Skip to main content
Log in

Mannans and endo-β-mannanase transcripts are located in different seed compartments during Brassicaceae germination

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Main conclusion

Mannans but not endo-β-mannanases are mainly found in the mucilage layer of two Brassicaceae seeds. Nonetheless, mannanase mobilization from inner to outer seed layers cannot be ruled out.

The contribution of endo-β-mannanase (MAN) genes to the germination of the wild-type Sisymbrium officinale and cultivated Brassica rapa (Brassicaceae) species has been explored. In both species, mannans have been localized to the imbibed external seed coat layer (mucilage) by fluorescence immunolocalization and MAN enzymatic activity increases in seeds as imbibition progresses, reaching a peak before 100% germination is achieved. The MAN gene families have been annotated and the expression of their members analyzed in vegetative and reproductive organs. In S. officinale and B. rapa, MAN2, MAN5, MAN6, and MAN7 transcripts accumulate upon seed imbibition. SoMAN7 is the most expressed MAN gene in S. officinale germinating seeds, as occurs with its ortholog in Arabidopsis thaliana, but in B. rapa, the most abundant transcripts are BrMAN2 and BrMAN5. These genes (MAN2, MAN5, MAN6, and MAN7) are localized, by mRNA in situ hybridization, to the micropylar at the endosperm layer and to the radicle in S. officinale, but in B. rapa, these mRNAs are faintly found to the micropylar living seed coat layer and are mainly present at the radicle tip and the vascular bundles. If the domestication process undergone by B. rapa is responsible for these different MAN expression patterns, upon germination remains to be elucidated. Since mannans and MAN genes are not spatially distributed in the same seed tissues, a movement of MAN enzymes that are synthesized with typical signal peptides from the embryo tissues to the mucilage layer (via apoplastic space) is necessary for the mannans to be hydrolyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

CWME:

Cell wall modifying enzymes

LSCL:

Living seed coat layer

MAN:

Endo-β-mannanase

References

  • Bailey TL, Boden M, Buske FA, Frith M, Grant CE, Clementi L, Ren J, Li WW, Noble WS (2009) MEME SUITE: tools for motifs discovery and searching. Nucleic Acids Res 37:W202–W208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barrero JM, Talbot MJ, White RG, Jacobsen JV, Gubler F (2009) Anatomical and transcriptomic studies of the coleorhiza reveal the importance of this tissue in regulating dormancy in barley. Plant Physiol 150:1006–1021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bewley JD, Bradford KJ, Hilhorst HWM, Nonogaki H (2013) Seeds: physiology of development, germination and dormancy, 3rd edn. Springer Science +Business Media, New York, pp 133–181

    Book  Google Scholar 

  • Brassica rapa Genome Sequencing Project Consortium (2011) The genome of the mesopolyploid crop species Brassica rapa. Nature Genet 43:1035–1039

    Article  Google Scholar 

  • Buckeridge MS (2010) Seed cell wall storage polysaccharides: models to understand cell wall biosynthesis and degradation. Plant Physiol 154:1017–1023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carrillo-Barral N, Matilla AJ, Iglesias-Fernández R, Rodríguez-Gacio MC (2013) Nitrate-induced early transcriptional changes during imbibition in non-afterripened Sisymbrium officinale seeds. Physiol Plant 148:560–573

    Article  CAS  PubMed  Google Scholar 

  • Carrillo-Barral N, Iglesias-Fernández R, Matilla AJ, Rodríguez-Gacio MC (2014) Nitrate modifies gene expression involved in the abscisic acid and gibberellin biosynthesis and signalling during sensu stricto germination of after-ripened Sisymbrium officinale seeds. Plant Sci 217:99–108

    Article  PubMed  Google Scholar 

  • Chan AC, Khan D, Girard IJ, Becker MG, Millar JL, Sytnik D, Belmonte MF (2016) Tissue-specific laser microdissection of the Brassica napus funiculus improves gene discovery and spatial identification of biological processes. J Exp Bot 67:3561–3571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cosgrove DJ (2016) Plant cell wall extensibility: connecting plant cell growth with cell wall structure, mechanics, and the action of wall-modifying enzymes. J Exp Bot 67:463–476

