Skip to main content
Log in

The overexpression of RXam1, a cassava gene coding for an RLK, confers disease resistance to Xanthomonas axonopodis pv. manihotis

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Main conclusion

The overexpression of RXam1 leads to a reduction in bacterial growth of XamCIO136, suggesting that RXam1 might be implicated in strain-specific resistance.

Cassava bacterial blight (CBB) caused by Xanthomonas axonopodis pv. manihotis (Xam) is a prevalent disease in all regions, where cassava is cultivated. CBB is a foliar and vascular disease usually controlled through host resistance. Previous studies have found QTLs explaining resistance to several Xam strains. Interestingly, one QTL called XM5 that explained 13% of resistance to XamCIO136 was associated with a similar fragment of the rice Xa21-resistance gene called PCR250. In this study, we aimed to further identify and characterize this fragment and its role in resistance to CBB. Screening and hybridization of a BAC library using the molecular marker PCR250 as a probe led to the identification of a receptor-like kinase similar to Xa21 and were called RXam1 (Resistance to Xam 1). Here, we report the functional characterization of susceptible cassava plants overexpressing RXam1. Our results indicated that the overexpression of RXam1 leads to a reduction in bacterial growth of XamCIO136. This suggests that RXAM1 might be implicated in strain-specific resistance to XamCIO136.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

dpi:

Days post inoculation

LRR:

Leucine-rich repeats

CBB:

Cassava bacterial blight

EFR:

Elongation factor receptor

MAMP:

Microbe-associated molecular pattern

PRR:

Pattern-recognition receptors

QTL:

Quantitative trait loci

RLK:

Receptor-like kinase

Xam :

Xanthomonas axonopodis pv. manihotis

References

  • Altschul SF, Madden TL, Schäffer AA et al (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bart R, Cohn M, Kassen A et al (2012) High-throughput genomic sequencing of cassava bacterial blight strains identifies conserved effectors to target for durable resistance. Proc Natl Acad Sci USA 109:E1972–E1979

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boutrot F, Segonzac C, Chang KN, Qiao H, Ecker JR, Zipfel C (2010) Direct transcriptional control of the Arabidopsis immune receptor FLS2 by the ethylene-dependent transcription factors EIN3 and EIL1. Proc Natl Acad Sci USA 107:14502–14507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bull SE, Owiti JA, Niklaus M, Beeching JR, Gruissem W, Vanderschuren H (2009) Agrobacterium-mediated transformation of friable embryogenic calli and regeneration of transgenic cassava. Nat Protoc 4(12):1845–1854

    Article  CAS  PubMed  Google Scholar 

  • Chenna R, Sugawara H, Kioke T et al (2003) Multiple sequence aligment with the clustal series of programs. Nucleic Acids Res 31:3497–3500

  • Chinchilla D, Bauer Z, Regenass M, Boller T, Felix G (2006) The Arabidopsis receptor kinase FLS2 binds flg22 and determines the specificity of flagellin perception. Plant Cell 18:465–476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Contreras E, Lopez C (2008) Expresión de dos genes candidatos a resistencia contra la bacteriosis vascular en yuca. Acta Biol Colom 13:175–188

    Google Scholar 

  • Couto D, Zipfel C (2016) Regulation of pattern recognition receptor signalling in plants. Nature Rev Immunol 16:537–552

    Article  CAS  Google Scholar 

  • Dellaporta SL, Wood J, Hicks JB (1983) A plant DNA minipreparation: version II. Plant Mol Biol Rep 1(4):19–21

    Article  CAS  Google Scholar 

  • Duxbury Z, Ma Y, Furzer OJ et al (2016) Pathogen perception by NLRs in plants and animals: parallel worlds. BioEssays 38:769–781

    Article  PubMed  Google Scholar 

  • Fregene M, Angel F, Gomez R et al (1997) A molecular genetic map of cassava (Manihot esculenta Crantz). Theor Appl Genet 95:431–441

    Article  CAS  Google Scholar 

  • French E, Kim B, Iyer-Pascuzzi A (2016) Mechanisms of quantitative disease resistance in plants. Semin Cell Dev Biol 56:201–208

    Article  CAS  PubMed  Google Scholar 

  • Gedil M, Kumar M, Igwe D (2012) Isolation and characterization of resistant gene analogs in cassava, wild Manihot species, and castor bean (Ricinus communis). Afr J Biotechnol 11:15111–15123

    CAS  Google Scholar 

  • Godfrey D, Rathjen JP (2012) Recognition and response in plant PAMP-triggered immunity. In: eLS. Wiley, London. https://doi.org/10.1002/9780470015902.a0023725

  • Greshoff PM, Doy CH (1972) Development and differentiation of haploid Lycopersicon esculentum (tomato). Planta 107:161–170

    Article  Google Scholar 

  • Gurr SJ, Rushton PJ (2005) Engineering plants with increased disease resistance: how are we going to express it? Trends Biotechnol 23:283–290

