Skip to main content

Advertisement

Log in

Identification and molecular characterization of a trans-acting small interfering RNA producing locus regulating leaf rust responsive gene expression in wheat (Triticum aestivum L.)

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Main conclusion

A novel leaf rust responsive ta-siRNA-producing locus was identified in wheat showing similarity to 28S rRNA and generated four differentially expressing ta-siRNAs by phasing which targeted stress responsive genes.

Trans-acting-small interfering RNAs (Ta-siRNAs) are plant specific molecules generally involved in development and are also stress responsive. Ta-siRNAs identified in wheat till date are all responsive to abiotic stress only. Wheat cultivation is severely affected by rusts and leaf rust particularly affects grain filling. This study reports a novel ta-siRNA producing locus (TAS) in wheat which is a segment of 28S ribosomal RNA but shows differential expression during leaf rust infestation. Four small RNA libraries prepared from wheat Near Isogenic Lines were treated with leaf rust pathogen and compared with untreated controls. A TAS with the ability to generate four ta-siRNAs by phasing events was identified along with the microRNA TamiR16 as the phase initiator. The targets of the ta-siRNAs included α-gliadin, leucine rich repeat, trans-membrane proteins, glutathione-S-transferase, and fatty acid desaturase among others, which are either stress responsive genes or are essential for normal growth and development of plants. Expression of the TAS, its generated ta-siRNAs, and their target genes were profiled at five different time points after pathogen inoculation of susceptible and resistant wheat isolines and compared with mock-inoculated controls. Comparative analysis of expression unveiled differential and reciprocal relationship as well as discrete patterns between susceptible and resistant isolines. The expression profiles of the target genes of the identified ta-siRNAs advocate more towards effector triggered susceptibility favouring pathogenesis. The study helps in discerning the functions of wheat genes regulated by ta-siRNAs in response to leaf rust.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Addo-Quaye C, Miller W, Axtell MJ (2009) CleaveLand: a pipeline for using degradome data to find cleaved small RNA targets. Bioinformatics 25:130–131

    Article  CAS  PubMed  Google Scholar 

  • Allen E, Xie Z, Gustafson AM, Carrington JC (2005) microRNA-directed phasing during trans-acting siRNA biogenesis in plants. Cell 121:207–221

    Article  CAS  PubMed  Google Scholar 

  • Alptekin B, Budak H (2016) Wheat miRNA ancestors: evident by transcriptome analysis of A, B, and D genome donors. Funct Integr Genom 16:1–17

    Article  Google Scholar 

  • Alptekin B, Langridge P, Budak H (2017) Abiotic stress miRNomes in the Triticeae. Funct Integr Genom 17:145–170

    Article  CAS  Google Scholar 

  • Alves CS, Vicentini R, Duarte GT, Pinoti VF, Vincentz M, Nogueira FTS (2017) Genome-wide identification and characterization of tRNA derived RNA fragments in land plants. Plant Mol Biol 93:35–48

    Article  CAS  PubMed  Google Scholar 

  • Arikit S, Xia R, Kakrana A, Huang K, Jixian Zhai J, Yan Z, Valdés-López O (2014) An atlas of soybean small RNAs identifies phased siRNAs from hundreds of coding genes. Plant Cell 26:4584–4601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Axtell MJ (2013) Classification and comparison of small RNAs from plants. Annu Rev Plant Biol 64:137–159

    Article  CAS  PubMed  Google Scholar 

  • Budak H, Zhang B (2017) MicroRNAs in model and complex organisms. Funct Integr Genom 17:121–124

    Article  CAS  Google Scholar 

  • Chen HM, Li YH, Wu SH (2007) Bioinformatic prediction and experimental validation of a microRNA-directed tandem trans-acting siRNA cascade in Arabidopsis. Proc Nat Acad Sci USA 104:3318–3323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen HM, Chen LT, Patel K, Li YH, Baulcombe DC, Wu SH (2010) 22-Nucleotide RNAs trigger secondary siRNA biogenesis in plants. Proc Natl Acad Sci USA 107:15269–15274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chojak-Koźniewska J, Linkiewicz A, Sowa S, Radzioch MA, Kuźniak E (2017) Interactive effects of salt stress and Pseudomonas syringae pv lachrymans infection in cucumber: involvement of antioxidant enzymes, abscisic acid and salicylic acid. Environ Exp Bot 36:9–20