    Article  CAS  PubMed  Google Scholar 

  • Dhugga KS, Barreiro R, Whitten B, Stecca K, Hazebroek J, Randhawa GS, Dolan M, Kinney AJ, Tomes D, Nichols S, Anderson P (2004) Guar seed beta-mannan synthase is a member of the cellulose synthase super gene family. Science 303:363–366

    Article  CAS  PubMed  Google Scholar 

  • Domínguez F, Cejudo FJ (2014) Programmed cell death (PCD): an essential process of cereal seed development and germination. Front Plant Sci 5:366

    PubMed  PubMed Central  Google Scholar 

  • Gong X, Bassel GW, Wang A, Greenwood JS, Bewley JD (2005) The emergence of embryos from hard seeds is related to the structure of the cell walls of the micropylar endosperm, and not to endo-beta-mannanase activity. Ann Bot 96:1165–1173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • González-Calle V, Barrero-Sicilia C, Carbonero P, Iglesias-Fernández R (2015) Mannans and endo-β-mannanases (MAN) in Brachypodium distachyon: expression profiling and possible role of the BdMAN genes during coleorhiza-limited seed germination. J Exp Bot 66:3753–3764

    Article  PubMed  PubMed Central  Google Scholar 

  • Goodstein DM, Shu S, Howson R, Fazo J, Mitros T, Dirks W, Hellsten U, Putnam N, Rokhsar DS (2012) Phytozome: a comparartive platform for Green plant genomics. Nucleic Acids Res 40:D1178–D1186

    Article  CAS  PubMed  Google Scholar 

  • Graeber K, Linkies A, Wood AT, Leubner-Metzger G (2011) A guide line to family-wide comparative state-of-the-art quantitative RT-PCR analysis exemplified with a Brassicaceae cross-species seed germination case study. Plant Cell 23:2045–2063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Holdsworth MJ, Bentsink L, Soppe WJ (2008) Molecular networks regulating Arabidopsis seed maturation, after-ripening, dormancy and germination. New Phytol 179:33–54

    Article  CAS  PubMed  Google Scholar 

  • Iglesias-Fernández R, Matilla AJ (2010) Genes involved in ethylene and gibberellins metabolism are required for endosperm-limited germination of Sisymbrium officinale L. seeds. Planta 231:653–664

    Article  PubMed  Google Scholar 

  • Iglesias-Fernández R, Rodríguez-Gacio MC, Barrero-Sicilia C, Carbonero P, Matilla AJ (2011a) Three endo-β-mannanase genes expressed in the micropylar endosperm and in the radicle influence germination of Arabidopsis thaliana seeds. Planta 233:25–36

    Article  PubMed  Google Scholar 

  • Iglesias-Fernández R, Rodríguez-Gacio MC, Barrero-Sicilia C, Carbonero P, Matilla AJ (2011b) Molecular analysis of endo-β-mannanase genes upon seed imbibition suggest a cross-talk between radicle and micropylar endosperm during germination of Arabidopsis thaliana. Plant Signal Behav 6:80–82

    Article  PubMed  PubMed Central  Google Scholar 

  • Iglesias-Fernández R, Barrero-Sicilia C, Carrillo-Barral N, Oñate-Sánchez L, Carbonero P (2013) Arabidopsis thaliana bZIP44: a transcription factor affecting seed germination and expression of the mannanase-encoding gene AtMAN7. Plant J 74:767–780

    Article  PubMed  Google Scholar 

  • Karcz J, Ksiazczyk T, Maluszynska J (2005) Seed coat patterns in rapid-cycling Brassica forms. Acta Biol Crac Ser Bot 47:159–165

    Google Scholar 

  • Kučerová D, Kollárová K, Zelko I, Vatehová Z, Lišková D (2014) Galactoglucomannan oligosaccharides alleviate cadmium stress in Arabidopsis. J Plant Physiol 171:518–524

