, Kavanagh T, Bevan M (1987) Gus fusions: beta-glucuronidase as a sensitive and versatile gene fusion marker in higher-plants. EMBO J 6:3901–3907

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kerschen A, Napoli C, Jorgensen R, Müller A (2004) Effectiveness of RNA interference in transgenic plants. FEBS Lett 566:223–228

    Article  CAS  PubMed  Google Scholar 

  • Kim T, Böhmer M, Hu H, Nishimura N, Schroeder J (2010) Guard cell signal transduction network: advances in understanding abscisic acid, CO2, and Ca2+ signaling. Annu Rev Plant Biol 61:561–591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Köhler B, Blatt M (2002) Protein phosphorylation activates the guard cell Ca2+ channel and is a prerequisite for gating by abscisic acid. Plant J 32:185–194

    Article  PubMed  Google Scholar 

  • Kong D, Ju C, Parihar A, Kim S, Cho D, Kwak J (2015) Arabidopsis glutamate receptor homolog3.5 modulates cytosolic Ca2+ level to counteract effect of abscisic acid in seed germination. Plant Physiol 167:1630–1642

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koornneef M, Bentsink L, Hilhorst H (2002) Seed dormancy and germination. Curr Opin Plant Biol 5:33–36

    Article  CAS  PubMed  Google Scholar 

  • Kucera B, Cohn M, Leubner-Metzger G (2005) Plant hormone interactions during seed dormancy release and germination. Seed Sci Res 15:281–307

    Article  CAS  Google Scholar 

  • Leung J, Bouvier-Durand M, Morris P, Guerrier D, Chefdor F, Giraudat J (1994) Arabidopsis ABA response gene ABI1: features of a calcium-modulated protein phosphatase. Science 264:1448–1452

    Article  CAS  PubMed  Google Scholar 

  • Leung J, Merlot S, Giraudat J (1997) The Arabidopsis ABSCISIC ACID-INSENSITIVE2 (ABI2) and ABI1 genes encode homologous protein phosphatases 2C involved in abscisic acid signal transduction. Plant Cell 9:759–771

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Levy M, Wang Q, Kaspi R, Parrella M, Abel S (2005) Arabidopsis IQD1, a novel calmodulin-binding nuclear protein, stimulates glucosinolate accumulation and plant defense. Plant J 43:79–96

    Article  CAS  PubMed  Google Scholar 

  • Lim S, Park J, Lee N et al (2013) ABA-insensitive3, ABA-insensitive5, and DELLAs Interact to activate the expression of SOMNUS and other high-temperature-inducible genes in imbibed seeds in Arabidopsis. Plant Cell 25:4863–4878

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lopez-Molina L, Mongrand B, McLachlin D, Chait B, Chua N (2002) ABI5 acts downstream of ABI3 to execute an ABA-dependent growth arrest during germination. Plant J 32:317–328

    Article  CAS  PubMed  Google Scholar 

  • Ma H, Feng L, Chen Z, Chen X, Zhao HL, Xiang Y (2014) Genome-wide identification and expression analysis of the IQD gene family in Populus trichocarpa. Plant Sci 229:96–110

    Article  CAS  PubMed  Google Scholar 

  • McCormick S, Niedermeyer J, Fry J, Barnason A, Horsch R, Fraley R (1986) Leaf disc transformation of cultivated tomato (L. esculentum) using Agrobacterium tumefaciens. Plant Cell Rep 5:81–84

    Article  CAS  PubMed  Google Scholar 

  • Munemasa S, Hauser F, Park J, Waadt R, Brandt B, Schroeder J (2015) Mechanisms of abscisic acid-mediated control of stomatal aperture. Curr Opin Plant Biol 28:154–162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murata Y, Pei ZM, Mori IC, Schroeder J (2001) Abscisic acid activation of plasma membrane Ca2+ channels in guard cells requires cytosolic NAD(P)H and is differentially disrupted upstream and downstream of reactive oxygen species production in abi1-1 and abi2-1 protein phosphatase 2C mutants. Plant Cell 13:2513–2523

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nagamune K, Xiong L, Chini E, Sibley L (2008) Plants, endosymbionts and parasites: abscisic acid and calcium signaling. Commun Integr Biol 1:62–65