    Article  Google Scholar 

  • Cuperus JT, Carbonell A, Fahlgren N, Garcia-Ruiz H, Burke RT, Takeda A, Sullivan CM, Gilbert SD, Montgomery TA, Carrington JC (2010) Unique functionality of 22-nt miRNAs in triggering RDR6-dependent siRNA biogenesis from target transcripts in Arabidopsis. Nat Struct Mol Biol 17:997–1003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dalton DA, Boniface C, Turner Z, Lindahl A, Kim HJ, Jelinek L, Govindarajulu M, Finger RE, Taylor CG (2009) Physiological roles of glutathione-S-transferases in soybean root nodules. Plant Physiol 150:521–530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dean R, Van Kan JA, Pretorius ZA, Hammond-Kosack KE, Di Pietro A, Spanu PD, Rudd JJ, Dickman M, Kahmann R, Ellis J, Foster GD (2012) The top 10 fungal pathogens in molecular plant pathology. Mol Plant Pathol 13:414–430

    Article  PubMed  Google Scholar 

  • Dotto MC, Petsch KA, Aukerman MJ, Beatty M, Hammell M, Timmermans MCP (2014) Genome-wide analysis of leafbladeless1-regulated and phased small RNAs underscores the importance of the TAS3 ta-siRNA pathway to maize development. PLoS Genet 10:e1004826. doi:10.1371/journal.pgen.1004826

    Article  PubMed  PubMed Central  Google Scholar 

  • Elbarbary RA, Takaku H, Uchiumi N, Tamiya H, Abe M, Takahashi M, Nishida H, Nashimoto M (2009) Modulation of gene expression by human cytosolic tRNase ZL through 5′-half-tRNA. PLoS One 4:e5908. doi:10.1371/journal.pone.0005908

    Article  PubMed  PubMed Central  Google Scholar 

  • Fan G, Cao Y, Deng M, Zhai X, Zhao Z, Niu S, Ren Y (2017) Identification and dynamic expression profiling of microRNAs and target genes of Paulownia tomentosa in response to Paulownia witches’ broom disease. Acta Physiol Plant 39:28. doi:10.1007/s11738-016-2326-0

    Article  Google Scholar 

  • Fei Q, Xia R, Meyers BC (2013) Phased, secondary, small interfering RNAs in posttranscriptional regulatory networks. Plant Cell 25:2400–2415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fei Q, Zhang Y, Xia R, Meyers BC (2016) Small RNAs add zing to the zig-zag-zig model of plant defences. Mol Plant Microbe Interact 29:165–169

    Article  CAS  PubMed  Google Scholar 

  • Folkes L, Moxon S, Woolfenden HC, Stocks MB, Szittya G, Dalmay T, Moulton V (2012) PAREsnip: a tool for rapid genome-wide discovery of small RNA/target interactions evidenced through degradome sequencing. Nucleic Acids Res 40(13):e103. doi:10.1093/nar/gks277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Götz S, Arnold R, Sebastián-León P, Martín-Rodríguez S, Tischler P, Jehl MA, Dopazo J, Rattei T, Conesa A (2011) B2G-FAR, a species-centered GO annotation repository. Bioinformatics 27:919–924

    Article  PubMed  PubMed Central  Google Scholar 

  • Guo W, Zhang Y, Wang Q, Zhan Y, Zhu G, Yu Q, Zhu L (2016) High-throughput sequencing and degradome analysis reveal neutral evolution of Cercis gigantea microRNAs and their targets. Planta 243:83–95

    Article  CAS  PubMed  Google Scholar 

  • Gupta SK, Charpe A, Koul S, Haque QMR, Prabhu KV (2006) Development and validation of SCAR markers co-segregating with an Agropyron elongatum derived leaf rust resistance gene Lr24 in wheat. Euphytica 150:233–240

    Article  CAS  Google Scholar 

  • Heun M, Schafer-Pregl R, Klawan D, Castagna R, Accerbi M, Borghi B, Salamini F (1997) Site of Einkorn wheat domestication identified by DNA fingerprinting. Science 278:1312–1314

    Article  CAS  Google Scholar 

  • Hohmann U, Lau K, Hothorn M (2017) The structural basis of ligand perception and signal activation by receptor kinases. Annu Rev Plant Biol 68:9.1–9.28

    Article  Google Scholar 

  • Hu H, Rashotte AM, Singh NK, Weaver DB, Goertzen LR, Singh SR, Locy RD (2015) The complexity of posttranscriptional small RNA regulatory networks revealed by in silico analysis of Gossypium arboreum L. leaf, flower and boll small regulatory RNAs. PLoS One 10:e0127468. doi:10.1371/journal.pone.0127468