    Article  PubMed  Google Scholar 

  • Lee KP, Piskurewicz U, Tureckova V, Strnad N, Lopez-Molina L (2010) A seed coat bedding assay shows that RGL2-dependent release of abscisic acid by the endosperm controls embryo growth in Arabidopsis dormant seeds. Proc Nat Acad Sci USA 107:19108–19113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee KJ, Dekkers BJ, Steinbrecher T, Walsh CT, Bacic A, Bentsink L, Leubner-Metzger G, Knox JP (2012) Distinct cell wall architectures in seed endosperms in representatives of the Brassicaceae and Solanaceae. Plant Physiol 160:1551–1566

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Linkies A, Müller K, Morris K, Turecková V, Wenk M, Cadman CSC, Corbineau F, Strnad M, Lynn JR, Finch-Savage WE, Leubner-Metzger G (2009) Ethylene interacts with abscisic acid to regulate endosperm rupture during germination: a comparative approach using Lepidium sativum and Arabidopsis thaliana. Plant Cell 21:3803–3822

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marcus SE, Blake AW, Benians TAS, Lee KJD, Poyser C, Donaldson L, Leroux O, Rogowski A, Petersen HL, Boraston A, Gilbert HJ, Willats WG, Knox JP (2010) Restricted access of protein to mannan polysaccharides in intact plant cell walls. Plant J 64:191–203

    Article  CAS  PubMed  Google Scholar 

  • Matilla AJ, Carrillo-Barral N, Rodríguez-Gacio MC (2015) An update on the role of NCED and CYP707A ABA-metabolism genes in seed dormancy induction and the response to after-ripening and nitrate. J Plant Growth Regul 34:274–293

    Article  CAS  Google Scholar 

  • Müller K, Tintelnot S, Leubner-Metzger G (2006) Endosperm-limited Brassicaceae seed germination: abscisic acid inhibits embryo-induced endosperm weakening of Lepidium sativum (cress) and endosperm rupture of cress and Arabidopsis thaliana. Plant Cell Physiol 47:864–877

    Article  PubMed  Google Scholar 

  • Nonogaki H (2014) Seed dormancy and germination-emerging mechanisms and new hypothesis. Front Plant Sci 5:233

    Article  PubMed  PubMed Central  Google Scholar 

  • Nonogaki H, Gee OH, Bradford KJ (2000) A germination-specific endo-β-mannanase gene is expressed in the micropylar endosperm cap of tomato seeds. Plant Physiol 123:1235–1246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nonogaki H, Chen F, Bradford K (2007) Mechanisms and genes involved in germination sensu stricto. In: Bradford K, Nonogaki H (eds) Seed development, dormancy and germination. Blackwell, Oxford, pp 264–304

    Chapter  Google Scholar 

  • Penfield S, Meissner RC, Shoue DA, Carpita NC, Bevan MW (2001) MYB61 is required for mucilage deposition and extrusion in the Arabidopsis seed coat. Plant Cell 13:2777–2791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acid Res 29:e45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reid JSG, Edwards M, Gidley MJ, Clark AH (1995) Enzyme specificity in galactomannan biosynthesis in galactomannan biosynthesis. Planta 195:489–495

    CAS  Google Scholar 

  • Rodríguez-Gacio MC, Iglesias-Fernández R, Carbonero P, Matilla AJ (2012) Softening-up mannan-rich cell walls. J Exp Bot 63:3975–3988

    Article  Google Scholar 

  • Steinbrecher T, Leubner-Metzger G (2017) The biomechanics of seed germination. J Exp Bot 68:765–783

    PubMed  Google Scholar 

  • Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thompson J, Higgins D, Gibson T (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Voiniciuc C, Schmidt MH, Berger A, Yang B, Ebert B, Scheller HV, North HM, Usadel B, Günl M (2015) MUCILAGE-RELATED10 produces galactoglucomannan that maintains pectin and cellulose architecture in Arabidopsis seed mucilage. Plant Physiol 169:403–420