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Narusaka Y, Nakashima K, Shinwari Z, Sakuma Y, Furihata T, Abe H, Narusaka M, Shinozaki K, Yamaguchi-Shinozaki K (2003) Interaction between two cis-acting elements, ABRE and DRE, in ABA-dependent expression of Arabidopsis rd29A gene in response to dehydration and high-salinity stresses. Plant J 34:137–148

    Article  CAS  PubMed  Google Scholar 

  • Niu X, Helentjaris T, Bate N (2002) Maize ABI4 binds coupling element1 in abscisic acid and sugar response genes. Plant Cell 14:2565–2575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nomura H, Shiina T (2014) Calcium signaling in plant endosymbiotic organelles: mechanism and role in physiology. Mol Plant 7:1094–1104

    Article  CAS  PubMed  Google Scholar 

  • Ogawa M, Hanada A, Yamauchi Y, Kuwahara A, Kamiya Y, Yamaguchi S (2003) Gibberellin biosynthesis and response during Arabidopsis seed germination. Plant Cell 15:1591–1604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oh E, Kang H, Yamaguchi S, Park J, Lee D, Kamiya Y, Choi G (2009) Genome-wide analysis of genes targeted by PHYTOCHROME INTERACTING FACTOR 3-LIKE5 during seed germination in Arabidopsis. Plant Cell 21:403–419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Okamoto M, Tatematsu K, Matsui A et al (2010) Genome-wide analysis of endogenous abscisic acid-mediated transcription in dry and imbibed seeds of Arabidopsis using tiling arrays. Plant J 62:39–51

    Article  CAS  PubMed  Google Scholar 

  • Pattison R, Csukasi F, Zheng Y, Fei Z, van der Knaap E, Catalá C (2015) Comprehensive tissue-specific transcriptome analysis reveals distinct regulatory programs during early tomato fruit development. Plant Physiol 168:1684–1701

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pei Z, Murata Y, Benning G, Thomine S, Klüsener B, Allen G, Grill E, Schroeder J (2000) Calcium channels activated by hydrogen peroxide mediate abscisic acid signalling in guard cells. Nature 406:731–734

    Article  CAS  PubMed  Google Scholar 

  • Penfield S, Li Y, Gilday A, Graham S, Graham I (2006) Arabidopsis ABA INSENSITIVE4 regulates lipid mobilization in the embryo and reveals repression of seed germination by the endosperm. Plant Cell 18:1887–1899

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peng J, Harberd N (2002) The role of GA-mediated signalling in the control of seed germination. Curr Opin Plant Biol 5:376–381

    Article  CAS  PubMed  Google Scholar 

  • Piskurewicz U, Jikumaru Y, Kinoshita N, Nambara E, Kamiya Y, Lopez-Molina L (2008) The gibberellic acid signaling repressor RGL2 inhibits Arabidopsis seed germination by stimulating abscisic acid synthesis and ABI5 activity. Plant Cell 20:2729–2745

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rajjou L, Duval M, Gallardo K, Catusse J, Bally J, Job C, Job D (2012) Seed germination and vigor. Annu Rev Plant Biol 63:507–533

    Article  CAS  PubMed  Google Scholar 

  • Roelfsema M, Hedrich R (2009) Making sense out of Ca2+ signals: their role in regulating stomatal movements. Plant Cell Environ 33:305–321

    Article  CAS  PubMed  Google Scholar 

  • Roelfsema M, Hedrich R, Geiger D (2012) Anion channels: master switches of stress responses. Trends Plant Sci 17:221–229

    Article  CAS  PubMed  Google Scholar 

  • Rothstein S, Lahners K, Lotstein R, Carozzi N, Jayne S, Rice D (1987) Promoter cassettes, antibiotic-resistance genes, and vectors for plant transformation. Gene 53:153–161

    Article  CAS  PubMed  Google Scholar 

  • Schroeder J, Hagiwara S (1990) Repetitive increases in cytosolic Ca2+ of guard cells by abscisic acid activation of nonselective Ca2+ permeable channels. Proc Natl Acad Sci USA 87:9305–9309

    Article  CAS  PubMed  Google Scholar 

  • Shkolnik-Inbar D, Bar-Zvi D (2010) ABI4 mediates abscisic acid and cytokinin inhibition of lateral root formation by reducing polar auxin transport in Arabidopsis. Plant Cell 22:3560–3573