    Article  PubMed  PubMed Central  Google Scholar 

  • International Wheat Genome Sequencing Consortium (IWGSC) (2014) A chromosome-based draft sequence of the hexaploid bread wheat (Triticum aestivum) genome. Science 345(6194):1251788. doi:10.1126/science.1251788

    Article  Google Scholar 

  • Jacobs TB, Lawler NJ, LaFayette PR, Vodkin LO, Parrott WA (2016) Simple gene silencing using the trans-acting siRNA pathway. Plant Biotechnol J 14:117–127

    Article  CAS  PubMed  Google Scholar 

  • Johnson C, Kasprzewska A, Tennessen K, Fernandes J, Nan GL, Walbot V, Sundaresan V, Vance V, Bowman LH (2009) Clusters and superclusters of phased small RNAs in the developing inflorescence of rice. Genome Res 19:1429–1440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jones JDG, Dangl JL (2006) The plant immune system. Nature 444:325–329

    Article  Google Scholar 

  • Källman T, Chen J, Gyllenstrand N, Lagercrantz U (2013) A significant fraction of 21-nucleotide small RNA originates from phased degradation of resistance genes in several perennial species. Plant Physiol 162:741–754

    Article  PubMed  PubMed Central  Google Scholar 

  • Katiyar-Agarwal S, Jin H (2010) Role of small RNAs in host-microbe interactions. Annu Rev Phytopathol 48:225–246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kenan-Eichler M, Leshkowitz D, Tal L, Noor E, Melamed-Bessudo C, Feldman M, Levy AA (2011) Wheat hybridization and polyploidization results in deregulation of small RNAs. Genetics 188:263–272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Komiya R (2017) Biogenesis of diverse plant phasiRNAs involves an miRNA-trigger and Dicer-processing. J Plant Res 130:17–23

    Article  CAS  PubMed  Google Scholar 

  • Kozomara A, Griffiths-Jones S (2014) miRBase: annotating high confidence microRNAs using deep sequencing data. Nucleic Acid Res 42:D68–D73. doi:10.1093/nar/gkt1181

    Article  CAS  PubMed  Google Scholar 

  • Kumar D, Kapoor A, Singh D, Satapathy L, Singh AK, Kumar M, Prabhu KV, Mukhopadhyay K (2014a) Functional characterisation of a WRKY transcription factor of wheat and its expression analysis during leaf rust pathogenesis. Funct Plant Biol 41:1295–1309

    Article  CAS  Google Scholar 

  • Kumar D, Singh D, Kanodia P, Prabhu KV, Kumar M, Mukhopadhyay K (2014b) Discovery of novel leaf rust responsive microRNAs in wheat and prediction of their target genes. J Nucleic Acids 2014:Article ID 570176

    Article  Google Scholar 

  • Kumar D, Dutta S, Singh D, Prabhu KV, Kumar M, Mukhopadhyay K (2017) Uncovering leaf rust responsive miRNAs in wheat (Triticum aestivum L.) using high-throughput sequencing and prediction of their targets through degradome analysis. Planta 245:161–182

    Article  CAS  PubMed  Google Scholar 

  • Kurtoglu KY, Kantar M, Lucas SJ, Budak H (2013) Unique and conserved microRNAs in wheat chromosome 5D revealed by next-generation sequencing. PLoS One 8:e6980. doi:10.1371/journal.pone.0069801

    Article  Google Scholar 

  • Lim XZ (2014) Rust threatening wheat crops worldwide could be thwarted with genetics, but anti-GMO fervor remains challenge. Genetic Literacy Project. https://geneticliteracyproject.org/2014/07/01

  • Matsui A, Mizunashi K, Tanaka M, Kaminuma E, Nguyen AH, Nakajima M, Kim JM, Nguyen DV, Toyoda T, Seki M (2014) TasiRNA-ARF pathway moderates floral architecture in Arabidopsis plants subjected to drought stress. Biomed Res Int 2014:Article ID 303451. doi:10.1155/2014/303451

    Article  Google Scholar 

  • McIntosh RA, Pretorius ZA (2011) Borlaug Global Rust Initiative provides momentum for wheat rust research. Euphytica 179:1–2

    Article  Google Scholar 

  • Menard GN, Moreno JM, Bryant FM, Munoz-Azcarate O, Kelly AA, Keywan Hassani-Pak K, Kurup S, Eastmond PJ (2017) Genome wide analysis of fatty acid desaturation and its response to temperature. Plant Physiol. doi:10.1104/pp.16.01907