    Article  CAS  PubMed  Google Scholar 

  • Hahn SK, Terry ER, Leuschner K, Akobundu IO, Okali C, Lal R (1979) Cassava improvement in Africa. Field Crops Res 2:193–226

    Article  Google Scholar 

  • Hahn SK, Howland AK, Terry ER (1980) Correlated resistance of cassava to mosaic and bacterial blight diseases. Euphytica 29:305–311

    Article  Google Scholar 

  • Hurni S, Scheuermann D, Krattinger SG et al (2015) The maize disease resistance gene Htn1 against northern corn leaf blight encodes a wall-associated receptor-like kinase. Proc Natl Acad Sci USA 112:8780–8785

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jacob F, Vernaldi S, Maekawa T (2013) Evolution and conservation of plant NLR functions. Front Immunol 4:1–16

    Article  CAS  Google Scholar 

  • Jorge V, Fregene MA, Duque MC, Bonierbale MW, Tohme J, Verdier V (2000) Genetic mapping of resistance to bacterial blight disease in cassava (Manihot esculenta Crantz). Theor Appl Genet 101:865–872

    Article  CAS  Google Scholar 

  • Jorge V, Verdier V (2002) Qualitative and quantitative evaluation of cassava bacterial blight resistance in F1 progeny of a cross between elite cassava clones. Euphytica 123:41–48

    Article  Google Scholar 

  • Kou Y, Wang S (2010) Broad-spectrum and durability: understanding of quantitative disease resistance. Curr Opin Plant Biol 13:181–185

    Article  CAS  PubMed  Google Scholar 

  • Lacombe S, Rougon-Cardoso A, Sherwood E et al (2010) Interfamily transfer of a plant pattern-recognition receptor confers broad-spectrum bacterial resistance. Nat Biotechnol 28:365–369

    Article  CAS  PubMed  Google Scholar 

  • Li B, Meng X, Shan L, He P (2016) Transcriptional regulation of pattern-triggered immunity in plants. Cell Host Microbe 19:641–650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu B, Li JF, Ao Y et al (2012) Lysin motif-containing proteins LYP4 and LYP6 play dual toles in peptidoglycan and chitin perception in rice innate immunity. Plant Cell 24:3406–3419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • López CE, Bernal AJ (2012) Cassava bacterial blight: using genomics for the elucidation and management of an old problem. Trop Plant Biol 5:117–126

    Article  Google Scholar 

  • López CE, Zuluaga AP, Cooke R, Delseny M, Tohme J, Verdier V (2003) Isolation of resistance gene candidates (RGCs) and characterization of an RGC cluster in cassava. Mol Genet Genom 269:658–671

    Article  Google Scholar 

  • López CE, Quesada-Ocampo LM, Bohorquez A et al (2007) Mapping EST-derived SSRs and ESTs involved in resistance to bacterial blight in Manihot esculenta. Genome 50:1078–1088

    Article  PubMed  Google Scholar 

  • Mansfield J, Genin S, Magori S et al (2012) Top 10 plant pathogenic bacteria in molecular plant pathology. Mol Plant Pathol 13:614–629

    Article  PubMed  Google Scholar 

  • Marone D, Russo M, Laidò G, De Leonardis A, Mastrangelo A (2013) Plant nucleotide binding site–leucine-rich repeat (NBS-LRR) genes: active guardians in host defense responses. Int J Mol Sci 14:7302–7326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mba RE, Stephenson P, Edwards K et al (2001) Simple sequence repeat (SSR) markers survey of the cassava (Manihot esculenta Crantz) genome: towards an SSR-based molecular genetic map of cassava. Theor Appl Genet 102:21–31

    Article  CAS  Google Scholar 

  • McCallum EJ, Anjanappa RB, Gruissem W (2017) Tackling agriculturally relevant diseases in the staple crop cassava (Manihot esculenta). Curr Opin Plant Biol 38:50–58

    Article  PubMed  Google Scholar 

  • Miya A, Albert P, Shinya T et al (2007) CERK1, a LysM receptor kinase, is essential for chitin elicitor signaling in Arabidopsis. Proc Natl Acad Sci USA 104:19613–19618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moreno I, Gruissem W, Vanderschuren H (2011) Reference genes for reliable potyvirus quantitation in cassava and analysis of Cassava brown streak virus load in host varieties. J Virol Methods 177:49–54

    Article  CAS  PubMed  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15(3):473–497

    Article  CAS  Google Scholar 

  • Poland JA, Balint-Kurti PJ, Wisser RJ, Pratt RC, Nelson RJ (2009) Shades of gray: the world of quantitative disease resistance. Trends Plant Sci 14:21–29

    Article  CAS  PubMed  Google Scholar 

  • Pruitt RN, Schwessinger B, Joe A et al (2015) The rice immune receptor XA21 recognizes a tyrosine-sulfated protein from a Gram-negative bacterium. Sci Adv 1:e1500245

    Article  PubMed  PubMed Central  Google Scholar 

  • Qi D, Innes RW (2013) Recent advances in plant NLR structure, function, localization, and signaling. Front Immunol 4:1–10