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shu K, Zhang H, Wang S, Chen M, Wu Y, Tang S, Liu C, Feng Y, Cao X, Xie Q (2013) ABI4 regulates primary seed dormancy by regulating the biogenesis of abscisic acid and gibberellins in Arabidopsis. PLoS Genet 9:e1003577. https://doi.org/10.1371/journal.pgen.1003577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shu K, Chen Q, Wu Y et al (2016a) ABI4 mediates antagonistic effects of abscisic acid and gibberellins at transcript and protein levels. Plant J 85:348–361

    Article  CAS  PubMed  Google Scholar 

  • Shu K, Liu X, Xie Q, He Z (2016b) Two faces of one seed: hormonal regulation of dormancy and germination. Mol Plant 9:34–45

    Article  CAS  PubMed  Google Scholar 

  • Siegel R, Xue S, Murata Y, Yang Y, Nishimura N, Wang A, Schroeder J (2009) Calcium elevation-dependent and attenuated resting calcium-dependent abscisic acid induction of stomatal closure and abscisic acid-induced enhancement of calcium sensitivities of S-type anion and inward-rectifying K channels in Arabidopsis guard cells. Plant J 59:207–220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sugiyama Y, Wakazaki M, Toyooka K, Fukuda H, Oda Y (2017) A novel plasma membrane-anchored protein regulates xylem cell-wall deposition through microtubule-dependent lateral inhibition of Rho GTPase domains. Curr Biol 27:2522–2528

    Article  CAS  PubMed  Google Scholar 

  • Tomato Genome Consortium (2012) The tomato genome sequence provides insights into fleshy fruit evolution. Nature 485:635–641

    Article  CAS  Google Scholar 

  • Weng L, Zhao F, Li R, Xu C, Chen K, Xiao H (2015) The zinc finger transcription factor SlZFP2 negatively regulates abscisic acid biosynthesis and fruit ripening in tomato. Plant Physiol 167:931–949

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • White P (2000) Calcium channels in higher plants. Biochim Biophys Acta 1465:171–189

    Article  CAS  Google Scholar 

  • Wind J, Peviani A, Snel B, Hanson J, Smeekens S (2012) ABI4: versatile activator and repressor. Trends Plant Sci 18:125–132

    Article  CAS  PubMed  Google Scholar 

  • Wu S, Xiao H, Cabrera A, Meulia T, van der Knaap E (2011) SUN regulates vegetative and reproductive organ shape by changing cell division patterns. Plant Physiol 157:1175–1186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiao H, Wang Y, Liu D, Wang W, Li X, Zhao X, Xu J, Zhai W, Zhu L (2003) Functional analysis of the rice AP3 homologue OsMADS16 by RNA interference. Plant Mol Biol 52:957–966

    Article  CAS  PubMed  Google Scholar 

  • Xiao H, Jiang N, Schaffner E, Stockinger E, van der Knaap E (2008) A retrotransposon-mediated gene duplication underlies morphological variation of tomato fruit. Science 319:1527–1530

    Article  CAS  PubMed  Google Scholar 

  • Xiao H, Radovich C, Welty N, Hsu J, Li D, Meulia T, van der Knaap E (2009) Integration of tomato reproductive developmental landmarks and expression profiles, and the effect of SUN on fruit shape. BMC Plant Biol 9:49

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhao R, Sun H, Mei C, Wang X, Yan L, Liu R, Zhang X, Wang X, Zhang D (2011) The Arabidopsis Ca2+-dependent protein kinase CPK12 negatively regulates abscisic acid signaling in seed germination and post-germination growth. New Phytol 192:61–73

    Article  CAS  PubMed  Google Scholar 

  • Zhao Y, Liu W, Xu Y, Cao J, Braam J, Cai X (2013) Genome-wide identification and functional analyses of calmodulin genes in Solanaceous species. BMC Plant Biol 13:70

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors want to thank TGRC for kindly providing the tomato seeds used in the study and Meng Li for taking care of plants. The work was supported by grants from the Ministry of Science and Technology of the People’s Republic of China (2016YFD0100506 and 2012CB113900) and National Natural Science Foundation of China (31672164).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Han Xiao.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 5403 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bi, L., Weng, L., Jiang, Z. et al. The tomato IQD gene SUN24 regulates seed germination through ABA signaling pathway. Planta 248, 919–931 (2018). https://doi.org/10.1007/s00425-018-2950-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-018-2950-6

Keywords

Navigation