    Google Scholar 

  • Mittler R (2017) ROS are good. Trends Plant Sci 22:11–19

    Article  CAS  PubMed  Google Scholar 

  • Peragine A, Yoshikawa M, Wu G, Albrecht HL, Poethig RS (2004) SGS3 and SGS2/SDE1/RDR6 are required for juvenile development and the production of trans-acting siRNAs in Arabidopsis. Genes Dev 18:2368–2379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pessina S, Pavan S, Catalano D, Gallotta A, Visser RGF, Bai Y, Malnoy M, Schouten HJ (2014) Characterization of the MLO gene family in Rosaceae and gene expression analysis in Malus domestica. BMC Genom 15:618. doi:10.1186/1471-2164-15-618

    Article  Google Scholar 

  • Rajeswaran R, Aregger M, Zvereva AS, Borah BK, Gubaeva EG, Pooggin MM (2012) Sequencing of RDR6-dependent double-stranded RNAs reveals novel features of plant siRNA biogenesis. Nucleic Acids Res 40:6241–6254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rieu I, Powers SJ (2009) Real-time quantitative RT-PCR: design, calculations, and statistics. Plant Cell 21:1031–1033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sanyal A, Linder CR (2013) Plasticity and constraints on fatty acid composition in the phospholipids and triacylglycerols of Arabidopsis accessions grown at different temperatures. BMC Plant Biol 13:63. doi:10.1186/1471-2229-13-63

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shivaprasad PV, Chen HM, Patel K, Bond DM, Santos BA, Baulcombe DC (2012) A microRNA superfamily regulates nucleotide binding site–leucine-rich repeats and other mRNAs. Plant Cell 24:859–874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh D, Bhaganagare G, Prabhu KV, Gupta PK, Mukhopadhyay K (2012) Targeted spatio-temporal expression based characterization of state of infection and time-point of maximum defense in wheat NILs during leaf-rust infection. Mol Biol Rep 39:9373–9382

    Article  CAS  PubMed  Google Scholar 

  • Stocks MB, Moxon S, Mapleson D, Woolfenden HC, Mohorianu I, Folkes L, Schwach F, Dalmay T, Moulton V (2012) The UEA sRNA workbench: a suite of tools for analysing and visualizing next generation sequencing microRNA and small RNA datasets. Bioinformatics 28:2059–2061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tang Z, Zhang L, Xu C, Yuan S, Zhang F, Zheng Y, Zhao C (2012) Uncovering small RNA-mediated responses to cold stress in a wheat thermosensitive genic male-sterile line by deep sequencing. Plant Physiol 159:721–738

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsuzuki M, Motomura K, Kumakura N, Takeda A (2017) Interconnections between mRNA degradation and RDR-dependent siRNA production in mRNA turnover in plants. J Plant Res 130:211–226

    Article  CAS  PubMed  Google Scholar 

  • Tyler AM, Bhandari DG, Poole M, Napier JA, Jones HD, Lu C, Lycett GW (2015) Gluten quality of bread wheat is associated with activity of RabD GTPases. Plant Biotechnol J 13:163–176

    Article  CAS  PubMed  Google Scholar 

  • Van Herpen TWJM, Riley M, Sparks C, Jones HD, Gritsch C, Dekking EH, Hamer RJ, Bosch D, Salentijn EMJ, Smulders MJM, Shewry PR, Gilissen LJWJ (2008) Analysis of the expression of an alpha-gliadin promoter and the deposition of alpha-gliadin protein during wheat grain development. Ann Bot 102:331–342

    Article  PubMed  PubMed Central  Google Scholar 

  • Voegele RT, Mendgen KW (2011) Nutrient uptake in rust fungi: how sweet is parasitic life? Euphytica 179:41–55

    Article  Google Scholar 

  • Voinnet O (2009) Origin, biogenesis, and activity of plant microRNAs. Cell 136:669–687

    Article  CAS  PubMed  Google Scholar 

  • Walley JW, Kliebenstein DJ, Bostock RM, Dehesh K (2013) Fatty acids and early detection of pathogens. Curr Opin Plant Biol 16:520–526

    Article  CAS  PubMed  Google Scholar 

  • Wang HLV, Chekanova JA (2016) Small RNAs: essential regulators of gene expression and defenses against environmental stresses in plants. WIREs RNA 7:356–381

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Li H, Sun Q, Yao Y (2016) Characterization of small RNAs derived from tRNAs, rRNAs and snoRNAs and their response to heat stress in wheat seedlings. PLoS One 11:e0150933. doi:10.1371/journal.pone.0150933

    Article  PubMed  PubMed Central  Google Scholar 

  • Wong J, Gao L, Yang Y, Zhai J, Arikit S, Yu Y, Duan S, Chan V, Xiong Q, Yan J, Li S (2014) Roles of small RNAs in soybean defense against Phytophthora sojae infection. Plant J 79:928–940