    Article  CAS  Google Scholar 

  • Rabbi IY, Hamblin MT, Kumar PL, Gedil MA, Ikpan AS, Jannink JL et al (2014) High-resolution mapping of resistance to cassava mosaic geminiviruses in cassava using genotyping-by-sequencing and its implications for breeding. Virus Res 186:87–96

    Article  CAS  PubMed  Google Scholar 

  • Ranf S, Gisch N, Schaffer M et al (2015) A lectin S-domain receptor kinase mediates lipopolysaccharide sensing in Arabidopsis thaliana. Nat Immunol 16:426–433

    Article  CAS  PubMed  Google Scholar 

  • Restrepo S, Verdier V (1997) Geographical differentiation of the population of Xanthomonas axonopodis pv. manihotis in Colombia. Appl Environ Microbiol 63:4427–4434

    CAS  PubMed  PubMed Central  Google Scholar 

  • Roux F, Voisin D, Badet T et al (2014) Resistance to phytopathogens e tutti quanti: placing plant quantitative disease resistance on the map. Mol Plant Pathol 15:427–432

    Article  PubMed  Google Scholar 

  • Rozen S, Skaletsky H (2000) Primer3 on the WWW for general users and for biologist programmers. Methods Mol Biol 132:365–386

    CAS  PubMed  Google Scholar 

  • Shimizu T, Nakano T, Takamizawa D et al (2010) Two LysM receptor molecules, CEBiP and OsCERK1, cooperatively regulate chitin elicitor signaling in rice. Plant J 64:204–214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Song WY, Wang GL, Chen LL et al (1995) A receptor kinase-like protein encoded by the rice disease resistance gene, Xa21. Science 270:1804–1806

    Article  CAS  PubMed  Google Scholar 

  • Soto JC, Ortiz JF, Perlaza-Jiménez L et al (2015) A genetic map of cassava (Manihot esculenta Crantz) with integrated physical mapping of immunity-related genes. BMC Genomics 16:190. https://doi.org/10.1186/s12864-015-1397-4

    Article  PubMed  PubMed Central  Google Scholar 

  • St. Clair DA (2010) Quantitative disease resistance and quantitative resistance loci in breeding. Annu Rev Phytopathol 48:247–268

    Article  CAS  PubMed  Google Scholar 

  • Takken FLW, Goverse A (2012) How to build a pathogen detector: structural basis of NB-LRR function. Curr Opin Plant Biol 15:375–384

    Article  CAS  PubMed  Google Scholar 

  • Taylor N, Gaitán-Solís E, Moll T et al (2012) A high-throughput platform for the production and analysis of transgenic cassava (Manihot esculenta) plants. Tropical Plant Biol 5(1):127–139

    Article  CAS  Google Scholar 

  • Tomkins J, Fregene M, Main D, Kim H, Wing R, Tohme J (2004) Bacterial artificial chromosome (BAC) library resource for positional cloning of pest and disease resistance genes in cassava (Manihot esculenta Crantz). Plant Mol Biol 56(4):555–561

    Article  CAS  PubMed  Google Scholar 

  • Trujillo CA, Ochoa JC, Mideros MF, Restrepo S, López CE, Bernal A (2014) A complex population structure of the cassava pathogen Xanthomonas axonopodis pv. manihotis in recent years in the caribbean region of Colombia. Microb Ecol 68:155–167

    Article  PubMed  Google Scholar 

  • Wu Y, Zhou JM (2013) Receptor-like kinases in plant innate immunity. J Integr Plant Biol 55:1271–1286

    Article  CAS  PubMed  Google Scholar 

  • Wu S, Shan L, He P (2014) Microbial signature-triggered plant defense responses and early signaling mechanisms. Plant Sci 228:118–126

    Article  CAS  PubMed  Google Scholar 

  • Wydra K, Zinsou V, Jorge V, Verdier V (2004) Identification of pathotypes of Xanthomonas axonopodis pv. manihotis in Africa and detection of quantitative trait loci and markers for resistance to bacterial blight of cassava. Phytopathology 94:1084–1093

    Article  CAS  PubMed  Google Scholar 

  • Zipfel C, Kunze G, Chinchilla D et al (2006) Perception of the bacterial PAMP EF-Tu by the receptor EFR restricts Agrobacterium-mediated transformation. Cell 125:749–760

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by Colciencias (110152128399). PADT was supported with a scholarship for graduated students from Universidad Nacional de Colombia. The authors would like to acknowledge Rosa Juliana Gil for careful and critical reading of the manuscript, Camilo Dorado for his support on the statistical analysis and Fabio Gómez for his support on the molecular cloning of RXam1. The authors have no conflict of interest to declare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Camilo E. López Carrascal.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Díaz Tatis, P.A., Herrera Corzo, M., Ochoa Cabezas, J.C. et al. The overexpression of RXam1, a cassava gene coding for an RLK, confers disease resistance to Xanthomonas axonopodis pv. manihotis. Planta 247, 1031–1042 (2018). https://doi.org/10.1007/s00425-018-2863-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-018-2863-4

Keywords

Navigation