    Article  PubMed  PubMed Central  Google Scholar 

  • Voiniciuc C, Zimmermann E, Schmidt MH, Günl M, Fu L, North HM, Usadel B (2016) Extensive natural variation in Arabidopsis seed mucilage structure. Front Plant Sci 7:803

    Article  PubMed  PubMed Central  Google Scholar 

  • Weitbrecht K, Muller K, Leubner-Metzger G (2011) First off the mark: early seed germination. J Exp Bot 62:3289–3309

    Article  CAS  PubMed  Google Scholar 

  • Western TL, Skinner DJ, Haughn GW (2000) Differentiation of mucilage secretory cells of the Arabidopsis seed coat. Plant Physiol 122:345–356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yan D, Duermeyer L, Leoveanu C, Nambara E (2014) The functions of the endosperm during seed germination. Plant Cell Physiol 55:1521–1533

    Article  CAS  PubMed  Google Scholar 

  • Yang X, Baskin CC, Baskin JM, Liu G, Huang Z (2012) Seed mucilage improves seedling emergence of a sand desert shrub. PLoS One 7:e34597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yuan JS, Yang X, Lai J, Lin H, Cheng ZM, Nonogaki H, Chen F (2007) The endo-beta-mannanase gene families in Arabidopsis, rice, and poplar. Funct Integr Genom 7:1–16

    Article  CAS  Google Scholar 

  • Zeng CL, Wu X-M, Wang JB (2006) Seed coat development and its evolutionary implications in diploid and amphidiploids Brassica species. Acta Biol Crac Ser Bot 48:15–25

    Google Scholar 

  • Zhang X, Rogowski A, Zhao L, Hahn MG, Avci U, Knox JP, Gilbert HJ (2013) Understanding how the complex molecular architecture of mannan degrading hydrolases contributes to plant cell wall degradation. J Biol Chem 289:2002–2012

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhao Y, Song D, Sun J, Li L (2013) Populus endo-beta-mannanase PtrMAN6 plays a role in coordinating cell wall remodelling with suppression of secondary wall thickening through generation of oligosaccharide signals. Plant J 74:473–485

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Prof. P. Carbonero (Universidad Politécnica de Madrid, Centro de Biotecnología y Genómica de Plantas, Madrid, Spain) for critical reading of the manuscript. Financial support was granted by Ministerio de Ciencia e Innovación (CGL2009-11425; MICINN, Spain).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raquel Iglesias-Fernández.

Electronic supplementary material

Below is the link to the electronic supplementary material.

425_2017_2815_MOESM1_ESM.tif

Fig. S1 Transcription levels (Ct values) of the housekeeping SoACT8 and BrACT8 during seed germination (a and d), silique development (b and e) and in different organs (c and f) of S. officinale and B. rapa (TIFF 34544 kb)

425_2017_2815_MOESM2_ESM.tif

Fig. S2 a Expression analysis by RT-qPCR of SoMAN2, SoMAN5, SoMAN6, and SoMAN7 in several plant organs of S. officinale. b Transcript abundance of BrMAN2, BrMAN5, BrMAN6, and BrMAN7 in different plant organs of B. rapa. Data are means ± SE of two technical replicates of three biological samples (TIFF 32187 kb)

Table S1 Sequences of primers used (TIFF 7137 kb)

425_2017_2815_MOESM4_ESM.tif

Table S2 Major characteristics of the endo-β-mannanase proteins analyzed in S. officinale and B. rapa. Those that are important in the germination of Arabidopsis thaliana seeds are also included (Iglesias-Fernández et al. 2011a) (TIFF 9586 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carrillo-Barral, N., Matilla, A.J., Rodríguez-Gacio, M.d.C. et al. Mannans and endo-β-mannanase transcripts are located in different seed compartments during Brassicaceae germination. Planta 247, 649–661 (2018). https://doi.org/10.1007/s00425-017-2815-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-017-2815-4

Keywords

Navigation