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu Q, Liu Y, Zhu A, Wu X, Ye J, Yu K, Guo W, Deng X (2010) Discovery and comparative profiling of microRNAs in a sweet orange red-flesh mutant and its wild type. BMC Genom 11:246. doi:10.1186/1471-2164-11-246

    Article  Google Scholar 

  • Xue L-J, Zhang J-J, Xue H-W (2009) Characterization and expression profiles of miRNAs in rice seeds. Nucleic Acids Res 37:916–930

    Article  CAS  PubMed  Google Scholar 

  • Ye J, Fang L, Zheng H, Zhang Y, Chen J, Zhang Z, Wang J, Li S, Li R, Bolund L, Wang J (2006) WEGO: a web tool for plotting GO annotations. Nucleic Acids Res 34:293–297

    Article  Google Scholar 

  • Yoshikawa M, Ikia T, Tsutsuic Y, Miyashitaa K, Poethig RS, Habue Y, Ishikawaa M (2013) 3′ fragment of miR173-programmed RISC-cleaved RNA is protected from degradation in a complex with RISC and SGS3. Proc Nat Acad Sci USA 110:4117–4122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhai J, Jeong DH, De Paoli E, Park S, Rosen BD, Li Y, González AJ, Yan Z, Kitto SL, Grusak MA, Jackson SA (2011) MicroRNAs as master regulators of the plant NB-LRR defense gene family via the production of phased, trans-acting siRNAs. Genes Dev 25:2540–2553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang C, Li G, Wang J, Fang J (2012a) Identification of trans-acting siRNAs and their regulatory cascades in grapevine. Bioinformatics 28:2561–2568

    Article  CAS  PubMed  Google Scholar 

  • Zhang C, Ng DWK, Lu J, Chen ZJ (2012b) Roles of target site location and sequence complementarity in trans-acting siRNA formation in Arabidopsis. Plant J 69:217–226

    Article  CAS  PubMed  Google Scholar 

  • Zhang C, Li G, Zhu S, Zhang S, Fang J (2014) tasiRNAdb: a database of ta-siRNA regulatory pathways. Bioinformatics 30:1045–1046

    Article  PubMed  Google Scholar 

  • Zhao YT, Wang M, Wang ZM, Fang RX, Wang XJ, Jia YT (2015) Dynamic and coordinated expression changes of rice small RNAs in response to Xanthomonas oryzae pv. oryzae. J Genet Genom 42:625–637

    Article  Google Scholar 

  • Zheng Z, Appiano M, Pavan S, Bracuto V, Ricciardi L, Visser RGF, Wolters AMA, Bai Y (2016) Genome-wide study of the tomato SlMLO gene family and its functional characterization in response to the powdery mildew fungus Oidium neolycopersici. Front Plant Sci 7:380. doi:10.3389/fpls.2016.00380

    PubMed  PubMed Central  Google Scholar 

  • Zhou SJ, Jing Z, Shi JL (2013) Genome-wide identification, characterization, and expression analysis of the MLO gene family in Cucumis sativus. Genet Mol Res 12:6565–6578

    Article  CAS  PubMed  Google Scholar 

  • Zörb C, Becker D, Hasler M, Mühling KH, Gödde V, Niehaus K, Geilfus CM (2013) Silencing of the sulfur rich α-gliadin storage protein family in wheat grains (Triticum aestivum L.) causes no unintended side-effects on other metabolites. Front Plant Sci 4:369. doi:10.3389/fpls.2013.00369

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors are thankful to BTISNet SubDIC (BT/BI/04/065/04) for providing bioinformatics facilities. This work was supported by Centre of Excellence, Technical Education Quality Improvement Program-II (Grant No. NPIU/TEQIP II/FIN/31/158). SD acknowledges Innovation in Science Pursuit for Inspired Research (INSPIRE), Government of India, Ministry of Science and Technology, New Delhi [IF140725], and DK is grateful to the Council of Scientific and Industrial Research [9/554 (0026) 2010-EMR-I] for providing fellowships.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kunal Mukhopadhyay.

Ethics declarations

Conflict of interest

The authors have declared that no competing interests exist.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 1790 kb)

Supplementary material 2 (XLSX 32 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dutta, S., Kumar, D., Jha, S. et al. Identification and molecular characterization of a trans-acting small interfering RNA producing locus regulating leaf rust responsive gene expression in wheat (Triticum aestivum L.). Planta 246, 939–957 (2017). https://doi.org/10.1007/s00425-017-2744-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-017-2744-2

Keywords

Navigation